CN114014349B - 一种yag纳米粉体的制备方法 - Google Patents

一种yag纳米粉体的制备方法 Download PDF

Info

Publication number
CN114014349B
CN114014349B CN202111326010.0A CN202111326010A CN114014349B CN 114014349 B CN114014349 B CN 114014349B CN 202111326010 A CN202111326010 A CN 202111326010A CN 114014349 B CN114014349 B CN 114014349B
Authority
CN
China
Prior art keywords
salt
yttrium
nano powder
yag
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111326010.0A
Other languages
English (en)
Other versions
CN114014349A (zh
Inventor
易圣钧
姜兴茂
谭金鄂
赖品材
陈龙
潘锦健
廖伟豪
马桂林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Technology
Original Assignee
Wuhan Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Technology filed Critical Wuhan Institute of Technology
Priority to CN202111326010.0A priority Critical patent/CN114014349B/zh
Publication of CN114014349A publication Critical patent/CN114014349A/zh
Priority to US17/984,707 priority patent/US20230144242A1/en
Application granted granted Critical
Publication of CN114014349B publication Critical patent/CN114014349B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/30Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6
    • C01F17/32Compounds containing rare earth metals and at least one element other than a rare earth metal, oxygen or hydrogen, e.g. La4S3Br6 oxide or hydroxide being the only anion, e.g. NaCeO2 or MgxCayEuO
    • C01F17/34Aluminates, e.g. YAlO3 or Y3-xGdxAl5O12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7792Aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Structural Engineering (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

一种YAG纳米粉体的制备方法,包括如下步骤:将糖类和有机胺类置于容器中,在25‑180℃条件下搅拌混合2‑120min,熔融得到澄清透明混合液;向澄清透明混合液中加入钇盐和铝盐,继续在25‑180℃温度下加热搅拌5‑120min形成均匀的熔融混合物;将熔融混合物加热使得糖类脱水碳化得到黑褐色蓬松固体;将黑褐色蓬松固体于800‑1500℃热处理2‑40h得到YAG纳米粉体。该方法能简化工艺流程、缩短制备周期、降低生产成本,还能减少颗粒聚集的情况;制备出的纳米粉形状规则、粒径均一、粉体流动性和填充性好、纯度高。

Description

一种YAG纳米粉体的制备方法
技术领域
本发明属于陶瓷材料制备技术领域,具体涉及一种YAG纳米粉体的制备方法。
背景技术
YAG(钇铝石榴石,Y3Al5O12)属于立方晶系,具有石榴石型结构,因具有高折射、光学各向同性等光学性能而被广泛用作光学材料。另外,在已知的透明陶瓷材料中,YAG凭借高强度、高温蠕变小、抗氧化、热导率低等优点被逐渐引起广泛关注和研究,是一种很有潜力的精细结构陶瓷材料。
YAG荧光粉是工业化生产白光LED的主要荧光材料(Yang,et.al.J.Lumin.,2018,204:157-161.;Lee,et.al.2018,199(5):24-30)。但由于受工艺与成本等因素的限制,YAG荧光粉在LED器件的大规模应用还有待继续发展。常规的固相法虽然工艺相对简单、成本较低、产量大,但是其煅烧温度高,团聚严重(Veith.,et.al.J.Mater.Chem.,1999,9:3069–3079.);溶胶-凝胶法获得的YAG颗粒均匀,粒度能达到纳米级,但工艺复杂、效率低、前驱体煅烧反应中容易产生硬团聚,不利于后期陶瓷烧结(Yang.,et.al.J.Alloy Compd.,2009,484:449–451.);沉淀法的优点在于焙烧温度较低、操作简单、成本低廉、易于实现大规模生产,但难以控制体系合适的pH值,使各个成分沉降均匀、难以洗涤(马飞.共沉淀法制备YAG:Ce3+纳米荧光粉[J].广州化工,2018,46(18):51-53.);水热法可以合成形貌较好、粒度分布均匀且分散性良好的YAG粉体,然而高温高压对设备要求较高且制备成本较高,难以实现大规模生产(Yang.,et.al.Mater.Lett.,2009,63:2271–2273.);喷雾干燥法制备的YAG具有良好流动性、填充性及高组分均匀性,该方法大多情况下需要通过添加多种粘结剂、分散剂和增塑剂,工艺流程繁琐,制备周期长,且极易引入杂质,影响YAG粉体及陶瓷性能(You.,et.al.Ceram.Int.,2013,39:3987–3992.)。
综上所述,目前采用传统方法制备出的YAG粉体均存在严重团聚、形状不规则,粉体流动性和填充性差、纯度无法保证,工艺流程复杂繁琐,制备周期长等问题,直接影响YAG粉体及陶瓷的性能。
发明内容
本发明的目的在于提供一种YAG纳米粉体的制备方法,该方法一方面能简化工艺流程、缩短制备周期、降低生产成本,另一方面还能减少颗粒聚集的情况;所制备出的YAG纳米粉可具有形状规则、粒径均一、粉体流动性和填充性好、纯度高等优点。
为实现上述目的,本发明采用的技术方案是:一种YAG纳米粉体的制备方法,包括如下步骤:
(1)将糖类和有机胺类按照一定比例混合置于容器中,在25-180℃加热条件下搅拌混合2-120min,熔融得到澄清透明混合液;
(2)向澄清透明混合液中加入一定比例的钇盐和铝盐,继续在25-180℃温度下加热搅拌5-120min,使金属盐完全溶解形成均匀的熔融混合物;
(3)将均匀的熔融混合物加热使得糖类脱水碳化得到黑褐色蓬松固体;
(4)将黑褐色蓬松固体于800-1500℃热处理2-40h得到YAG纳米粉体。
进一步的,步骤(2)中,向澄清透明混合液中再加入稀土盐或过渡金属盐。
优选的,步骤(1)中,糖类为葡萄糖、蔗糖、果糖、乳糖、淀粉、麦芽糖和核糖中的一种或几种;有机胺类为脂肪胺类、醇胺类、酰胺类、脂环胺类、芳香胺类或萘系胺类;糖类和有机胺类的质量比为1:(0.1-50)。
优选的,步骤(2)中,钇盐中的钇元素与铝盐中的铝元素之间的摩尔比为1:(1-4)。
优选的,步骤(2)中,稀土盐中的稀土元素或过渡金属盐中的过渡金属元素与钇盐中的钇元素的摩尔比为1:(10-300)。
优选的,步骤(2)中,钇盐中的钇元素、铝盐中的铝元素、稀土盐中的稀土元素或过渡金属盐中的过渡金属元素总摩尔量与糖类之间的摩尔比为(0.2-3):1。
优选的,步骤(2)中,钇盐为硝酸盐、硫酸盐、草酸盐、醋酸盐、磷酸盐、次氯酸盐、卤化盐中的一种;铝盐为硝酸盐、硫酸盐、草酸盐、醋酸盐、磷酸盐、次氯酸盐、卤化盐中的一种;稀土盐或过渡金属盐为硝酸盐、硫酸盐、草酸盐、醋酸盐、磷酸盐、次氯酸盐、卤化盐中的一种。
优选的,步骤(3)中,加热的方式有为高温碳化、水热碳化、微波碳化中的一种。
优选的,步骤(4)中,热处理的氛围为三种氛围中的一种,三种氛围分别为空气、氧气、先惰性气体再空气或氧气。
优选的,步骤(4)中,得到的YAG纳米粉体粒径为20-5000nm;优选为20-100nm。
本发明通过控制原料配比、反应温度、微波条件、煅烧温度和时长等合成条件能够有效调控材料的大小、纯度。本发明先将糖类和有机胺混合形成均相共融体系,再添加钇盐、铝盐,通过搅拌使金属盐均匀分布在混合液体中。有机胺在加热过程中少部分会被分解,在该过程能够不断产生氨气溶于混合溶液提供弱碱性环境,可以有效防止YAG在生长过程中团聚;另外,微波加热后其中的糖类迅速碳化,提供了碳模板能使金属盐均匀分布碳模板上也能有效防止YAG的团聚,而且煅烧过程中碳模板能够被轻易的除去得到高纯的YAG纳米粉体。该方法一方面简化了工艺流程、缩短了制备周期、降低了生产成本,另一方面还减少了颗粒聚集的情况;所制备出的YAG纳米粉具有形状规则、粒径均一、粉体流动性和填充性好、纯度高等优点,适于工业化生产。
附图说明
图1为实施例一中材料YAG的SEM图;
图2为实施例二中材料YAG:Ce3+-1的XRD谱图;
图3为实施例五中材料YAG:Ce3+-4的SEM图;
图4为实施例二至实施例五中材料YAG:Ce3+的发射荧光谱图;
图5为实施例六中材料YAG:Eu3+的XRD图;
图6为实施例七中材料YAG:Gd3+的XRD图;
图7为实施例八中材料YAG:Pr3+的XRD图。
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细说明。
以下实施例中的实验药品除特别说明外,均通过市购得到并直接使用。
实施例一
一种YAG纳米粉体的制备方法,该方法包括如下步骤:
(1)将葡萄糖(3.0g)(0.0167mol)和尿素(5.0g)(0.0831mol)置于烧杯中,加热至100℃搅拌混合20min,熔融得到澄清透明混合液;
(2)向澄清透明混合液中加入六水硝酸钇(0.77g)(0.002mol)、九水硝酸铝(1.26g)(0.0033mol),继续在100℃温度下加热搅拌120min,使金属盐完全溶解形成均匀且粘稠的熔融混合物;六水硝酸钇中的钇元素与九水硝酸铝中的铝元素的摩尔比为1:1.65;
(3)将熔融混合物微波加热10min,微波功率550W,使得葡萄糖脱水碳化得到黑褐色蓬松固体,然后将烧杯取出;
(4)将黑褐色蓬松固体放入箱式炉中,在空气氛围下于800℃热处理2h得到YAG纳米粉体,粒径为20nm。
从图1中可以看出,该方法制得的YAG分散良好。
实施例二
一种YAG纳米粉体的制备方法,该方法包括如下步骤:
(1)将葡萄糖(3.0g)(0.0167mol)和尿素(5.0g)(0.0831mol)置于烧杯中,加热至100℃搅拌混合20min,熔融得到澄清透明混合液;
(2)向澄清透明混合液中加入六水硝酸钇(0.77g)(0.002mol)、九水硝酸铝(1.26g)(0.0033mol)、六水硝酸铈(0.01g)(0.000023mol),继续在100℃温度下加热搅拌120min,使金属盐完全溶解形成均匀且粘稠的熔融混合物;六水硝酸钇中的钇元素与九水硝酸铝中的铝元素的摩尔比为1:1.65;六水硝酸铈中的铈元素和六水硝酸钇中的钇元素的摩尔比为1:86.96;葡萄糖与六水硝酸钇中的钇元素、九水硝酸铝中的铝元素、六水硝酸铈中的铈元素总摩尔之比为1:0.32;
(3)将熔融混合物微波加热4min,微波功率700W,使得葡萄糖脱水碳化得到黑褐色蓬松固体,然后将烧杯取出;
(4)将黑褐色蓬松固体放入箱式炉中,在空气氛围下于800℃热处理2h得到稀土掺杂YAG纳米粉体YAG:Ce3+-1,粒径为20nm。
从图2中可以看出,该方法制得的产物与标准PDF卡片对应,说明制备的产物为YAG:Ce3+,峰行窄而尖锐则说明制得的YAG:Ce3+晶型良好,没有杂峰则说明制得的YAG:Ce3+纯度较高。
实施例三至实施例五分别与实施例二的区别仅仅在于煅烧温度分别为900℃、1000℃、1100℃,其他步骤均与实施例保持一致。通过实施例三至实施例五分别制备得到稀土掺杂YAG纳米粉体YAG:Ce3+-2、YAG:Ce3+-3、YAG:Ce3+-4。
从图3中可以看出,实施例五制得的YAG:Ce3+-4颗粒较小,粒径较为均一,分散性较好。
从图4中可以看出,本发明制得的YAG:Ce3+有较好的荧光性能,且可以通过调整煅烧温度得到不同荧光强度的纳米粉体;随着煅烧温度的升高,纳米粉体的荧光性能增强。
实施例六
一种YAG纳米粉体的制备方法,该方法包括如下步骤:
(1)将蔗糖(1.0g)(0.0029mol)和乙二胺(10.0g)(0.166mol)置于烧杯中,加热至180℃搅拌混合120min,熔融得到澄清透明混合液;
(2)向澄清透明混合液中加入六水氯化钇(1.22g)(0.004mol)、异丙醇铝(1.01g)(0.004mol)、六水硝酸铕(0.18g)(0.0004mol),继续在180℃温度下加热搅拌80min,使金属盐完全溶解形成均匀且粘稠的熔融混合物;六水氯化钇中的钇元素与异丙醇铝中的铝元素的摩尔比为1:1;六水硝酸铕中的铕元素和六水氯化钇中的钇元素的摩尔比为1:10;蔗糖与六水氯化钇中的钇元素、异丙醇铝中的铝元素、六水硝酸铕中的铕元素总摩尔之比为1:2.89;
(3)将熔融混合物放于180℃烘箱24h,使得蔗糖脱水碳化得到黑褐色蓬松固体,然后将烧杯取出;
(4)将黑褐色蓬松固体放入箱式炉中,在空气氛围下于850℃热处理15h得到稀土掺杂YAG纳米粉体YAG:Eu3+,粒径为70nm。
从图5中可以看出,本实施例制备出YAG:Eu3+晶型良好且不含杂峰。
实施例七
一种YAG纳米粉体的制备方法,该方法包括如下步骤:
(1)将葡萄糖(50.0g)(0.2775mol)和乙醇胺(5.0g)(0.0831mol)置于烧杯中,加热至25℃搅拌混合25min,熔融得到澄清透明混合液;
(2)向澄清透明混合液中加入草酸钇(3.55g)(0.00803mol)、无水硫酸铝(11.07g)(0.03212mol)、六水硝酸钆(0.024g)(0.000054mol),继续在25℃温度下加热搅拌120min,使金属盐完全溶解形成均匀且粘稠的熔融混合物;草酸钇中的钇元素与无水硫酸铝中的铝元素的摩尔比为1:4;六水硝酸钆中的钆元素和草酸钇中的钇元素的摩尔比为1:297.41;葡萄糖与草酸钇中的钇元素、无水硫酸铝中的铝元素、六水硝酸钆中的钆元素总摩尔之比为1:0.29;
(3)将熔融混合物转移进水热反应釜,于200℃水热3h,使得葡萄糖脱水碳化得到黑褐色蓬松固体,然后将样品从水热釜中取出;
(4)将黑褐色蓬松固体放入箱式炉中,在氧气氛围下于900℃热处理20h得到稀土掺杂YAG纳米粉体YAG:Gd3+,粒径为120nm。
从图6中可以看出,本实施例制备出的YAG:Gd3+晶型良好且不含杂峰。
实施例八
一种YAG纳米粉体的制备方法,该方法包括如下步骤:
(1)将果糖(1.0g)(0.00555mol)和聚乙烯亚胺(50.0g)(0.167mol)置于烧杯中,加热至108℃搅拌混合2min,熔融得到澄清透明混合液;
(2)向澄清透明混合液中加入八水硫酸钇(0.62g)(0.001mol)、九水硝酸铝(1.81g)(0.0047mol)、六水硝酸镨(0.012g)(0.000027mol),继续在108℃温度下加热搅拌5min,使金属盐完全溶解形成均匀且粘稠的熔融混合物;八水硫酸钇中的钇元素与九水硝酸铝中的铝元素的摩尔比为1:2.35;六水硝酸镨中的镨元素和八水硫酸钇中的钇元素的摩尔比为1:74;果糖与八水硫酸钇中的钇元素、九水硝酸铝中的铝元素、六水硝酸镨中的镨元素总摩尔之比为1:1.21;
(3)将熔融混合物微波加热8min,微波功率100kW,使得果糖脱水碳化得到黑褐色蓬松固体,然后将烧杯取出;
(4)将黑褐色蓬松固体放入箱式炉中,在氮气氛围下于1500℃先热处理20h,再在空气氛围下800℃热处理20h,得到稀土掺杂YAG纳米粉体YAG:Pr3+,粒径为5000nm。
从图7中可以看出,本实施例制备出的YAG:Pr3+晶型良好且不含杂峰。

Claims (5)

1.一种YAG纳米粉体的制备方法,其特征在于,包括如下步骤:
(1)将糖类和有机胺类按照一定比例混合置于容器中,在25-180℃加热条件下搅拌混合2-120min,熔融得到澄清透明混合液;糖类为葡萄糖、蔗糖、果糖、乳糖、淀粉、麦芽糖和核糖中的一种或几种;有机胺类为脂肪胺类、醇胺类、酰胺类、脂环胺类、芳香胺类或萘系胺类;糖类和有机胺类的质量比为1:(0.1-50);
(2)向澄清透明混合液中加入一定比例的钇盐、铝盐和稀土盐或过渡金属盐,继续在25-180℃温度下加热搅拌5-120min,使金属盐完全溶解形成均匀的熔融混合物;钇盐中的钇元素与铝盐中的铝元素之间的摩尔比为1:(1-4);钇盐中的钇元素、铝盐中的铝元素、稀土盐中的稀土元素或过渡金属盐中的过渡金属元素总摩尔量与糖类之间的摩尔比为(0.2-3):1;
(3)将均匀的熔融混合物加热使得糖类脱水碳化得到黑褐色蓬松固体;
(4)将黑褐色蓬松固体于800-1500℃热处理2-40h得到粒径为20-5000nm的YAG纳米粉体。
2.根据权利要求1所述的一种YAG纳米粉体的制备方法,其特征在于,步骤(2)中,稀土盐中的稀土元素或过渡金属盐中的过渡金属元素与钇盐中的钇元素的摩尔比为1:(10-300)。
3.根据权利要求1所述的一种YAG纳米粉体的制备方法,其特征在于,步骤(2)中,钇盐为硝酸盐、硫酸盐、草酸盐、醋酸盐、磷酸盐、次氯酸盐、卤化盐中的一种;铝盐为硝酸盐、硫酸盐、草酸盐、醋酸盐、磷酸盐、次氯酸盐、卤化盐中的一种;稀土盐或过渡金属盐为硝酸盐、硫酸盐、草酸盐、醋酸盐、磷酸盐、次氯酸盐、卤化盐中的一种。
4.根据权利要求1所述的一种YAG纳米粉体的制备方法,其特征在于,步骤(3)中,加热的方式有为高温碳化、水热碳化、微波碳化中的一种。
5.根据权利要求1所述的一种YAG纳米粉体的制备方法,其特征在于,步骤(4)中,热处理的氛围为三种氛围中的一种,三种氛围分别为空气、氧气、先惰性气体再空气或氧气。
CN202111326010.0A 2021-11-10 2021-11-10 一种yag纳米粉体的制备方法 Active CN114014349B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111326010.0A CN114014349B (zh) 2021-11-10 2021-11-10 一种yag纳米粉体的制备方法
US17/984,707 US20230144242A1 (en) 2021-11-10 2022-11-10 Method for making yttrium aluminum garnet (yag) nanopowders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111326010.0A CN114014349B (zh) 2021-11-10 2021-11-10 一种yag纳米粉体的制备方法

Publications (2)

Publication Number Publication Date
CN114014349A CN114014349A (zh) 2022-02-08
CN114014349B true CN114014349B (zh) 2024-02-20

Family

ID=80063218

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111326010.0A Active CN114014349B (zh) 2021-11-10 2021-11-10 一种yag纳米粉体的制备方法

Country Status (2)

Country Link
US (1) US20230144242A1 (zh)
CN (1) CN114014349B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080780A2 (en) * 2013-09-10 2015-06-04 Amastan Technologies Llc Metal oxide nanopowders as alternate precursor source to nitrates
CN106348746A (zh) * 2016-09-07 2017-01-25 济南大学 一种激光烧结3d打印成型yag透明陶瓷粉体的制备
CN112250043A (zh) * 2020-10-26 2021-01-22 武汉工程大学 一种单分散纳米颗粒材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015080780A2 (en) * 2013-09-10 2015-06-04 Amastan Technologies Llc Metal oxide nanopowders as alternate precursor source to nitrates
CN106348746A (zh) * 2016-09-07 2017-01-25 济南大学 一种激光烧结3d打印成型yag透明陶瓷粉体的制备
CN112250043A (zh) * 2020-10-26 2021-01-22 武汉工程大学 一种单分散纳米颗粒材料的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Ammonium sulfate regulation of morphology of Nd:Y2O3 precursor via urea precipitation method and its effect on the sintering properties of Nd:Y2O3 nanopowders;Haiming Qin et al.;CrystEngComm;第14卷(第5期);1783-1789 *
Fast combustion synthesis and characterization of YAG:Ce3+ garnet nanopowders;Andrzej Huczko et al.;Phys. Status Solidi B;第250卷(第12期);2702-2708 *
Novel synthesis of low-agglomerated YAG:Yb ceramic nanopowders by twostage precipitation with the use of hexamine;Alexander A. Kravtsov et al.;Ceramics International;第46卷;1273-1282 *
Rare-Earth-Doped Y3Al5O12 (YAG) Nanophosphors: Synthesis, Surface Functionalization and Applications in Thermoluminescence Dosimetry and Nanomedicine;Akhil Jain et al.;Journal of Physics D: Applied Physics;第51卷(第30期);1-63 *
The use of carbon quantum dots as fluorescent materials in white LEDs;Bo Cui et al.;New Carbon Materials;第32卷(第5期);385-401 *

Also Published As

Publication number Publication date
CN114014349A (zh) 2022-02-08
US20230144242A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
CN102584231B (zh) 离子掺杂的双钙钛矿结构钨钼酸盐氧化物粉体的制备方法
CN103539088B (zh) 一种氮化铝纳米颗粒的合成方法
CN1443811A (zh) 溶液燃烧法合成纳米晶钴铝尖晶石颜料的方法
CN110629288B (zh) 一种水热技术制备晶须状铝酸钆粉体材料的方法
CN100543110C (zh) 草酸非均相沉淀制备稀土掺杂钇铝石榴石荧光粉的方法
CN101412529A (zh) 熔盐合成稀土氧化物或复合稀土氧化物纳米粉末的制备方法
Foo et al. Synthesis and characterisation of Y2O3 using ammonia oxalate as a precipitant in distillate pack co-precipitation process
Su et al. Low temperature synthesis and characterization of YAG nanopowders by polyacrylamide gel method
EP3816133A1 (en) Method for preparing alumina-based solid solution ceramic powder by using aluminum oxygen combustion synthesis water mist process
CN103496727B (zh) 一种微晶α-Al2O3 聚集体的制备方法
Xu et al. Synthesis and luminescence of europium doped yttria nanophosphors via a sucrose-templated combustion method
Yan et al. Preparation of YAG: Ce3+ phosphor by sol-gel low temperature combustion method and its luminescent properties
CN114014349B (zh) 一种yag纳米粉体的制备方法
CN101831292A (zh) 一种铝酸锶发光材料及其可控合成方法
Ryu et al. Microwave-assisted synthesis of PbWO4 nano-powders via a citrate complex precursor and its photoluminescence
Li et al. Photoluminescence properties of (Y1− xCex) 3Al5O12 (x= 0.005–0.03) nanophosphors and transparent ceramic by a homogeneous co-precipitation method
CN101559968B (zh) 一种高纯纳米钇基氧化物粉体的制备方法
CN112340758A (zh) 一种硫酸铝铵低温煅烧制备高纯α-Al2O3粉体的方法
Zhang et al. Rapid synthesis of AlON powders by nitriding combustion synthesis precursor
CN109574050B (zh) 一种超高比表面积碳酸铝铵的制备及其热分解制备氧化铝的方法
Xing et al. Comparison of preparation and formation mechanism of LuAG nanopowders using two different methods
Zhang et al. Fabrication of well-dispersed Y2O3 nano-powders by poly (acrylic acid) low-temperature combustion
CN100334185C (zh) 稀土钇铝石榴石发光材料及气相制备法
Rahmani et al. The effect of temperature and time of calcination on synthesis of YAG nano-crystalline by normal co-precipitation method
WO2024045201A1 (zh) 一种高烧结活性氧化铝陶瓷粉体及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant