CN106345455A - 一种薄片状纳米水钠锰矿的制备方法 - Google Patents

一种薄片状纳米水钠锰矿的制备方法 Download PDF

Info

Publication number
CN106345455A
CN106345455A CN201610618913.9A CN201610618913A CN106345455A CN 106345455 A CN106345455 A CN 106345455A CN 201610618913 A CN201610618913 A CN 201610618913A CN 106345455 A CN106345455 A CN 106345455A
Authority
CN
China
Prior art keywords
birnessite
preparation
nano
nitrite
nitrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610618913.9A
Other languages
English (en)
Other versions
CN106345455B (zh
Inventor
邱国红
张腾飞
刘立虎
罗瑶
谭文峰
刘凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN201610618913.9A priority Critical patent/CN106345455B/zh
Publication of CN106345455A publication Critical patent/CN106345455A/zh
Application granted granted Critical
Publication of CN106345455B publication Critical patent/CN106345455B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/02Oxides; Hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种薄片状纳米水钠锰矿的制备方法,它是将二价锰盐和硝酸盐或亚硝酸盐加入去离子水中,调节反应液pH,使反应体系的初始pH为3~8;然后将上述溶液分装到石英管中,用紫外光或可见光或太阳光照射,反应6~24h;最后将反应产物滤膜过滤或离心分离,干燥,即得。本发明生成薄片状纳米水钠锰矿,产物厚度低、粒径小,具有工艺简便、节约能源,原料丰富、价格低廉、产物纯度高、形貌可控等优点。

Description

一种薄片状纳米水钠锰矿的制备方法
技术领域
本发明涉及水钠锰矿的制备方法,具体涉及一种薄片状纳米水钠锰矿的制备方法。
背景技术
锰氧化物在自然界中分布广泛、含量丰富、且存在形式多样,因其在电化学、磁学、催化和吸附等领域表现出优异的理化特性而被广泛研究和应用。
锰氧化物晶体结构类型多,包括层状(如水钠锰矿、布塞尓矿和锂硬锰矿等)、隧道(如软锰矿、锰钾矿和钙锰矿等)和尖晶石结构等,水钠锰矿作为一种氧化度较高的层状结构氧化锰矿物备受关注。经典的用浓盐酸还原高锰酸钾制备水钠锰矿的方法应用广泛。是在100℃恒温水浴条件下将浓盐酸泵入高锰酸钾溶液中,将所得悬液于60℃老化12h,这种方法耗时较长,且制得水钠锰矿形貌为常规花球状。
形貌对锰氧化物的理化性质有显著影响。水钠锰矿的每个颗粒由单一片层随机堆叠而成,形成形貌、比表面积和活性位点不同的产物。目前研究中制备的水钠锰矿主要有线状、花瓣状和球状等。由于薄片状水钠锰矿具较大比表面积,在吸附、催化和电化学等领域具潜在的应用前景,逐渐受到关注。制备片状水钠锰矿的方法有微生物氧化法、阳离子交换法和模板法等。Omomo等将制备的水钠锰矿和TBA+溶液混合,平衡10天后得到二维片状水钠锰矿(J.Am.Chem.Soc.,2003,125:3568-3575)。Zhao等将氧化石墨烯和高锰酸钾混合悬液在60℃水浴15h制得高活性的片状水钠锰矿,能有效降解亚甲基蓝(RSC Advances,2013,3:12909-12914)。这些合成方法具有反应时间长、操作复杂、能耗大、原材料昂贵等缺点。作为能耗低、快速和便捷的方法,光化学反应被广泛应用于污染物降解和灭菌消毒等领域,而其在材料制备方面鲜有报道。
光化学反应现多用于有机污染物降解。苯并噻吩作为原油组分,在阳光照射下会被氧化成苯并噻吩-2,3-醌(海洋科学,1996,24:201)。光催化降解有机污染物如除草剂、农药和抗生素等,生成CO2、H2O或其他低毒无害物质。光催化反应一般需要在光催化剂作用下进行,常用的光催化剂为纳米二氧化钛。NO3 -/NO2 -是天然水体中.OH的重要来源之一,也可诱导一系列光氧化反应,引起有机物的氧化。但在NO3 -/NO2 -诱导下光化学氧化制备锰氧化物的研究却少有见到。
发明内容
本发明的目的是提供一种工艺简单,形貌可控,纯度高的薄片状纳米水钠锰矿的制备方法。
为了实现上述的目的,本发明采用以下技术措施:
一种薄片状纳米水钠锰矿的制备方法,包括以下步骤:
第一步:将二价锰盐和硝酸盐或亚硝酸盐加入去离子水中,搅拌溶解,二价锰盐浓度为0.05~2mol/L;硝酸根或亚硝酸根离子浓度为0.05~2mol/L,调节反应液pH,使反应体系的初始pH为3~8;
第二步:将上述溶液分装到石英管中,用紫外光或可见光或太阳光照射,反应6~24h;
第三步:将第二步反应所得悬浊液过滤或离心分离,收集沉淀物,用水或乙醇洗涤,直至洗涤液的电导≤20μS/cm,将沉淀物干燥,即得。
优选地,所述二价锰盐为MnSO4或MnCl2或Mn(CH3COO)2或Mn(NO3)2
优选地,所述硝酸盐为NaNO3或KNO3或Mg(NO3)2或Ca(NO3)2;所述亚硝酸盐为NaNO2或KNO2或Mg(NO2)2或Ca(NO2)2
优选地,所述紫外光或可见光的功率为50-1500W。
优选地,第二步中,所述反应时间为12h。
本发明利用NO3 -/NO2 -在紫外、可见或太阳光照下产生自由基,氧化二价锰盐生成薄片状纳米水钠锰矿,产物厚度低、粒径小。本发明具有工艺简便、节约能源,原料丰富、价格低廉、产物纯度高、形貌可控等优点。
附图说明
图1是一种实施例1、2和3中反应产物的XRD谱图:
图2是实施例1-3的产物TEM形貌对比图,图中:A为实施例1产物的TEM照片;B是实施例2产物的TEM照片;C是实施例3产物的TEM照片。
具体实施方式
以下通过实施例对本发明进行详细地说明。
实施例1
一种薄片状纳米水钠锰矿的制备方法,包括以下步骤:
第一步:将MnSO4和NaNO3加入去离子水中,搅拌溶解,MnSO4浓度为2mol/L,NaNO3浓度为2mol/L,调节反应液pH,使反应体系的初始pH为8;
第二步:将上述溶液分装到石英管中,用功率为50W紫外光照射,反应24h;
第三步:将第二步反应所得悬浊液用0.22μm滤膜过滤,收集沉淀物,用水洗涤,直至洗涤液的电导为15μS/cm,将沉淀物干燥,即得。
由图1中XRD谱图结果可知,在此条件下产物为纯相水钠锰矿,形貌为卷曲的薄片状(图2A)。
实施例2
一种薄片状纳米水钠锰矿的制备方法,包括以下步骤:
第一步:将Mn(CH3COO)2和Mg(NO2)2加入去离子水中,搅拌溶解,Mn(CH3COO)2浓度为0.05mol/L,Mg(NO2)2浓度为0.25mol/L,调节反应液pH,使反应体系的初始pH为3;
第二步:将上述溶液分装到石英管中,用功率为1500W可见光照射,反应6h;
第三步:将第二步反应所得悬浊液离心分离并收集沉淀物,用乙醇洗涤,直至洗涤液的电导为20μS/cm,将沉淀物干燥,即得。
由图1中XRD谱图结果可知,在此条件下产物为纯相水钠锰矿,形貌为卷曲的薄片状,薄片厚度较实施例1略有增加,颗粒粒径较实施例1略有减小(图2B)。
实施例3
一种薄片状纳米水钠锰矿的制备方法,包括以下步骤:
第一步:将Mn(NO3)2和KNO3加入去离子水中,搅拌溶解,Mn(NO3)2浓度为0.5mol/L,KNO3浓度为0.2mol/L,调节反应液pH,使反应体系的初始pH为6;
第二步:将上述溶液分装到石英管中,用太阳光照射,反应12h;
第三步:将第二步反应所得悬浊液用0.22μm滤膜过滤,收集沉淀物,用水洗涤,直至洗涤液的电导为15μS/cm,将沉淀物干燥,即得。
由图1中XRD谱图结果可知,在此条件下产物为纯相水钠锰矿,形貌为卷曲的薄片状,薄片厚度和颗粒粒径较实施案例1和2最小(图2C)。

Claims (5)

1.一种薄片状纳米水钠锰矿的制备方法,其特征在于包括以下步骤:
第一步:将二价锰盐和硝酸盐或亚硝酸盐加入去离子水中,搅拌溶解,二价锰盐浓度为0.05~2mol/L;硝酸根或亚硝酸根离子浓度为0.05~2mol/L,调节反应液pH,使反应体系的初始pH为3~8;
第二步:将上述溶液分装到石英管中,用紫外光或可见光或太阳光照射,反应6~24h;
第三步:将第二步反应所得悬浊液过滤或离心分离,收集沉淀物,用水或乙醇洗涤,直至洗涤液的电导≤20μS/cm,将沉淀物干燥,即得。
2.根据权利要求1所述薄片状纳米水钠锰矿的制备方法,其特征在于:所述二价锰盐为MnSO4或MnCl2或Mn(CH3COO)2或Mn(NO3)2
3.根据权利要求1所述薄片状纳米水钠锰矿的制备方法,其特征在于:所述硝酸盐为NaNO3或KNO3或Mg(NO3)2或Ca(NO3)2;所述亚硝酸盐为NaNO2或KNO2或Mg(NO2)2或Ca(NO2)2
4.根据权利要求1所述薄片状纳米水钠锰矿的制备方法,其特征在于:所述紫外光或可见光的功率为50-1500W。
5.根据权利要求1所述薄片状纳米水钠锰矿的制备方法,其特征在于:第二步中,所述反应时间为12h。
CN201610618913.9A 2016-08-01 2016-08-01 一种薄片状纳米水钠锰矿的制备方法 Active CN106345455B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610618913.9A CN106345455B (zh) 2016-08-01 2016-08-01 一种薄片状纳米水钠锰矿的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610618913.9A CN106345455B (zh) 2016-08-01 2016-08-01 一种薄片状纳米水钠锰矿的制备方法

Publications (2)

Publication Number Publication Date
CN106345455A true CN106345455A (zh) 2017-01-25
CN106345455B CN106345455B (zh) 2019-01-15

Family

ID=57843468

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610618913.9A Active CN106345455B (zh) 2016-08-01 2016-08-01 一种薄片状纳米水钠锰矿的制备方法

Country Status (1)

Country Link
CN (1) CN106345455B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111001407A (zh) * 2019-12-28 2020-04-14 泉州师范学院 一种ZnO/Au/MnOx光催化剂的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101791559A (zh) * 2010-02-09 2010-08-04 广东工业大学 一种金属离子掺杂型氧化锰催化剂及其制备方法和应用
CN102120619A (zh) * 2011-01-11 2011-07-13 河北师范大学 一种脑珊瑚状水钠锰矿型二氧化锰的制备方法
DE102012005015A1 (de) * 2012-03-07 2013-09-12 Friedrich-Schiller-Universität Jena Verfahren zur einfachen Synthese von Birnessit
CN103553848A (zh) * 2013-10-25 2014-02-05 西南大学 水钠锰矿作为硝化抑制剂的新用途及其一种制备方法
CN103896339A (zh) * 2012-12-27 2014-07-02 北京汉能创昱科技有限公司 一种钠锰氧化物的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101791559A (zh) * 2010-02-09 2010-08-04 广东工业大学 一种金属离子掺杂型氧化锰催化剂及其制备方法和应用
CN102120619A (zh) * 2011-01-11 2011-07-13 河北师范大学 一种脑珊瑚状水钠锰矿型二氧化锰的制备方法
DE102012005015A1 (de) * 2012-03-07 2013-09-12 Friedrich-Schiller-Universität Jena Verfahren zur einfachen Synthese von Birnessit
CN103896339A (zh) * 2012-12-27 2014-07-02 北京汉能创昱科技有限公司 一种钠锰氧化物的制备方法
CN103553848A (zh) * 2013-10-25 2014-02-05 西南大学 水钠锰矿作为硝化抑制剂的新用途及其一种制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GUIXIA ZHAO ET AL: "Highly active MnO2 nanosheet synthesis from graphene oxide templates and their application in efficient oxidative degradation of methylene blue", 《RSC ADV.》 *
YOSHITOMO OMOMO ET AL: "Redoxable Nanosheet Crystallites of MnO2 Derived via Delamination of a Layered Manganese Oxide", 《J. AM. CHEM. SOC.》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111001407A (zh) * 2019-12-28 2020-04-14 泉州师范学院 一种ZnO/Au/MnOx光催化剂的制备方法
CN111001407B (zh) * 2019-12-28 2022-09-16 泉州师范学院 一种ZnO/Au/MnOx光催化剂的制备方法

Also Published As

Publication number Publication date
CN106345455B (zh) 2019-01-15

Similar Documents

Publication Publication Date Title
Yu et al. Soft-template assisted construction of superstructure TiO2/SiO2/g-C3N4 hybrid as efficient visible-light photocatalysts to degrade berberine in seawater via an adsorption-photocatalysis synergy and mechanism insight
Nawaz et al. Fabrication and characterization of new ternary ferrites-chitosan nanocomposite for solar-light driven photocatalytic degradation of a model textile dye
Umar et al. Synthesis, characterization of Mo and Mn doped ZnO and their photocatalytic activity for the decolorization of two different chromophoric dyes
Zhu et al. Ultraviolet light assisted heterogeneous Fenton degradation of tetracycline based on polyhedral Fe3O4 nanoparticles with exposed high-energy {110} facets
Xiao et al. One-pot solvothermal synthesis of three-dimensional (3D) BiOI/BiOCl composites with enhanced visible-light photocatalytic activities for the degradation of bisphenol-A
Liu et al. Superior performance of 3 D Co-Ni bimetallic oxides for catalytic degradation of organic dye: investigation on the effect of catalyst morphology and catalytic mechanism
Shekofteh-Gohari et al. Ultrasonic-assisted preparation of novel ternary ZnO/AgI/Fe3O4 nanocomposites as magnetically separable visible-light-driven photocatalysts with excellent activity
Zhang et al. Facile hydrothermal synthesis and photocatalytic activity of rod-like nanosized silver tungstate
Taufik et al. Synthesis of iron (II, III) oxide/zinc oxide/copper (II) oxide (Fe3O4/ZnO/CuO) nanocomposites and their photosonocatalytic property for organic dye removal
Gao et al. Sonocatalytic performance of Er3+: YAlO3/TiO2–Fe2O3 in organic dye degradation
Zhai et al. Effective sonocatalytic degradation of organic dyes by using Er3+: YAlO3/TiO2–SnO2 under ultrasonic irradiation
Kim et al. Self-rotating photocatalytic system for aqueous Cr (VI) reduction on TiO2 nanotube/Ti mesh substrate
CN104383902B (zh) 一种钛酸盐纳米片光催化膜材料及其制备方法和应用
Zhang et al. Ni-doped Fe3O4 nanoparticles coupled with SnS2 nanosheets as 0D/2D heterogeneous catalyst for photo-Fenton reaction
CN109865513A (zh) 一种富表面氧空位的钼酸铋材料及其制备方法和应用
Gao et al. Facile synthesis of cobalt doped BiOCl ultrathin nanosheets as superior photocatalyst for degradation of carbamazepine under visible light
CN103252244A (zh) 一种可见光响应型氯氧铋光催化剂的制备及其应用方法
CN104801292A (zh) 一种氧化锌纳米中空球/石墨烯复合材料的制备方法
CN108311162A (zh) 一种ZnO/BiOI异质结光催化剂的制备方法及其应用
Saleem et al. Direct growth of m-BiVO4@ carbon fibers for highly efficient and recyclable photocatalytic and antibacterial applications
Moalem-Banhangi et al. Saffron derived carbon quantum dot/N-doped ZnO/fulvic acid nanocomposite for sonocatalytic degradation of methylene blue
CN103979596A (zh) 有机阴离子柱撑稀土氢氧化物纳米片溶胶的制备方法
CN102836702A (zh) 一种过渡金属离子印迹负载型M-POPD-TiO2-漂珠复合光催化剂及其制备方法和应用
CN103212447B (zh) 一种稀土金属离子印迹负载型复合光催化剂的制备方法
CN108636395A (zh) 一种弱可见光响应的复合光催化剂及其制备和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant