CN106317424A - 一种用于高效检测h2o2的磁性复合水凝胶及其制备方法与应用 - Google Patents

一种用于高效检测h2o2的磁性复合水凝胶及其制备方法与应用 Download PDF

Info

Publication number
CN106317424A
CN106317424A CN201610686008.7A CN201610686008A CN106317424A CN 106317424 A CN106317424 A CN 106317424A CN 201610686008 A CN201610686008 A CN 201610686008A CN 106317424 A CN106317424 A CN 106317424A
Authority
CN
China
Prior art keywords
xylan
hydrogel
acylated
solution
magnetic coupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610686008.7A
Other languages
English (en)
Inventor
任俊莉
代晴晴
孙润仓
高存殿
刘传富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201610686008.7A priority Critical patent/CN106317424A/zh
Publication of CN106317424A publication Critical patent/CN106317424A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0057Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Xylans, i.e. xylosaccharide, e.g. arabinoxylan, arabinofuronan, pentosans; (beta-1,3)(beta-1,4)-D-Xylans, e.g. rhodymenans; Hemicellulose; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/02Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to polysaccharides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明公开了一种用于高效检测H2O2的磁性复合水凝胶及其制备方法与应用。该方法步骤为:用丙烯酰氯改性木聚糖,得酰化木聚糖,用热水溶解得酰化木聚糖溶液,加入N‑异丙基丙烯酰胺,丙烯酰胺和交联剂,通氮气,加入光引发剂,混合,置于紫外辐射反应器中,室温下紫外照射,再于室温下封闭放置反应,洗涤润胀;将FeCl3·6H2O与FeSO4·7H2O溶于水中,将酰化木聚糖水凝胶放入此铁盐溶液中,通N2,取出变成黄色的水凝胶浸入氨水中,通N2,得到黑色的水凝胶,洗涤,干燥,得磁性复合水凝胶。本发明制备方法工艺易操作,具有环境友好性;所得水凝胶具有良好的磁敏感性,具有辣根过氧化物酶活性,可用于H2O2的检测。

Description

一种用于高效检测H2O2的磁性复合水凝胶及其制备方法与 应用
技术领域
本发明属于天然高分子功能材料制备技术领域,具体涉及一种用于高效检测H2O2的磁性复合水凝胶及其制备方法与应用。
背景技术
近年来,可再生木质纤维素类生物质资源的开发和利用得到了人们的极大重视和关注,被认为是解决石化资源日益枯竭和环境问题的有效途径。半纤维素是农林生物质的主要组分之一,其含量仅次于纤维素,是地球上最丰富、最廉价的可再生资源之一。木聚糖是半纤维素主要的结构形式,主要存在于阔叶木和禾本科植物中。木聚糖本身具有一定的凝胶性,是制备智能水凝胶的良好的原料。
四氧化三铁纳米颗粒(IONPs)具有独特的超顺磁特性,被广泛应用在污水处理、分析检测、生物大分子及细胞分离、药物靶向运输及可控释放、肿瘤磁热治疗、磁共振成像等领域。研究发现IONPs能够模拟辣根过氧化物酶(HRP)活性,催化或氧化氢氧化底物(3,3,5,5-四甲基联苯胺(TMB)、二氨基联苯胺(DAB)、邻苯二胺(OPD))产生颜色变化,其催化活性与HRP类似,依赖于H2O2的浓度、pH和反应温度,催化过程符合米氏动力学和乒乓反应机制,因此能够替代HRP应用在酶联免疫吸附分析(ELISA)。纳米复合水凝胶将纳米材料的优异性质(如,磁性、光热、表面等离子体、催化性等)与智能水凝胶独特的性质(外界刺激如温度、高含水量、pH诱导的相转变)结合起来,可以赋予复合水凝胶优异的性能。磁性复合水凝胶是将磁性材料载入到水凝胶中而得到的。
发明内容
为了克服现有技术的缺点与不足,本发明的首要目的在于提供一种用于高效检测H2O2的磁性复合水凝胶;
本发明的另一目的在于提供上述磁性复合水凝胶的制备方法;
本发明的再一目的在于提供上述磁性复合水凝胶在H2O2检测上的应用。
本发明的目的通过下述技术方案实现。
一种用于高效检测H2O2的磁性复合水凝胶的制备方法,包括如下步骤:
(1)用丙烯酰氯改性木聚糖,得到酰化木聚糖;
(2)将酰化木聚糖用热水溶解,得到酰化木聚糖溶液;
(3)往步骤(2)所得酰化木聚糖溶液中加入N-异丙基丙烯酰胺和丙烯酰胺,再加入交联剂,通氮气鼓泡;加入光引发剂,混合均匀后,冷却至室温,置于紫外辐射反应器中,室温下紫外照射,再于室温下封闭放置反应;反应结束后用去离子水洗涤除去残余反应试剂,得酰化木聚糖基水凝胶;将FeCl3·6H2O与FeSO4·7H2O溶于蒸馏水中,得铁盐溶液;接着将酰化木聚糖基水凝胶胶放入铁盐溶液中浸泡,同时通N2;取出变成黄色的水凝胶,浸入氨水中,同时通N2,得到黑色的水凝胶;均匀切片,干燥,所得固体即为用于高效检测H2O2的磁性复合水凝胶。
优选的,步骤(1)所述酰化木聚糖的具体制备步骤为:将0.6~0.7 g木聚糖溶解在8~12 mL的去离子水中,然后加入15~25 mL二甲基甲酰胺(DMF)搅拌10~15 min,待木聚糖完全溶解后,旋转蒸发除去混合溶液中的水,然后加入0.08~0.12 g LiCl, 0.03~0.04 g 4-二甲氨基吡啶, 10~15 mL 二甲基甲酰胺和2~3 mL丙烯酰氯于65~75℃下反应30~50 min,反应结束后,用75~95wt%的乙醇离心洗涤3~5次,烘干得到酰化木聚糖。
优选的,步骤(1)所述木聚糖为山毛榉木聚糖,分子量为M w =130000 g/mol。
优选的,步骤(2)所述酰化木聚糖溶液的具体制备步骤为:将酰化木聚糖加入温度为70~90 ℃的热水中,搅拌溶解30~60min,得质量浓度为4%~6%的酰化木聚糖溶液,再降温至40~50℃。
优选的,步骤(3)所述交联剂为N,N’-亚甲基双丙烯酰胺;所述光引发剂为安息香二甲醚,所述光引发剂在添加前,先用N-甲基吡咯烷酮(NMP)进行溶解,浓度为2~3wt%。
优选的,步骤(3)所述交联剂的用量为步骤(2)所述酰化木聚糖质量的2.5%~10%;步骤(3)所述丙烯酰胺与步骤(2)所述酰化木聚糖的质量比为(6~12):1;步骤(3)所述N-异丙基丙烯酰胺的用量为步骤(2)所述酰化木聚糖质量的4%~16%;步骤(3)所述光引发剂的用量为步骤(2)所述酰化木聚糖质量的4~6%。
优选的,步骤(3)所述紫外照射的条件:波长为 365 nm、功率为400 W,照射时间为4~8 h;所述放置反应的时间6~10 h;所述通氮气鼓泡的时间为10~30min;所述FeCl3·6H2O与FeSO4·7H2O的摩尔比为(2~4):1;所述酰化木聚糖基水凝胶浸泡于铁盐溶液中的时间为4~8 h;所述氨水的用量为20~30 mL,浓度为25 wt%~28 wt%;所述黄色的水凝胶浸入氨水中通N2的时间为30~60 min;所述干燥的方式为液氮冷冻干燥。
由以上所述的制备方法制得的一种用于高效检测H2O2的磁性复合水凝胶。
以上所述的一种用于高效检测H2O2的磁性复合水凝胶在H2O2检测中的应用。
优选的,所述应用的具体包括如下步骤:将H2O2加入TMB底物显色溶液中,配置一系列的TMB-H2O2显色溶液,将磁性复合水凝胶浸渍于TMB-H2O2显色溶液中,于水浴中反应,溶液变蓝,然后用紫外分光光度计检测TMB-H2O2显色溶液。
优选的,所述TMB-H2O2显色溶液中H2O2的浓度为5uM~200 mM ;所述水浴的温度为37~40℃;所述反应的时间30~60 min;所述检测的紫外检测波长为范围为500~750 nm。
本发明相对于现有技术具有如下的优点及效果:
(1)本发明制备的磁性复合水凝胶,使用的原料为生物质,因木聚糖本身具有可生物降解、生物相容性以及特殊的理化性能,是制备水凝胶理想的原料,本发明能够扩大木聚糖类型半纤维素的工业应用,为半纤维素的高值化利用提供重要的有效途径。
(2)本发明的磁性复合水凝胶具有良好的催化活性,可以用于低浓度H2O2的检测。
(3)本发明的制备方法工艺易操作,容易实现工艺化,具有环境友好性。
附图说明
图1中的a、b、c分别代表本发明交联剂用量为5 wt%、7.5 wt%、10 wt%制得的木聚糖水凝胶的SEM图;
图2中的a、b分别为本发明磁性复合水凝胶的XRD和Raman图;
图3为不同实施例检测相同浓度H2O2的紫外光谱图;
图4为磁性复合水凝胶置于不同H2O2浓度的紫外光谱图。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
一种用于高效检测H2O2的磁性复合水凝胶,其制备步骤如下:
将0.6 g山毛榉木聚糖(M w =130000 g/mol)溶解在8 mL的去离子水中,然后加入15 mL二甲基甲酰胺搅拌10 min,待木聚糖完全溶解后,旋转蒸发除去混合溶液中的水,然后加入0.08 g LiCl, 0.03 g 4-二甲氨基吡啶, 10 mL 二甲基甲酰胺和2 mL丙烯酰氯于65 ℃下反应50 min,反应结束后,用75 wt%的乙醇离心洗涤5次,烘干得到酰化木聚糖。
称取2.0 g酰化木聚糖置于三口烧瓶中,加入50 mL去离子水在70℃加热60 min并搅拌使其完全溶解;降温至50℃,然后加入0.08 g的N-异丙基丙烯酰胺(NIPAm)、12 g丙烯酰胺(AM)和0.1 g N,N′-亚甲基双丙烯酰胺(MBA),通氮气以除去溶液中的溶解氧和瓶内空气;然后加入光引发剂安息香二甲醚0.08 g(先将安息香二甲醚0.08 g溶于N-甲基吡咯烷酮中,质量浓度为2%);混合液均匀后,降至室温,倒入石英皿并置于紫外辐射反应器中,设定照射条件为:波长为 365 nm、功率为400 W,室温下照射4 h;达到反应时间后在室温下封闭放置6 h,使其充分聚合和交联;反应完成后,将所得的水凝胶取出,用过量去离子水洗涤以除去水凝胶中残余的反应试剂,然后将水凝胶浸泡在由FeCl3·6H2O与FeSO4·7H2O溶于40 mL蒸馏水中配制所得的盐溶液中4 h,同时通N2 ,水凝胶变黄,然后将变黄的水凝胶放在20 mL氨水溶液(25wt%)中反应30 min,同时通N2 30 min,其中FeCl3·6H2O、FeSO4·7H2O和氨水的摩尔比为2:1:8,反应结束后,将水凝胶浸泡在去离子水中4天,以除去多余的反应物质,然后均匀切块,液氮冷冻干燥即可得到黑色的磁性复合水凝胶。
对所得的水凝胶进行扫描电镜分析,所得的干燥水凝胶的SEM图如图1中的a所示。
对所得的磁性复合水凝胶进行XRD和Raman分析,所得XRD和Raman图谱如图2所示,从图中可以看出水凝胶中生成的磁性颗粒为尖晶石结构的Fe3O4
将所得的磁性复合水凝胶用于H2O2检测,具体步骤为:将H2O2加入TMB底物显色溶液中,配置一系列的TMB-H2O2显色溶液(5uM~200mM),将本实施例所得磁性复合水凝胶浸渍于TMB-H2O2显色溶液中,于37℃水浴中反应60 min,溶液由无色变蓝色。
将显色反应结束后的蓝色TMB-H2O2显色溶液用紫外分光光度计在波长范围为500~750 nm中检测。对不同交联程度的水凝胶在同一TMB-H2O2显色溶液(50mM)浓度下的催化活性进行分析,如图3所示;对磁性复合水凝胶在不同TMB-H2O2显色溶液(5uM~200mM)中的催化活性进行紫外光谱分析,如图4所示。
经分析,实施例1的磁性复合水凝胶对H2O2有很敏感的检测效果,在5uM~50mM的低浓度范围内,具有较好的显色响应,当H2O2浓度过高,则反应过于剧烈,容易生成白色的沉淀,从而影响紫外吸光度。
实施例2
一种高效检测H2O2的磁性复合水凝胶,其制备步骤如下:
将0.66 g山毛榉木聚糖(M w =130000 g/mol)溶解在10 mL的去离子水中,然后加入20mL二甲基甲酰胺搅拌10 min,待木聚糖完全溶解后,旋转蒸发除去混合溶液中的水,然后加入0.1 g LiCl, 0.035 g 4-二甲氨基吡啶, 12.5 mL 二甲基甲酰胺和2.5 mL丙烯酰氯于70℃下反应40 min,反应结束后,用85 wt%的乙醇离心洗涤4次,烘干得到酰化木聚糖。
称取2.0 g酰化木聚糖置于三口烧瓶中,加入40 mL去离子水在80℃加热45 min并搅拌使其完全溶解;降温至45℃,然后分别加入0. 20g的N-异丙基丙烯酰胺(NIPAm)、18 g丙烯酰胺(AM)和0.15 g N,N′-亚甲基双丙烯酰胺(MBA),通氮气以除去溶液中的溶解氧和瓶内空气;然后加入光引发剂安息香二甲醚0.15 g(先将安息香二甲醚0.15 g溶于N-甲基吡咯烷酮中,质量浓度为2.5%);混合液均匀后,降至室温,倒入石英皿并置于紫外辐射反应器中,设定照射条件为:波长为 365 nm、功率为400 W,室温下照射6 h;达到反应时间后在室温下封闭放置8 h,使其充分聚合和交联;反应完成后,将所得的水凝胶取出用过量去离子水洗涤以除去水凝胶中残余的反应试剂,然后将水凝胶浸泡在由FeCl3·6H2O与FeSO4·7H2O溶于40 mL蒸馏水中配制所得的盐溶液中6 h,同时通N2,水凝胶变黄,然后将变黄的水凝胶放在25 mL氨水溶液(26.5 wt%)中反应30 min,同时通N2 45 min,其中FeCl3·6H2O、FeSO4·7H2O和氨水的摩尔比为3:1:8,反应结束后,将水凝胶浸泡在去离子水中4天,以除去多余的反应物质,然后均匀切块,液氮冷冻干燥即可得到黑色的磁性复合水凝胶。
将所得的磁性复合水凝胶用于H2O2检测,具体步骤为:将H2O2加入TMB底物显色溶液中,配置一系列的TMB-H2O2显色溶液(5 uM~200 mM),将所得磁性复合水凝胶浸渍于TMB-H2O2显色溶液中,于38.5℃水浴中反应45 min,溶液由无色变为蓝色。
对所得的水凝胶进行扫描电镜分析,所得的干燥水凝胶的SEM图如图1中的b所示。
将显色反应结束后的蓝色TMB-H2O2显色溶液用紫外分光光度计在波长为500~750nm中检测。对不同交联程度的水凝胶在同一TMB-H2O2显色溶液(50mM)浓度下的催化活性进行分析,如图3所示。
研究表明,本实施例所制备的磁性复合水凝胶交联度更大,结构更为紧密,对H2O2的催化活性最高。
实施例3
一种高效检测H2O2的磁性复合水凝胶,其制备步骤如下:
将0.72 g山毛榉木聚糖(M w =130000 g/mol)溶解在12 mL的去离子水中,然后加入25mL二甲基甲酰胺搅拌15 min,待木聚糖完全溶解后,旋转蒸发除去混合溶液中的水,然后加入0.12 g LiCl, 0.04 g 4-二甲氨基吡啶, 25 mL 二甲基甲酰胺和3 mL丙烯酰氯于75℃下反应30 min,反应结束后,用95 wt%的乙醇离心洗涤3次,烘干得到酰化木聚糖。
称取2.0 g酰化木聚糖置于三口烧瓶中,加入30 mL去离子水在90℃加热30 min并搅拌使其完全溶解;降温至40℃,然后加入0.32 g的N-异丙基丙烯酰胺(NIPAm)、24 g丙烯酰胺(AM)和0.2 g N,N′-亚甲基双丙烯酰胺(MBA),通氮气鼓泡以除去溶液中的溶解氧和瓶内空气;然后加入光引发剂安息香二甲醚0.12 g(先将安息香二甲醚0.12 g溶于N-甲基吡咯烷酮中,质量浓度为3%);混合液均匀后,降至室温,倒入石英皿并置于紫外辐射反应器中,设定照射条件为:波长为 365 nm、功率为400 W,室温下照射8 h;达到反应时间后在室温下封闭放置10 h,使其充分聚合和交联;反应完成后,将所得的水凝胶取出用过量去离子水洗涤以除去水凝胶中残余的反应试剂,然后将水凝胶浸泡在由FeCl3·6H2O与的FeSO4·7H2O溶于40 mL蒸馏水中配制所得的盐溶液中8 h,同时通N2 ,水凝胶变黄,然后将变黄的水凝胶放在30 mL氨水溶液(28 wt%)中反应30 min,同时通N2 60 min,其中FeCl3·6H2O、FeSO4·7H2O和氨水的摩尔比为4:1:8,反应结束后,将水凝胶浸泡在去离子水中4天,以除去多余的反应物质,然后均匀切块,液氮冷冻干燥即可得到黑色的磁性复合水凝胶。
将所得的磁性复合水凝胶用于H2O2检测,具体步骤为:将H2O2加入TMB底物显色溶液中,配置一系列的TMB-H2O2显色溶液(5 uM~200 mM),将所得磁性复合水凝胶浸渍于TMB-H2O2显色溶液中,于40℃水浴中反应60 min,溶液由无色变为蓝色。
对所得的水凝胶进行扫描电镜分析,所得的干燥水凝胶的SEM图如图1中的c所示。
将显色反应结束后的蓝色TMB-H2O2显色溶液用紫外分光光度计在波长为500~750nm中检测。对不同交联程度的水凝胶在相同TMB-H2O2显色溶液(50mM)浓度下的催化活性进行分析,如图3所示。
研究表明,本实施例所制备的磁性复合水凝胶交联度更大,结构更为紧密,对H2O2的催化活性较实施例2和实施例1的磁性复合水凝胶催化效率低。这说明磁性复合水凝胶的催化效率受水凝胶的交联度影响。
上述实施例2和实施例3的图2和图4和实施例1基本相同,不一一说明。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种用于高效检测H2O2的磁性复合水凝胶的制备方法,其特征在于,包括如下步骤:
(1)用丙烯酰氯改性木聚糖,得到酰化木聚糖;
(2)将酰化木聚糖用热水溶解,得到酰化木聚糖溶液;
(3)往步骤(2)所得酰化木聚糖溶液中加入N-异丙基丙烯酰胺和丙烯酰胺,再加入交联剂,通氮气鼓泡;加入光引发剂,混合均匀后,冷却至室温,置于紫外辐射反应器中,室温下紫外照射,再于室温下封闭放置反应;反应结束后用去离子水洗涤除去残余反应试剂,得酰化木聚糖基水凝胶;将FeCl3·6H2O与FeSO4·7H2O溶于蒸馏水中,得铁盐溶液;接着将酰化木聚糖基水凝胶放入铁盐溶液中浸泡,同时通N2;取出变成黄色的水凝胶,浸入氨水中,同时通N2,得到黑色的水凝胶;均匀切片,干燥,所得固体即为用于高效检测H2O2的磁性复合水凝胶。
2.根据权利要求1所述的一种用于高效检测H2O2的磁性复合水凝胶的制备方法,其特征在于,步骤(1)所述酰化木聚糖的具体制备步骤为:将0.6~0.72 g木聚糖溶解在8~12 mL的去离子水中,然后加入15~25 mL二甲基甲酰胺搅拌10~15 min,待木聚糖完全溶解后,旋转蒸发除去混合溶液中的水,然后加入0.08~0.12 g LiCl, 0.03~0.04 g 4-二甲氨基吡啶,10~15 mL 二甲基甲酰胺和2~3 mL丙烯酰氯于65~75℃下反应30~50 min,反应结束后,用75~95wt%的乙醇离心洗涤3~5次,烘干得到酰化木聚糖。
3.根据权利要求1所述的一种用于高效检测H2O2的磁性复合水凝胶的制备方法,其特征在于,步骤(2)所述酰化木聚糖溶液的具体制备步骤为:将酰化木聚糖加入温度为70~90℃的热水中,搅拌溶解30~60min,得质量浓度为4%~6%的酰化木聚糖溶液,再降温至40~50℃。
4.根据权利要求1所述的一种用于高效检测H2O2的磁性复合水凝胶的制备方法,其特征在于,步骤(3)所述交联剂为N,N’-亚甲基双丙烯酰胺;所述光引发剂为安息香二甲醚,所述光引发剂在添加前,先用N-甲基吡咯烷酮进行溶解,所得溶液浓度为2~3wt%。
5.根据权利要求1所述的一种用于高效检测H2O2的磁性复合水凝胶的制备方法,其特征在于,步骤(3)所述交联剂的用量为步骤(2)所述酰化木聚糖质量的5%~10%;步骤(3)所述丙烯酰胺与步骤(2)所述酰化木聚糖的质量比为(6~12):1;步骤(3)所述N-异丙基丙烯酰胺的用量为步骤(2)所述酰化木聚糖质量的4%~16%;步骤(3)所述光引发剂的用量为步骤(2)所述酰化木聚糖质量的4~6%。
6.根据权利要求1所述的一种用于高效检测H2O2的磁性复合水凝胶的制备方法,其特征在于,步骤(3)所述通氮气鼓泡的时间为10~30min;所述紫外照射的条件:波长为 365 nm、功率为400 W,照射时间为4-8 h;所述放置反应的时间为6~10 h;所述FeCl3·6H2O与FeSO4·7H2O的摩尔比为(2~4):1;所述木聚糖水凝胶浸泡于铁盐溶液中的时间为4~8 h;所述氨水的用量为20~30 mL,浓度为25~28wt%;所述黄色的水凝胶浸入氨水中通N2的时间为30~60 min;所述干燥的方式为液氮冷冻干燥。
7.由权利要求1~6任一项所述的制备方法制得的一种用于高效检测H2O2的磁性复合水凝胶。
8.权利要求7所述的一种用于高效检测H2O2的磁性复合水凝胶在H2O2检测中的应用。
9.根据权利要求8所述的应用,其特征在于,具体包括如下步骤:将H2O2加入TMB底物显色溶液中,配置TMB-H2O2显色溶液,将磁性复合水凝胶浸渍于TMB-H2O2显色溶液中,于水浴中反应,溶液变蓝,然后用紫外分光光度计检测TMB-H2O2显色溶液。
10.根据权利要求9所述的应用,其特征在于,所述TMB-H2O2显色溶液中H2O2的浓度为5uM~200mM;所述水浴的温度为37~40℃;所述反应的时间为30~60 min;所述检测的紫外检测波长为500~750 nm。
CN201610686008.7A 2016-08-17 2016-08-17 一种用于高效检测h2o2的磁性复合水凝胶及其制备方法与应用 Pending CN106317424A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610686008.7A CN106317424A (zh) 2016-08-17 2016-08-17 一种用于高效检测h2o2的磁性复合水凝胶及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610686008.7A CN106317424A (zh) 2016-08-17 2016-08-17 一种用于高效检测h2o2的磁性复合水凝胶及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN106317424A true CN106317424A (zh) 2017-01-11

Family

ID=57744858

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610686008.7A Pending CN106317424A (zh) 2016-08-17 2016-08-17 一种用于高效检测h2o2的磁性复合水凝胶及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN106317424A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111498875A (zh) * 2020-04-17 2020-08-07 中南大学 一种利用盐湖镁资源制备氢氧化镁或轻质氧化镁的方法
CN112362653A (zh) * 2020-10-29 2021-02-12 湖南久日新材料有限公司 一种光引发剂低氯含量的检测方法
CN112457502A (zh) * 2020-11-26 2021-03-09 大连海事大学 一种复合荧光水凝胶制备方法及其在水中铁离子检测中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QING-QING DAI ET AL.: ""Synthesis of Acylated Xylan-Based Magnetic Fe3O4 Hydrogels and Their Application for H2O2 Detection"", 《MATERIALS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111498875A (zh) * 2020-04-17 2020-08-07 中南大学 一种利用盐湖镁资源制备氢氧化镁或轻质氧化镁的方法
CN111498875B (zh) * 2020-04-17 2021-04-13 中南大学 一种利用盐湖镁资源制备氢氧化镁或轻质氧化镁的方法
CN112362653A (zh) * 2020-10-29 2021-02-12 湖南久日新材料有限公司 一种光引发剂低氯含量的检测方法
CN112362653B (zh) * 2020-10-29 2024-02-27 湖南久日新材料有限公司 一种光引发剂低氯含量的检测方法
CN112457502A (zh) * 2020-11-26 2021-03-09 大连海事大学 一种复合荧光水凝胶制备方法及其在水中铁离子检测中的应用

Similar Documents

Publication Publication Date Title
Bai et al. Hollow ZnS–CdS nanocage based photoelectrochemical sensor combined with molecularly imprinting technology for sensitive detection of oxytetracycline
Ng et al. Comparison between hydrothermal and microwave-assisted synthesis of carbon dots from biowaste and chemical for heavy metal detection: A review
Wang et al. Biomimetic design of hollow flower‐like g‐C3N4@ PDA organic framework nanospheres for realizing an efficient photoreactivity
Zhang et al. Quantum dots-based hydrogels for sensing applications
Li et al. A Zipper‐Like On/Off‐Switchable Molecularly Imprinted Polymer
CN107442152B (zh) Fe/Co-NPS共掺杂的多孔碳微球的制备及其在有机污染物去除方面的应用
CN106317424A (zh) 一种用于高效检测h2o2的磁性复合水凝胶及其制备方法与应用
Anirudhan et al. Photocatalytic Degradation of Eosin Yellow Using Poly (pyrrole‐co‐aniline)‐Coated TiO2/Nanocellulose Composite under Solar Light Irradiation
CN106582626A (zh) 一种新型银离子掺杂TiO2复合材料的制备方法及应用
CN105771880A (zh) 一种羟基氧化铁负载蒙脱石吸附催化双功能材料及其制备方法
Qi et al. Computer chip-inspired design of nanocellulose/carbon dots hydrogel as superior intensifier of nano-sized photocatalyst for effective Cr (VI) removal
Wang et al. Preparation and photocatalytic activity of chitosan‐supported cobalt phthalocyanine membrane
CN108126758B (zh) 一种聚对苯/TiO2复合微球及其制备方法
CN105728041A (zh) 一种选择性专一识别的PPyZnFe2O4磁性印迹复合光催化剂的制备方法
CN106279541B (zh) 一种用于磁控定点加热源的磁性复合水凝胶及其制备方法与应用
CN105289457B (zh) 一种中空结构TiO2纳米材料的制备方法及其应用
CN105911122B (zh) 一种固态电化学发光传感器的制备方法
CN108097313A (zh) 一种氮化碳/壳聚糖气凝胶复合光催化剂及其制备方法和应用
Wang et al. Dual‐Function Near‐Infrared Emitting Aerogel‐Based Device for Detection and Sunlight‐Driven Photodegradation of Antibiotics: Realizing the Processability of Silsesquioxane‐Based Fluorescent Porous Materials
Sun et al. Oxygen sensitive polymeric nanocapsules for optical dissolved oxygen sensors
CN106395785B (zh) 一种磷酸铜纳米球及其制备方法和应用
Saini et al. On-column enzymatic synthesis of melanin nanoparticles using cryogenic poly (AAM-co-AGE) monolith and its free radical scavenging and electro-catalytic properties
Shi et al. Photoelectrocatalytic mechanism of PEDOT modified filtration membrane
Wu et al. Green synthesis and environmental applications of alginate/polyacrylamide/titanium dioxide composite hydrogel
CN109254037A (zh) 一种石墨烯量子点修饰的金属卟啉纳米管-硫化镉复合光敏传感材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170111

RJ01 Rejection of invention patent application after publication