CN111269010A - 一种3d打印层状复合陶瓷的系统和方法 - Google Patents

一种3d打印层状复合陶瓷的系统和方法 Download PDF

Info

Publication number
CN111269010A
CN111269010A CN202010076668.XA CN202010076668A CN111269010A CN 111269010 A CN111269010 A CN 111269010A CN 202010076668 A CN202010076668 A CN 202010076668A CN 111269010 A CN111269010 A CN 111269010A
Authority
CN
China
Prior art keywords
laser
powder
ceramic
layer
printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010076668.XA
Other languages
English (en)
Other versions
CN111269010B (zh
Inventor
陶景超
杨林
何国
何君杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202010076668.XA priority Critical patent/CN111269010B/zh
Publication of CN111269010A publication Critical patent/CN111269010A/zh
Application granted granted Critical
Publication of CN111269010B publication Critical patent/CN111269010B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/222Driving means for motion along a direction orthogonal to the plane of a layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/37Process control of powder bed aspects, e.g. density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63432Polystyrenes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63452Polyepoxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/41Radiation means characterised by the type, e.g. laser or electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/44Radiation means characterised by the configuration of the radiation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/63Rollers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

本发明涉及一种3D打印层状复合陶瓷的系统,所述的层状复合陶瓷包括陶瓷层和设于所述陶瓷层之间的软化层;包括以下步骤:包括成型装置、用于将铺粉完成的陶瓷粉烧结成陶瓷层的激光烧结装置、以及将软化层粉末融化覆盖于所述陶瓷层表面形成所述软化层的激光熔覆装置;所述激光熔覆装置为同轴送粉的激光熔覆装置;所述的陶瓷粉铺设于成型装置的成形活塞上;加工过程中,所述激光烧结装置的激光束在前、激光熔覆装置的激光束在后,并且两个激光束同步运动加工出一层陶瓷层和一层软化层。与现有技术相比,本发明具有制备过程简单,可以制备出复杂、高性能和功能梯度的医用陶瓷等优点。

Description

一种3D打印层状复合陶瓷的系统和方法
技术领域
本发明涉及3D打印技术领域,特别是针对于陶瓷的3D打印技术,尤其是涉及一种3D打印层状复合陶瓷的系统和方法。
背景技术
近些年,3D打印技术取得了快速的发展,成为学者和工程师研究的热点,其中工程塑料、金属粉末和光敏树脂的3D打印已经在航空、航天、船舶、汽车、医疗、文化、教育等领域得到了广泛的应用。
由于陶瓷熔点高和脆性大的特点,在3D打印快熔快冷过程中,陶瓷粉末难以直接熔化后凝固,致使3D打印复杂陶瓷零部件时存在致密度低和裂纹多致命性的问题。然而通过传统的方法难以实现任意复杂形状陶瓷零件的制备,同时也为加工带来了难度。中国专利CN201310258054.3授权了一种激光3D打印陶瓷功能梯度结构件的方法,该方法通过改变送粉器中陶瓷粉的比例实现成分梯度3D打印,但未能较好解决3D打印陶瓷本身具有脆性大易开裂的难题。
仿生结构设计是改善材料性能的一种重要手段;目前,模仿贝壳结构,人们已经通过在脆性的陶瓷层间加入不同材质的较软或较韧的材料(如树脂或金属),制成了多种具有层状结构的陶瓷基复合材料,或称为层状陶瓷基复合材料;但是目前层状陶瓷复合材料的制备方法主要为冰模板法,该方法虽然能够制备仿贝壳陶瓷基复合材料,但是制备过程需要多种化学溶剂,制备过程复杂,制备效率较低,并且各层之间的厚度均不可控,无法改变层厚比,限制了层状陶瓷的应用。
因此,目前亟需一种新的方法来实现层厚可控、结构复杂和高性能的层状梯度医用复合陶瓷。
发明内容
本发明的目的就是为了克服上述现有技术存在的制备过程复杂、层状陶瓷结构不易控制、制备效率低、3D打印得到的陶瓷韧性不佳等缺陷而提供一种3D打印层状复合陶瓷的系统和方法。
本发明的目的可以通过以下技术方案来实现:
一种3D打印层状复合陶瓷的系统,所述的层状复合陶瓷包括陶瓷层和设于所述陶瓷层之间的软化层;包括以下步骤:
包括成型装置、用于将铺粉完成的陶瓷粉烧结成陶瓷层的激光烧结装置、以及将软化层粉末融化覆盖于所述陶瓷层表面形成所述软化层的激光熔覆装置;所述激光熔覆装置为同轴送粉的激光熔覆装置;所述的陶瓷粉铺设于成型装置的成形活塞上;加工过程中,所述激光烧结装置的激光束在前、激光熔覆装置的激光束在后,并且两个激光束同步运动加工出一层陶瓷层和一层软化层。
本发明结合了选择性激光烧结技术和激光熔覆技术,将仿生层状结构增韧陶瓷的思路融入至3D打印陶瓷中,共同来克服和解决3D打印陶瓷过程中的气孔和裂纹问题,提高了3D打印陶瓷的韧性。
本发明的装置中,采用双束激光和双粉系统,激光烧结装置产生的激光束用于通过烧结制备陶瓷层,激光熔覆装置产生的激光用于通过熔覆中间软化层的粉体制备中间软化层,本发明的中间软化层起到至关重要的作用,一方面可以补充和填满在选择性激光烧结过程中陶瓷粉末之间的孔隙,使得陶瓷层更为致密化,另一方面中间软化层具有一定的形变能力,可吸收冲击能量,陶瓷层和中间软化层的相间沉积可实现陶瓷的韧化,从而减少裂纹的产生。
激光烧结和激光熔覆在时间上同时进行,两者各司其职,在时间上同时进行,在空间上扫描方向上一前一后;相比于先加工出一层陶瓷层,然后再加工出一层软化层,激光烧结和激光熔覆同时进行可减少陶瓷粉与软化层粉末之间的切换工序,充分利用激光能量,陶瓷粉和软化层粉熔化后渗透到未熔的空隙中,为层状陶瓷的致密化赢得了宝贵的时间,提高了制备得到的层状陶瓷的致密性;同时,也提高了效率。
所述的激光烧结装置的激光束和激光熔覆装置的激光束的光斑直径相等,两个激光束的中心间距为两个激光束的光斑半径之和。
所述激光烧结装置的激光束和激光熔覆装置的激光束为激光头内分束产生的激光,或所述激光烧结装置的激光束和激光熔覆装置的激光束为激光头产生的激光经过分束器分束后的激光,或所述激光烧结装置的激光束和激光熔覆装置的激光束为两个独立的激光头产生的激光。
所述激光烧结装置和激光熔覆装置的激光束均为CO2激光束。
选择CO2激光束可以增加陶瓷对激光的吸收率,改善陶瓷层的致密性,减少气孔的产生。
所述成型装置还包括成形仓和带动所述成形活塞上下移动的第一升降组件。
还包括设于所述加工平台旁边的铺粉装置,该铺粉装置包括与所述成形仓共用侧壁的粉仓、可升降安装于所述粉仓内的供料活塞、带动所述供料活塞上下移动的第二升降组件以及在所述成形仓和粉仓的仓口水平移动的铺粉器;所述铺粉器为滚筒,该滚筒的底边与粉仓和成形仓的仓口齐平。
本发明还提供了一种采用上述的系统进行3D打印层状复合陶瓷的方法,包括以下步骤:
制备陶瓷粉体,采用铺粉装置将陶瓷粉体平铺于成型装置的成形活塞上;
将软化层粉末置于激光熔覆装置的粉筒中;
开启激光烧结装置和激光熔覆装置进行3D打印,两个激光束同时加工出一层陶瓷层和一层软化层;
根据所述层状复合陶瓷的层数采用以上方法逐层加工出陶瓷层和软化层。
所述陶瓷粉体的原料包括陶瓷粉末和粘结剂粉末,所述粘结剂粉末的添加量为陶瓷粉末质量的5~10%;其中,所述陶瓷粉末选自ZrO2、Al2O3、ZTA、3Y-TZP、 HA或TCP中的一种或几种,所述粘结剂粉末选自环氧树脂、聚苯乙烯或聚乙烯醇树脂中的一种或几种;所述中间软化层粉末选自纯钛粉或CoCrMo合金粉末中的一种或两种的混合物。
由于陶瓷粉熔点较高,在选择性激光烧结极短的过程中难以直接熔化,需要在陶瓷粉末里加入粘结剂,因此为了配合激光烧结技术,本发明优化了陶瓷粉体的原料组成,添加了粘结剂粉末。
激光烧结装置和激光熔覆装置的设置参数与层状陶瓷的各层的厚度要求有关,一般可以设置为:所述激光烧结装置的设置参数为的激光能量率密度为 50-100J/mm2,扫描速度为3~8mm/s;激光熔覆装置的设置参数为的激光能量密度为30~80J/mm2,扫描速度为3~8mm/s;送粉量为12~16g/min。
通过调节每次陶瓷粉体的铺粉厚度调节陶瓷层的厚度,通过送粉量来调节软化层的厚度。
本发明的方法可以通过改变相间层的层厚比来形成层状梯度陶瓷材料,改善陶瓷后续的可加工性能。
与现有技术相比,本发明具有以下优点:
(1)采用3D打印技术加工出仿生层状结构增韧陶瓷,软硬层相间沉积可大大增加陶瓷的韧性,减少裂纹,软硬层厚度可控,改变层厚比可制备陶瓷梯度材料,改善陶瓷后续的可加工性能;
(2)采用3D打印技术,可以实现复杂和高性能陶瓷件的制备;
(3)采用双激光束一前一后同步加工出陶瓷层和软化层,充分利用激光能量,陶瓷粉和软化层粉熔化后渗透到未熔的空隙中,为层状陶瓷的致密化赢得了宝贵的时间。
附图说明
图1为本发明的3D打印层状复合陶瓷的系统的结构示意图;
图2为本发明制备得到的层状复合陶瓷的结构示意图;
图中,1为粉仓,2为滚筒,3为粉筒;4为成形活塞;5为陶瓷层;6为软化层;7为软化层粉束;8为成形仓;9为预铺的陶瓷粉;a为主光束;b为副光束; V为扫描方向。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
一种3D打印层状复合陶瓷的系统,用来加工出仿生层状结构增韧陶瓷,该层状复合陶瓷包括陶瓷层5和设于陶瓷层5之间的软化层6,如图2所示。3D打印层状复合陶瓷的系统结构如图1所示,该系统包括成型装置、铺粉装置、用于将铺粉完成的陶瓷粉烧结成陶瓷层5的激光烧结装置、以及将软化层粉末融化覆盖于陶瓷层5表面形成软化层6的激光熔覆装置;激光熔覆装置为同轴送粉的激光熔覆装置;的陶瓷粉铺设于成型装置的成形活塞4上;加工过程中,激光烧结装置和激光熔覆装置两者各司其职,在时间上同时进行,在空间上扫描方向V上一前一后;激光烧结装置的激光束在前、激光熔覆装置的激光束在后,并且两个激光束同步运动加工出一层陶瓷层5和一层软化层6;激光烧结装置的激光束和激光熔覆装置的激光束为两个独立的激光头产生的激光,激光烧结装置和激光熔覆装置的激光束均为CO2激光束以便增大陶瓷对激光的吸收率。成型装置还包括成形仓8和带动成形活塞4上下移动的第一升降组件。铺粉装置设于成形仓8的旁边,铺粉装置包括与成形仓8共用侧壁的粉仓1、可升降安装于粉仓1内的供料活塞、带动供料活塞上下移动的第二升降组件以及在成形仓8和粉仓1的仓口水平移动的滚筒2,该滚筒2的底边与粉仓1和成形仓8的仓口齐平。
如图1所示,激光烧结装置产生的主光束a在前,先将预铺的陶瓷粉9烧结成陶瓷层5,激光熔覆装置的同轴送粉头产生两束软化层粉束,然后激光熔覆装置产生的副光束b紧随主光束a将中间的软化层粉末熔覆,形成软化层6。在陶瓷层5 和软化层6的同步加工过程中,激光烧结装置的激光束和激光熔覆装置的激光束光斑直径相等,两者之间的间距为两光束光斑半径之和。
实施例2
本实施例为3D打印层状复合陶瓷的系统,主要结构与实施例1中的系统结构相同,不同之处在于:本实施例中,激光烧结装置的激光束和激光熔覆装置的激光束为激光头内分束产生的激光,激光器产生的激光光源在激光头内分束,从激光头内发出主光束a和副光束b。
实施例3
本实施例为3D打印层状复合陶瓷的系统,主要结构与实施例1中的系统结构相同,不同之处在于:本实施例中,激光烧结装置的激光束和激光熔覆装置的激光束为激光头产生的激光经过分束器分束后的激光,激光器产生的激光光源从激光头中发出,在外部设置一个分束器,产生主光束a和副光束b。
实施例4
一种3D打印层状复合陶瓷的方法,该方法采用实施例1中的系统,包括以下步骤:
S-1制备陶瓷粉体,称取适合铺粉且粒径相当的球形的陶瓷粉末和粘结剂粉末进行混合得到混合粉末,控制粘结剂粉末的添加量为陶瓷粉末质量的10%;选取合适的球磨参数用球磨机对混合粉末进行球磨得到陶瓷粉体。其中,陶瓷粉的组分为ZrO2;粘结剂为环氧树脂。
S-2将软化层粉末置于激光熔覆装置的粉筒3中,其中,中间的软化层粉末为纯钛粉;
S-3采用铺粉装置将陶瓷粉体按照预设的厚度铺设于成型装置的成形活塞4 上,形成预铺的陶瓷粉9,具体为将球磨好的陶瓷粉体倒入粉仓1,滚筒2将粉仓 1中的陶瓷粉体均匀地铺在成形仓8中成形活塞4上,将中间的软化层粉末倒入粉筒3中,根据设计的零件做路径规划编程,将激光烧结装置的设置参数为的激光能量率密度为80J/mm2,扫描速度为5mm/s;激光熔覆装置的设置参数为的激光能量密度为50J/mm2,扫描速度为5mm/s;各层的送粉量为12~16g/min;完成后即可开启激光烧结装置和激光熔覆装置进行3D打印,主光束a和副光束b按照设定好的程序扫描,主光束a在扫描方向上的前面将预铺的陶瓷粉9进行选择性激光烧结,形成陶瓷层5,紧随其后的副光束b将其同轴送出的软化层粉束7熔化形成中间软化熔覆层6,两个激光束一前一后,同步扫描加工出一层陶瓷层5和一层软化层6,然后主光束a、副光束b和同轴送粉头送出的软化层粉束7停止。
S-4粉仓1内的供料活塞上升一定高度,成形仓8内的成形活塞下降一定高度,采用滚筒2进行铺粉,上升高度和下降高度根据需要制造的陶瓷层的厚度设定,启动激光烧结装置和激光熔覆装置进行下一层陶瓷层和软化层的加工,然后依次类推,根据层状复合陶瓷的层数采用以上方法逐层加工出各层陶瓷层5和软化层6;对于本发明的复合陶瓷,最上层为陶瓷层5,在加工最上层的结构时,只需要启动激光烧结装置和铺粉装置,单独加工出最上层的陶瓷层即可。整个复合陶瓷层的加工过程中,通过调节每次陶瓷粉体的铺粉厚度调节陶瓷层5的厚度,通过改变送分量来调节软化层6的厚度,可以通过改变相间层的层厚比来形成层状梯度陶瓷材料,改善陶瓷后续的可加工性能。
实施例5
本实施例为3D打印层状复合陶瓷的方法,该方法采用实施例1中的系统,具体步骤与实施例2大部分相同,不同之处在于,陶瓷粉体中粘结剂粉末的添加量为陶瓷粉末质量的6%;陶瓷粉的组分为Al2O3;粘结剂为聚苯乙烯。
在3D打印过程中,激光烧结装置的设置参数为的激光能量率密度为50J/mm2,扫描速度为3mm/s;激光熔覆装置的设置参数为的激光能量密度为30J/mm2,扫描速度为3mm/s;各层的送粉量为12~16g/min,。
实施例6
本实施例为3D打印层状复合陶瓷的方法,该方法采用实施例1中的系统,具体步骤与实施例2大部分相同,不同之处在于,陶瓷粉体中粘结剂粉末的添加量为陶瓷粉末质量的5%;陶瓷粉的组分为ZTA;粘结剂为聚乙烯醇树脂。
在3D打印过程中,激光烧结装置的设置参数为的激光能量率密度为 100J/mm2,扫描速度为8mm/s;激光熔覆装置的设置参数为的激光能量密度为80J/mm2,扫描速度为8mm/s;各层的送粉量为12~16g/min。
实施例7
本实施例为3D打印层状复合陶瓷的方法,该方法采用实施例1中的系统,具体步骤与实施例2大部分相同,不同之处在于,陶瓷粉体中粘结剂粉末的添加量为陶瓷粉末质量的5%;陶瓷粉的组分为HA;粘结剂为环氧树脂。
在3D打印过程中,激光烧结装置的设置参数为的激光能量率密度为80J/mm2,扫描速度为5mm/s;激光熔覆装置的设置参数为的激光能量密度为50J/mm2,扫描速度为5mm/s;各层的送粉量为12~16g/min。
实施例8
本实施例为3D打印层状复合陶瓷的方法,该方法采用实施例1中的系统,具体步骤与实施例2大部分相同,不同之处在于,陶瓷粉体中粘结剂粉末的添加量为陶瓷粉末质量的10%;陶瓷粉的组分为HA;粘结剂为环氧树脂。中间的软化层粉末为CoCrMo合金粉末。
在3D打印过程中,激光烧结装置的设置参数为的激光能量率密度为 100J/mm2,扫描速度为8mm/s;激光熔覆装置的设置参数为的激光能量密度为 80J/mm2,扫描速度为8mm/s;各层的送粉量为12~16g/min。
实施例9
本实施例为3D打印层状复合陶瓷的方法,该方法采用实施例1中的系统,具体步骤与实施例2大部分相同,不同之处在于,陶瓷粉体中粘结剂粉末的添加量为陶瓷粉末质量的5~10%;陶瓷粉的组分为TCP;粘结剂为环氧树脂。中间的软化层粉末为CoCrMo合金粉末。
在3D打印过程中,激光烧结装置的设置参数为的激光能量率密度为50J/mm2,扫描速度为3mm/s;激光熔覆装置的设置参数为的激光能量密度为30J/mm2,扫描速度为3mm/s;各层的送粉量为12~16g/min。
本发明陶瓷3D打印技术中采用了双激光束和双送粉系统,可实现陶瓷和粘结剂混合粉末的选择性激光烧结,以及中间软化层粉末的激光熔覆,两者时间上同时进行,在空间扫描方向上一前一后,陶瓷和粘结剂混合粉末烧结后立即在其上表面进行激光熔覆形成中间软化层。中间软化层粉末熔化后可填补陶瓷颗粒间的间隙,这将大大地增加陶瓷件的致密度;这种软硬层相间沉积可增大陶瓷的整体韧性,减少裂纹的产生;软硬层厚度可变,可实现梯度陶瓷层将改善后续的可加工性能。该技术将层状仿生结构与3D打印技术结合,为制备复杂、高性能和功能梯度的医用陶瓷提供新的思路。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (9)

1.一种3D打印层状复合陶瓷的系统,所述的层状复合陶瓷包括陶瓷层(5)和设于所述陶瓷层(5)之间的软化层(6);其特征在于,
该系统包括成型装置、用于将铺粉完成的陶瓷粉烧结成陶瓷层(5)的激光烧结装置、以及将软化层粉末融化覆盖于所述陶瓷层(5)表面形成所述软化层(6)的激光熔覆装置;所述激光熔覆装置为同轴送粉的激光熔覆装置;所述的陶瓷粉铺设于成型装置的成形活塞(4)上;加工过程中,所述激光烧结装置的激光束在前、激光熔覆装置的激光束在后,并且两个激光束同步运动加工出一层陶瓷层(5)和一层软化层(6)。
2.根据权利要求1所述的一种3D打印层状复合陶瓷的系统,其特征在于,所述的激光烧结装置的激光束和激光熔覆装置的激光束的光斑直径相等,两个激光束的中心间距为两个激光束的光斑半径之和。
3.根据权利要求1所述的一种3D打印层状复合陶瓷的系统,其特征在于,所述激光烧结装置的激光束和激光熔覆装置的激光束为激光头内分束产生的激光,或所述激光烧结装置的激光束和激光熔覆装置的激光束为激光头产生的激光经过分束器分束后的激光,或所述激光烧结装置的激光束和激光熔覆装置的激光束为两个独立的激光头产生的激光。
4.根据权利要求1所述的一种3D打印层状复合陶瓷的系统,其特征在于,所述激光烧结装置和激光熔覆装置的激光束均为CO2激光束。
5.根据权利要求1所述的一种3D打印层状复合陶瓷的系统,其特征在于,所述成型装置还包括成形仓(8)和带动所述成形活塞(4)上下移动的第一升降组件。
6.根据权利要求5所述的一种3D打印层状复合陶瓷的系统,其特征在于,还包括设于所述成形仓(8)旁边的铺粉装置,该铺粉装置包括与所述成形仓(8)共用侧壁的粉仓(1)、可升降安装于所述粉仓(1)内的供料活塞、带动所述供料活塞上下移动的第二升降组件以及在所述成形仓(8)和粉仓(1)的仓口水平移动的滚筒(2),该滚筒(2)的底边与粉仓(1)和成形仓(8)的仓口齐平。
7.采用如权利要求1~6任一所述的系统进行3D打印层状复合陶瓷的方法,其特征在于,包括以下步骤:
制备陶瓷粉体,采用铺粉装置将陶瓷粉体平铺于成型装置的成形活塞(4)上;
将软化层粉末置于激光熔覆装置的粉筒(3)中;
开启激光烧结装置和激光熔覆装置进行3D打印,两个激光束同时加工出一层陶瓷层(5)和一层软化层(6);
根据所述层状复合陶瓷的层数采用以上方法逐层加工出各层陶瓷层(5)和软化层(6)。
8.根据权利要求7所述的一种3D打印层状复合陶瓷的方法,其特征在于,所述陶瓷粉体的原料包括陶瓷粉末和粘结剂粉末,所述粘结剂粉末的添加量为陶瓷粉末质量的5~10%;其中,所述陶瓷粉末选自ZrO2、Al2O3、ZTA、3Y-TZP、HA或TCP中的一种或几种,所述粘结剂粉末选自环氧树脂、聚苯乙烯或聚乙烯醇树脂中的一种或几种;所述中间软化层粉末选自纯钛粉或CoCrMo合金粉末中的一种或两种的混合物。
9.根据权利要求7所述的一种3D打印层状复合陶瓷的方法,其特征在于,通过调节每次陶瓷粉体的铺粉厚度调节陶瓷层(5)的厚度,通过改变粉筒(3)的送粉量来调节软化层(6)的厚度。
CN202010076668.XA 2020-01-23 2020-01-23 一种3d打印层状复合陶瓷的系统和方法 Active CN111269010B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010076668.XA CN111269010B (zh) 2020-01-23 2020-01-23 一种3d打印层状复合陶瓷的系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010076668.XA CN111269010B (zh) 2020-01-23 2020-01-23 一种3d打印层状复合陶瓷的系统和方法

Publications (2)

Publication Number Publication Date
CN111269010A true CN111269010A (zh) 2020-06-12
CN111269010B CN111269010B (zh) 2022-07-15

Family

ID=70995409

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010076668.XA Active CN111269010B (zh) 2020-01-23 2020-01-23 一种3d打印层状复合陶瓷的系统和方法

Country Status (1)

Country Link
CN (1) CN111269010B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111730860A (zh) * 2020-08-18 2020-10-02 连灿鑫 复合型材的增减材复合加工中心
CN112077311A (zh) * 2020-09-22 2020-12-15 飞而康快速制造科技有限责任公司 一种铝合金的复合增材制备方法
CN112250445A (zh) * 2020-10-20 2021-01-22 西安工程大学 一种3d打印梯度陶瓷型芯及其制备方法
CN113649592A (zh) * 2021-08-06 2021-11-16 宿迁学院 同步喷射雾化沉积和致密化的零件制备方法
CN114196950A (zh) * 2021-11-08 2022-03-18 江苏大学 一种双光束超高速激光熔覆头及其熔覆方法
CN117102512A (zh) * 2023-09-15 2023-11-24 华中科技大学 一种双合金件的激光复合增材制造装置及制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103158295A (zh) * 2011-12-16 2013-06-19 中国科学院兰州化学物理研究所 具有仿生结构的Al2O3陶瓷复合材料及制备方法
CN104923786A (zh) * 2015-06-11 2015-09-23 广东奥基德信机电有限公司 一种双激光选区烧结及熔化非金属、金属的3d打印系统
US9643361B2 (en) * 2014-05-27 2017-05-09 Jian Liu Method and apparatus for three-dimensional additive manufacturing with a high energy high power ultrafast laser
CN108950305A (zh) * 2018-08-24 2018-12-07 山东建筑大学 一种钛合金—羟基磷灰石盐生物陶瓷多孔材料的制备方法
CN110143021A (zh) * 2019-05-29 2019-08-20 梁家昌 一种高品质金刚石复合片及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103158295A (zh) * 2011-12-16 2013-06-19 中国科学院兰州化学物理研究所 具有仿生结构的Al2O3陶瓷复合材料及制备方法
US9643361B2 (en) * 2014-05-27 2017-05-09 Jian Liu Method and apparatus for three-dimensional additive manufacturing with a high energy high power ultrafast laser
CN104923786A (zh) * 2015-06-11 2015-09-23 广东奥基德信机电有限公司 一种双激光选区烧结及熔化非金属、金属的3d打印系统
CN108950305A (zh) * 2018-08-24 2018-12-07 山东建筑大学 一种钛合金—羟基磷灰石盐生物陶瓷多孔材料的制备方法
CN110143021A (zh) * 2019-05-29 2019-08-20 梁家昌 一种高品质金刚石复合片及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
段新燕: "《智能制造的理论与实践创新》", 31 July 2018, 延边大学出版社 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111730860A (zh) * 2020-08-18 2020-10-02 连灿鑫 复合型材的增减材复合加工中心
CN111730860B (zh) * 2020-08-18 2022-02-18 连灿鑫 复合型材的增减材复合加工中心
CN112077311A (zh) * 2020-09-22 2020-12-15 飞而康快速制造科技有限责任公司 一种铝合金的复合增材制备方法
CN112250445A (zh) * 2020-10-20 2021-01-22 西安工程大学 一种3d打印梯度陶瓷型芯及其制备方法
CN113649592A (zh) * 2021-08-06 2021-11-16 宿迁学院 同步喷射雾化沉积和致密化的零件制备方法
CN114196950A (zh) * 2021-11-08 2022-03-18 江苏大学 一种双光束超高速激光熔覆头及其熔覆方法
CN117102512A (zh) * 2023-09-15 2023-11-24 华中科技大学 一种双合金件的激光复合增材制造装置及制造方法
CN117102512B (zh) * 2023-09-15 2024-02-06 华中科技大学 一种双合金件的激光复合增材制造装置及制造方法

Also Published As

Publication number Publication date
CN111269010B (zh) 2022-07-15

Similar Documents

Publication Publication Date Title
CN111269010B (zh) 一种3d打印层状复合陶瓷的系统和方法
CN1155449C (zh) 成分及组织可控的激光立体成形方法
CN111958750B (zh) 一种适用于模拟月壤激光烧结成型方法及装置
CN104001915B (zh) 一种高能束增材制造大尺寸金属零部件的设备及其控制方法
CN103317590B (zh) 一种激光3d打印陶瓷功能梯度结构件的方法
JP6634074B2 (ja) レーザ焼結による積層造形用レーザ加工機およびそれに対応する方法
CN108817386B (zh) 用于多光束激光选区熔化成形的层间梳状拼接方法
CN103495729B (zh) 大尺寸钛铝基合金的激光立体成形方法
CN107428079A (zh) 用于利用多条射线制造三维物体的设备以及生成式层构建方法
CN107774996A (zh) 一种多材料梯度点阵结构的零件的一体化成形方法
CN109332697B (zh) 一种选区激光熔化增材制造设备
RU2674588C2 (ru) Способ аддитивного сварочно-плавильного изготовления трёхмерных изделий и установка для его осуществления
CN110267921A (zh) 制造3d玻璃、玻璃陶瓷和陶瓷物体的方法和系统
CN109926584A (zh) 一种增材制造和表面抛光同步加工方法及装置
CN109434107A (zh) 一种多能束高效率增材制造方法
CN108463329A (zh) 用于制造三维物体的装置和方法
CN102701734B (zh) 一种自预热激光成形ZrO2-Al2O3复合陶瓷薄壁件的制备方法
CN111185597B (zh) 一种电子封装材料的制备方法
CN111230111A (zh) 电子束同轴送丝增材制造设备及方法
CN110142406A (zh) 二维光纤面阵高精度激光3d金属打印机及其打印控制方法
CN110682629A (zh) 一种轻质抗弹点阵三明治板及其制备方法
CN114131040A (zh) 一种小比例软材增材成形构件增材制造方法
CN107234239B (zh) 机器人姿态控制的电弧沉积激光锻打增材制造方法和装备
CN108607995A (zh) 一种基于纳米温度尺寸效应的金属三维打印成型方法
CN106216672A (zh) 一种金属增韧陶瓷基复合材料零件增材制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant