CN106341917A - 高频感应加热方法 - Google Patents

高频感应加热方法 Download PDF

Info

Publication number
CN106341917A
CN106341917A CN201610520200.9A CN201610520200A CN106341917A CN 106341917 A CN106341917 A CN 106341917A CN 201610520200 A CN201610520200 A CN 201610520200A CN 106341917 A CN106341917 A CN 106341917A
Authority
CN
China
Prior art keywords
frequency induction
induction heating
temperature
sintered compact
compact body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610520200.9A
Other languages
English (en)
Inventor
山下修
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of CN106341917A publication Critical patent/CN106341917A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0576Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together pressed, e.g. hot working
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/06Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using melting, freezing, or softening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0536Alloys characterised by their composition containing rare earth metals sintered
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0266Moulding; Pressing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties
    • C22C2202/02Magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2206/00Aspects relating to heating by electric, magnetic, or electromagnetic fields covered by group H05B6/00
    • H05B2206/02Induction heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Powder Metallurgy (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • General Induction Heating (AREA)
  • Forging (AREA)

Abstract

本发明涉及一种高频感应加热方法,其包括:在通过使用高频线圈的高频感应加热来加热工件之前,在工件表面上提供含有在预设加热温度下熔融的组分的薄膜;和通过高频感应加热来加热所述工件。

Description

高频感应加热方法
技术领域
本发明涉及通过使用高频线圈的高频感应加热来加热工件的方法。
发明背景
由稀土元素,如镧系元素制成的稀土磁体被称作永磁体并用于驱动混合动力车辆、电动车等的电机以及包含在硬盘和MRIs中的电机。
作为指示这些稀土磁体的磁体性能的指标,例如,可以使用剩磁(剩余磁通密度)和矫顽力。随电机尺寸降低和电流密度提高,发热量提高,因此在所用稀土磁体中对高耐热性的要求进一步提高。因此,这一技术领域中的重要研究课题之一是在高温下使用时如何保持磁体的磁特性。
稀土磁体的实例包括常用的烧结磁体,其中构成其结构的晶粒(主相)的晶粒尺寸为大约3微米至5微米;和纳米晶体磁体,其中晶粒精制到大约50纳米至300纳米的纳米晶体尺寸。
简要描述一个制造稀土磁体的方法的实例。例如,快速凝固Nd-Fe-B熔融金属以获得细粉(磁体粉末),和在成型模具中将磁体粉末压制成型以获得压实体。接着,将压实体在高温气氛中压缩和致密化以获得烧结压实体,并对这种烧结压实体进行热加工以赋予其磁各向异性。由此制成稀土磁体(取向磁体)。
关于上述热加工,准备包括高频线圈的加热装置和用于锻造加热的烧结压实体的成型模具。对高频线圈施加电流以产生高频感应电流,由于这种高频感应电流,在加热装置中的烧结压实体通过高频感应加热在大约600℃至900℃下加热。接着,将加热的烧结压实体转移到成型模具中以进行锻造。结果,烧结压实体被塑性变形并制成稀土磁体。
已知的是,在如上所述制成的稀土磁体中,烧结压实体在热加工过程中的加热温度对最终获得的稀土磁体的磁特性具有重大影响。因此,为了获得具有令人满意的磁特性的稀土磁体,重要的是控制热加工过程中烧结压实体的温度在预设温度(目标温度)±5℃的范围内。
发明内容
发明人研究了一种配置,其中在用润滑剂(石墨)涂布所述烧结压实体表面后使用辐射温度计的热电偶测量烧结压实体在加热过程中的表面温度。
作为测量的结果,发现在使用辐射温度计测量在正常条件下应具有相同加热温度的烧结压实体的情况下,测量结果取决于稀土磁体改变大约20℃。还发现,甚至在相同烧结压实体中,表面温度也高于烧结压实体的内部温度。
因此,本发明人作出例如下列尝试:(1)尝试实现更精确的温度测量;(2)尝试规定这样的工艺条件(例如,材料组成或应变率),在这样的条件下即使在温度取决于烧结压实体而改变的情况下也可获得相同特征;和(3)尝试简单地通过设置高频加热装置的输出或时间而不测量烧结压实体的温度来控制烧结压实体的加热以使烧结压实体可在相同温度下加热。
关于尝试(1)至(3)中的尝试(3),例如,甚至在将烧结压实体加热到预设温度(目标温度)所需的热量由于加热前的烧结压实体温度改变而改变的情况下,也将相同热量引入烧结压实体,这造成过度升温。在不改变加热装置的输出设置(IGBT的输出设置)的情况下,引入烧结压实体中的热量可能由于加热线圈的温度改变、烧结压实体在加热线圈中的位置等而改变。
因此,在这一技术领域中需要即使在所需热量或引入的热量改变的情况下也可将作为稀土磁体前体的烧结压实体的温度控制为预设加热温度的措施。
在此,日本专利申请公开No.2000-228278(JP 2000-228278A)公开了一种高频感应加热装置。具体而言,在这种装置中,通过对布置在加热目标周围的高频感应加热线圈施加电流,产生高频感应电流,并在通过这种高频感应电流加热所述加热目标时,使用辐射温度计在两个位置或三个或更多个位置测量加热目标的表面温度,并相对于加热目标移动高频感应加热线圈,移动朝测量位置的测量值之差降低的方向进行。
根据这种装置,可以通过高频感应电流均匀加热或接合加热目标。但是,该装置的主要目的是精确测量加热目标的温度,不同于如前所述的尝试,在不测量工件温度的情况下在高频感应加热过程中无法将工件,如烧结压实体加热到预设温度。
本发明提供一种高频感应加热方法,其中可以在不测量工件温度的情况下在高频感应加热过程中可将工件,如烧结压实体加热到预设温度。
根据本发明的一个方面,提供一种高频感应加热方法,其包括:在通过使用高频线圈的高频感应加热来加热工件之前,在工件表面上提供含有在预设加热温度下熔融的组分的薄膜;和通过高频感应加热来加热所述工件。
在根据本发明的该方面的高频感应加热方法中,在通过高频感应加热来加热工件之前,在工件表面上提供含有在预设加热温度下熔融的组分的薄膜。在此,“预设加热温度”是指工件表面的预设加热温度。在希望将工件表面加热到800℃的情况下,预设加热温度为800℃。
要通过高频感应加热来加热的工件不受特别限制,如上所述,其实例包括作为稀土磁体前体的烧结压实体。因此,在工件是作为稀土磁体前体的烧结压实体的情况下,可以在对烧结压实体进行热加工之前进行高频感应加热。
如上所述,当通过高频感应加热来加热工件时,表面温度变得高于工件的内部温度。因此,通常,在工件表面出现过度升温的问题。因此,当工件表面温度过度提高被抑制时,不会出现工件的内部温度过度提高的问题。
因此,通过在通过高频感应加热来加热工件之前在工件表面上提供含有在工件表面的预设温度(加热温度)下熔融的组分的薄膜,一旦表面温度达到预设加热温度,薄膜中的组分熔融,热量由于熔融的潜热而被吸收,因此工件表面温度的过度提高可以被抑制。
例如,在工件表面上,取决于工件在高频线圈中的位置而可产生温度分布,并可产生温度比工件的其它部分高的区域。但是,即使在这种情况下,一旦高温区的温度达到预设加热温度,升温也通过薄膜中的组分的熔融而被抑制预定时间量。因此,可以均匀加热工件表面上的整个区域,并且整个区域中的表面温度可被控制为预设加热温度。
例如,在通过使用包括高频线圈的加热装置的高频感应加热来加热工件、然后转移到成型模具中以锻造的情况下,即使将工件从加热装置输送到成型模具中所需的时间或将工件转移到成型模具中所需的时间取决于工件而变化或即使加热装置中的加热时间取决于工件而变化,由于薄膜,工件也可以在工件被保持恒定温度的同时处理。也就是说,工件表面的加热温度的变化可被抑制。
根据预设加热温度选择包含在薄膜中的组分。在加热温度为400℃的情况下,选择具有400℃熔点的硝酸钾作为包含在薄膜中的组分。在加热温度为800℃的情况下,选择具有800℃熔点的氯化钠作为包含在薄膜中的组分。
可以使用适当的润滑剂(液体)形成薄膜。例如,可以通过将溶液施加到工件表面上并干燥所述溶液来形成薄膜,所述溶液通过将氯化钠组分添加到石墨润滑液中得到。
薄膜可以由石墨润滑液和包含在薄膜中的熔融组分形成。
薄膜可以通过将溶液施加到工件表面上并干燥所述溶液来形成,所述溶液通过将熔融组分添加到石墨润滑液中得到。
工件可包含具有纳米晶体结构的Nd-Fe-B-基主相和Nd-X合金的晶粒间界相,其中X:金属元素,晶粒间界相可存在于主相周围。
构成晶粒间界相的Nd-X合金可以是Nd-Co、Nd-Fe、Nd-Ga、Nd-Co-Fe和Nd-Co-Fe-Ga中的任一种,或是Nd-Co、Nd-Fe、Nd-Ga、Nd-Co-Fe和Nd-Co-Fe-Ga中至少两种的混合物;且Nd-X合金可以为富Nd态。
从上文的描述中可以看出,本发明的高频感应加热方法包括:在通过使用高频线圈的高频感应加热来加热工件之前,在工件表面上提供含有在预设加热温度下熔融的组分的薄膜;和通过高频感应加热来加热所述工件。因此,在高频感应加热的过程中,可以将工件表面上的整个区域加热到预设温度。
附图说明
下面参考附图描述本发明的示例性实施方案的特征、优点以及技术和工业意义,其中类似数字是指类似元件,且其中:
图1是显示在作为工件的烧结压实体的表面上提供薄膜的状态的图;
图2是显示烧结压实体即将插入高频线圈时的状态的图;
图3是显示加热的烧结压实体即将转移到成型模具中时的状态的图;
图4A是显示在用于验证含有在预设加热温度下熔融的组分的薄膜抑制工件温度过度提高的作用的实验中对比例的结果的图;且
图4B是显示在用于验证含有在预设加热温度下熔融的组分的薄膜抑制工件温度过度提高的作用的实验中实施例的结果的图。
具体实施方式
下面,参考附图描述根据本发明的高频感应加热方法的一个实施方案。附图中所示的实例中的工件是作为稀土磁体前体的烧结压实体。但是,工件当然不限于烧结压实体。
(高频感应加热方法的实施方案)
图1是显示在作为工件的烧结压实体的表面上提供薄膜的状态的图,图2是烧结压实体即将插入高频线圈时的状态。图3是显示加热的烧结压实体即将转移到成型模具中时的状态的图。
首先,如图1中所示,在作为稀土磁体前体的烧结压实体1(工件)的表面上形成薄膜2。
在此,通过在成型模具(未显示)中在大约700℃的高温气氛中将磁体粉末压制成型而制造烧结压实体1。在制备磁体粉末的方法中,在压力降至50kPa或更低的炉(未显示)中,使用单辊熔体纺丝法通过高频感应加热熔融合金锭,并将具有稀土磁体的组成的熔融金属喷向铜辊以制备快淬条带。接着,粉碎这种快淬条带以制备磁体粉末。将磁体粉末的晶粒尺寸范围调节到75微米至300微米的范围内。
烧结压实体1具有:具有纳米晶体结构的Nd-Fe-B基主相(具有大约300纳米或更小的平均晶粒尺寸,例如大约50纳米至200纳米的晶粒尺寸);和存在于主相周围的Nd-X合金(X:金属元素)的晶粒间界相。构成晶粒间界相的Nd-X合金是Nd与Co、Fe、Ga等中至少一种的合金并为富Nd态。例如,可以使用Nd-Co、Nd-Fe、Nd-Ga、Nd-Co-Fe和Nd-Co-Fe-Ga中的任一种,或Nd-Co、Nd-Fe、Nd-Ga、Nd-Co-Fe和Nd-Co-Fe-Ga中至少两种的混合物。
在烧结压实体1的表面上形成的薄膜2由石墨润滑液和包含在薄膜2中的熔融组分形成。
这种熔融组分是指在通过使用图2中所示的高频线圈Co的高频感应加热来加热烧结压实体1时(即在高频感应加热前)在烧结压实体1的表面的预设加热温度下熔融的组分。
例如,当通过对烧结压实体1进行热加工来制造稀土磁体时,将热加工前的加热温度设定为大约600℃至900℃。相应地,在烧结压实体1的表面的预设温度为670℃的情况下,可以使用具有670℃熔点的四水合氯化铁(II)(FeCl24H2O)作为熔融组分。在预设温度为770℃的情况下,可以使用具有770℃熔点的氯化钾(KCl)作为熔融组分。
如图2中所示,将表面上带有薄膜2的烧结压实体1放入高频线圈Co中(X1方向)并通过高频感应加热预定时间量来进行加热。
在这种高频感应加热的过程中,取决于烧结压实体1在高频线圈Co中的位置有可能在烧结压实体1的表面上产生温度分布,并可产生温度比烧结压实体1的其它部分高的区域。即使在这种情况下,一旦高温区域的温度达到预设加热温度,也通过薄膜2中的组分(熔融组分)的熔融将升温抑制预定时间量。因此,烧结压实体1表面上的整个区域可被均匀加热,并且整个区域中的表面温度可被控制为预设加热温度,以及烧结压实体1的整个或局部区域温度的过度提高被抑制。
一旦烧结压实体1的整个区域通过预定时间量的高频感应加热被均匀加热到预设温度,将加热的烧结压实体1转移到成型模具M的模腔C中。
成型模具M包括:模具D;和在模具D内滑动的上冲Pu和下冲Ps。由模具D、上冲Pu和下冲Ps形成模腔C。
将加热的烧结压实体1放入模腔C中(X2方向),并通过用上冲Pu和下冲Ps压缩来锻造烧结压实体1。因此,赋予烧结压实体1磁各向异性,并制成稀土磁体(未显示)。
在热加工前,通过附图中所示的高频感应加热方法将烧结压实体1的整个区域均匀加热到预设加热温度,并且不存在过度加热部分。因此,制成具有令人满意的磁特性,如剩余磁化强度或矫顽力的稀土磁体。
(用于验证含有在预设加热温度下熔融的组分的薄膜抑制工件温度过度提高的作用的实验及其结果)
发明人进行了实验来验证含有在预设加热温度下熔融的组分的薄膜抑制工件温度过度提高的作用。
首先,使用烧结压实体作为工件,并将烧结压实体表面的预设加热温度设定为800℃。接着,将NaCl(1.0克;熔点:800℃)与0.1克石墨润滑液(PROHYTE 15FU,NipponGraphite Industries,Ltd.制造)混合并将该混合物施加到烧结压实体的表面上,并充分干燥。因此,形成具有50微米至100微米的厚度的薄膜。由1克熔融NaCl可期望483kJ的吸热。
使用高频感应加热装置加热表面上形成有薄膜的烧结压实体。此时,热电偶通过焊接提供在烧结压实体表面上以测量温度(上文,实施例)。
在此,烧结压实体的比热为410J/kg·K,烧结压实体的尺寸为7.2mm×28.2mm×18.9mm,烧结压实体的密度为7.6克/立方厘米,将烧结压实体温度提高1℃所需的热量为11.96J,当1克NaCl全部熔融时,可预计抑制40.38℃(483J/11.96(J/K))的过度升温的作用。
另一方面,作为对比例,制备表面上形成有仅由石墨润滑液构成而未添加NaCl的薄膜的烧结压实体。此时,如实施例的情况那样,热电偶通过焊接提供在烧结压实体表面上以测量温度。
使用TYPE 3(Yutaka Electronics Industry Co.,Ltd.制造)作为加热装置且加热条件为10kHz、50A和75秒。
关于测量结果,图4A显示对比例的测量结果,图4B显示实施例的测量结果。
从图4A中发现,在对比例的烧结压实体中,表面温度随时间提高并过度提高到超过预设加热温度800℃。
另一方面,从图4B中发现,在实施例的烧结压实体中,表面温度随时间提高;但是,升温在800℃停止,这是NaCl的熔点,温度稳定在800℃大约9秒,并由此抑制了过度升温。这一结果源自NaCl的吸热反应,并能够验证含有在预设加热温度下熔融的组分的薄膜的作用。也就是说,如图4B中所示,发现在54秒至63秒的时期内,热量通过NaCl熔融被吸收,且温度稳定。升温被抑制的时期取决于高频输出(升温速率)。
接着,下表1显示可包含在薄膜中的组分及其熔点的列表。
[表1]
化合物名称 熔点(℃)
氯化锡(II) SnCl2 246
亚硝酸钠 NaNO2 271
氯化锌 ZnCl2 293
氯化锆(III) ZrCl3 330
亚硝酸钾 KNO2 350
硝酸钾 KNO3 400
氯化铵 NH4Cl 520
四水合氯化铁(II) FeCl24H2O 670
氯化钾 KCl 770
氯化钙 CaCl2 782
碳酸钠 Na2CO3 851
可包含在薄膜中的组分可以根据工件表面的预设加热温度由表1的列表适当选择。通过从表1的列表中选择两种或更多种组分并形成含有这些组分的薄膜,可以以各种方式控制温度。
上文已参考附图描述了本发明的实施方案。但是,具体配置不限于实施方案,在不背离本发明范围的范围内作出的设计变更等包括在本发明内。

Claims (6)

1.一种高频感应加热方法,其特征在于包括:
在通过使用高频线圈的高频感应加热来加热工件之前,在工件表面上提供含有在预设加热温度下熔融的组分的薄膜;和
通过高频感应加热来加热所述工件。
2.根据权利要求1的高频感应加热方法,其特征在于
所述工件是烧结压实体,其为稀土磁体前体,且
在对所述烧结压实体进行热加工的同时通过高频感应加热来加热所述烧结压实体。
3.根据权利要求1或2的高频感应加热方法,其特征在于
所述薄膜由石墨润滑液和包含在所述薄膜中的熔融组分形成。
4.根据权利要求3的高频感应加热方法,其特征在于
所述薄膜通过将溶液施加到工件表面上并干燥所述溶液来形成,所述溶液通过将熔融组分添加到石墨润滑液中得到。
5.根据权利要求1至4任一项的高频感应加热方法,其特征在于
所述工件包含具有纳米晶体结构的Nd-Fe-B-基主相和Nd-X合金的晶粒间界相,其中X:金属元素,晶粒间界相存在于主相周围。
6.根据权利要求5的高频感应加热方法,其特征在于
构成晶粒间界相的Nd-X合金是Nd-Co、Nd-Fe、Nd-Ga、Nd-Co-Fe和Nd-Co-Fe-Ga中的任一种,或是Nd-Co、Nd-Fe、Nd-Ga、Nd-Co-Fe和Nd-Co-Fe-Ga中至少两种的混合物;且
所述Nd-X合金为富Nd态。
CN201610520200.9A 2015-07-07 2016-07-05 高频感应加热方法 Pending CN106341917A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-136000 2015-07-07
JP2015136000A JP6451529B2 (ja) 2015-07-07 2015-07-07 高周波誘導加熱方法

Publications (1)

Publication Number Publication Date
CN106341917A true CN106341917A (zh) 2017-01-18

Family

ID=57730729

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610520200.9A Pending CN106341917A (zh) 2015-07-07 2016-07-05 高频感应加热方法

Country Status (3)

Country Link
US (1) US20170010163A1 (zh)
JP (1) JP6451529B2 (zh)
CN (1) CN106341917A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100621A (ja) * 1981-12-11 1983-06-15 Toyota Motor Corp 金属の表面焼入れ法
JPS61106708A (ja) * 1984-10-31 1986-05-24 Nissan Motor Co Ltd 鉄系金属表面の焼入れ方法
US5244587A (en) * 1990-07-12 1993-09-14 Daido Machinery, Ltd. Forging lubricant and a method for forming a lubricant coat on the surface of a linear material
US20020036367A1 (en) * 2000-02-22 2002-03-28 Marlin Walmer Method for producing & manufacturing density enhanced, DMC, bonded permanent magnets
CN103765528A (zh) * 2011-08-23 2014-04-30 丰田自动车株式会社 稀土磁体制造方法以及稀土磁体
JP2015050427A (ja) * 2013-09-04 2015-03-16 トヨタ自動車株式会社 配向磁石の製造方法
CN104737250A (zh) * 2012-10-18 2015-06-24 丰田自动车株式会社 稀土类磁铁的制造方法
JP2015126213A (ja) * 2013-12-27 2015-07-06 トヨタ自動車株式会社 希土類磁石の製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2588625A (en) * 1945-03-15 1952-03-11 Aluminum Co Of America Forging lubricant and method of using same
BE602568A (zh) * 1960-04-14
FR2598949B1 (fr) * 1986-05-23 1989-08-04 Centre Nat Rech Scient Procede pour la preparation de cristaux finement divises a partir d'un alliage metallique, notamment pour la preparation d'aimants permanents
JP3047239B2 (ja) * 1989-04-14 2000-05-29 日立金属株式会社 温間加工磁石及びその製造方法
JPH04236402A (ja) * 1991-01-18 1992-08-25 Sumitomo Metal Mining Co Ltd 圧縮ボンド磁石用希土類−鉄系合金粉末の処理方法
JP2533465B2 (ja) * 1994-02-03 1996-09-11 矢崎化工株式会社 樹脂被覆鋼管の鋼管と被覆樹脂の分離回収方法
JP3929205B2 (ja) * 1999-06-22 2007-06-13 第一高周波工業株式会社 一次被覆層の溶融処理方法
JP3974909B2 (ja) * 1999-09-13 2007-09-12 株式会社ジェイテクト 塗装品の製造方法および塗装品
JP4518610B2 (ja) * 2000-03-17 2010-08-04 第一高周波工業株式会社 熱収縮被覆の接着力強化方法
JP3985949B2 (ja) * 2002-02-21 2007-10-03 第一高周波工業株式会社 高周波誘導加熱方法
JP4587434B2 (ja) * 2002-07-19 2010-11-24 臼井国際産業株式会社 細径金属管と樹脂製可撓ホースとの接続構造
JP2006274681A (ja) * 2005-03-29 2006-10-12 Mitsuboshi Belting Ltd 防水シートの固定方法
JP6003446B2 (ja) * 2012-09-19 2016-10-05 トヨタ自動車株式会社 配向磁石と希土類磁石の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100621A (ja) * 1981-12-11 1983-06-15 Toyota Motor Corp 金属の表面焼入れ法
JPS61106708A (ja) * 1984-10-31 1986-05-24 Nissan Motor Co Ltd 鉄系金属表面の焼入れ方法
US5244587A (en) * 1990-07-12 1993-09-14 Daido Machinery, Ltd. Forging lubricant and a method for forming a lubricant coat on the surface of a linear material
US20020036367A1 (en) * 2000-02-22 2002-03-28 Marlin Walmer Method for producing & manufacturing density enhanced, DMC, bonded permanent magnets
CN103765528A (zh) * 2011-08-23 2014-04-30 丰田自动车株式会社 稀土磁体制造方法以及稀土磁体
CN104737250A (zh) * 2012-10-18 2015-06-24 丰田自动车株式会社 稀土类磁铁的制造方法
JP2015050427A (ja) * 2013-09-04 2015-03-16 トヨタ自動車株式会社 配向磁石の製造方法
JP2015126213A (ja) * 2013-12-27 2015-07-06 トヨタ自動車株式会社 希土類磁石の製造方法

Also Published As

Publication number Publication date
JP2017020055A (ja) 2017-01-26
US20170010163A1 (en) 2017-01-12
JP6451529B2 (ja) 2019-01-16

Similar Documents

Publication Publication Date Title
CN105405568B (zh) 用于磁芯的粉末、制备压粉磁芯的方法、压粉磁芯和制备用于磁芯的粉末的方法
EP2947670B1 (en) Method for manufacturing powder magnetic core, powder magnetic core, and coil component
CN103765528B (zh) 稀土磁体制造方法以及稀土磁体
EP3552736B1 (en) Production method of rare earth magnet
JP6427862B2 (ja) 圧粉磁心、その製造方法、該圧粉磁心を用いたインダクタンス素子および回転電機
CN107077934B (zh) 具有提高的热稳定性的基于MnBi的烧结磁体及其制备方法
EP2869311A1 (en) Method of manufacturing fully dense Nd-Fe-B magnets with enhanced coercivity and gradient microstructure
CN104529423A (zh) 一种低温度因数抗应力镍锌铁氧体及其制备方法
US20170221630A1 (en) Method of manufacturing rare earth magnet
CN104599802B (zh) 稀土永磁材料及其制备方法
US10062504B2 (en) Manufacturing method of rare-earth magnet
Hu et al. Effect of sintering process on the magnetic and mechanical properties of sintered Nd–Fe–B magnets
JP6358572B2 (ja) 希土類磁石の製造方法
CN102719628A (zh) 铁镍软磁合金真空退火二步法
US20160099104A1 (en) Method for manufacturing rare-earth magnets
CN103227020A (zh) 压粉磁芯用混合粉末
CN105312574B (zh) 烧结压实体的制造方法
CN106341917A (zh) 高频感应加热方法
JP6596061B2 (ja) 希土類永久磁石材料及びその製造方法
JP2007220876A (ja) 軟磁性合金圧密体及びその製造方法
EP1770177B1 (en) Method for preparing a magnetostrictive material
US20160104572A1 (en) Method for manufacturing rare-earth magnets
Wang et al. Crystallization progress and soft magnetic properties of Finemetáalloy with Ge addition
CN109273231B (zh) 一种软磁电子材料的制备方法
US20240212901A1 (en) Magnetic Field-Sensitive Component, Production Method, and Use

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170118

WD01 Invention patent application deemed withdrawn after publication