CN106315540A - 一种通过沥青制备石墨烯量子点的方法 - Google Patents

一种通过沥青制备石墨烯量子点的方法 Download PDF

Info

Publication number
CN106315540A
CN106315540A CN201510337947.6A CN201510337947A CN106315540A CN 106315540 A CN106315540 A CN 106315540A CN 201510337947 A CN201510337947 A CN 201510337947A CN 106315540 A CN106315540 A CN 106315540A
Authority
CN
China
Prior art keywords
colophonium
quantum dot
graphene quantum
preparing graphene
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510337947.6A
Other languages
English (en)
Inventor
宋怀河
赵泽宇
张苏
董玥
陈晓红
周继生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201510337947.6A priority Critical patent/CN106315540A/zh
Publication of CN106315540A publication Critical patent/CN106315540A/zh
Pending legal-status Critical Current

Links

Abstract

本发明涉及以沥青、焦炭等沥青类材料为原料,经过氧化、后处理等过程,得到石墨烯量子点,提供了一种石墨烯量子点的新的制备方法,属于纳米材料制备技术领域。

Description

一种通过沥青制备石墨烯量子点的方法
技术领域
本发明属于纳米材料制备技术领域,涉及以沥青、焦炭等沥青类材料为原料,经过氧化、后处理等过程,提供了一种石墨烯量子点的新的制备方法。
背景技术
20世纪60年代,J. D. Brooks和G. H. Taylor在偏光显微镜下观察各向同性石油焦时首次发现了各向异性小球和块状中间相 [Brooks J D, et al. Carbon 1965;3(2):185-193]。沥青是由不同分子量的碳氢化合物及其非金属衍生物组成的黑褐色复杂混合物,其中含有大量的多环芳烃与稠环芳烃。可作为制备石墨烯量子点的理想前驱体。中间相沥青是指石油沥青、煤沥青等多环芳烃有机物在一定温度下经历热解、脱氢、环化、芳构化、缩聚等一些列反应形成的分子量较大的圆盘状稠环芳烃分子通过π-π电子力和范德华力以大致平行于赤道方向堆叠在一起的并且具有流动性的向列型液晶结构,是沥青类材料中更为优越的材料。
焦炭是指炼焦料经高温干馏得到的可燃固体产物,是质地坚硬、多孔(见焦炭气孔结构)、有裂纹(见焦炭裂纹)、呈银灰色的块状炭质材料。其有机成分是以平面稠环芳烃结构为主体的类石墨化合物。根据炼焦的原料划分,分为煤焦、石油焦和沥青焦。由于沥青原料的优越性,沥青焦的稠环芳烃的含量更高,是制备石墨烯量子点的理想材料。
石墨烯量子点是近来新兴的碳质材料。当石墨烯片层的径向尺寸小到一定程度时,其激子波尔半径会大于其径向尺寸,此时将会产生尺寸效应和边缘效应而使得其具有一定的荧光活性,普遍认为这个尺寸是在10 nm以内,而最近研究表明在100 nm以内也可以得到具有荧光性能的石墨烯量子点[Ponomarenko, et al. Science 2008;320:356-358]。石墨烯量子点拥有低毒性、高荧光活性、较高的化学稳定性以及优异的光稳定性等一系列优异性能[Dong Y, et al. Analytical chemistry 2012;84(19):8378-8382]。是新一代检测、微电子和生物医药等的理想材料[Zhu S, et al. Chem. Commun. 2011;47(24):6858-6860]。
目前,石墨烯量子点较为常用的制备方法有:高能电子束裁剪石墨烯微晶[Ponomarenko L A, et al. Science 2008;320(5874):356-358],水热法[Dutta M, et al. The Journal of Physical Chemistry C 2012;116(38):20127-20131]、氧化法[Shen J, et al. Chem. Commun. 2011;47(9):2580-2582]以及电化学方法裁剪大尺寸氧化石墨烯片层,机械剥离天然石墨[GuiáShang N. Chemical Communications 2012;48(13):1877-1879]和有机物的炭化[Liu R, et al. Journal of the American Chemical Society 2011; 133(39):15221-15223]等。
以上方法的前驱体主要为氧化石墨烯、石墨烯、碳纳米管和富勒烯等,造成了这些方法前驱体较难得到,制备过程繁琐,制备成本较高等缺点,不利于将来的大规模生产。本发明提供了一种具有前驱体简单易得、制备成本低、操作简便等优势的石墨烯量子点制备方法。
发明内容
本发明克服了以往制备石墨烯量子点的原料局限性及其缺陷,首次试用了沥青类材料作为原料,从而降低了前驱体的制备难度。使用沥青类材料作为原料经过氧化及后处理过程而得到水溶性好、荧光性能好的石墨烯量子点。
本发明可以大致经过原料选择、预处理、氧化处理以及离心透析等后续处理四个过程来制备得到石墨烯量子点。
沥青类原料选择方法如下:
步骤一:选择富含稠环芳烃的沥青类原料作为反应原料。
沥青原料的预处理方法如下:
步骤二:将沥青原料放入破碎机进行细化处理。
氧化处理方法如下:
步骤三:将步骤二中得到的预处理后原料放入强氧化剂中进行氧化反应。
步骤四:当步骤三的反应结束以后,取出并稀释在去离子水中。
后续处理方法如下:
步骤五:将步骤四得到的溶液进行高速离心处理,取上清液。
步骤六:将步骤五得到的上层清液进行过滤、透析等纯化处理。
本发明进一步的优选方案是:所述的沥青类原料为工业沥青原料、氧化沥青、中间相沥青、焦炭等沥青及其后处理物,优选为中间相沥青和焦炭。选取的原则是稠环芳烃结构的含量,含量越高越为优选。
本发明进一步的优选方案是:所述的氧化剂为浓硫酸、浓硝酸、高锰酸钾、过氧化氢中的一种或者几种的混合溶液。
本发明进一步的优选方案是:所述合适的氧化条件指冰浴、温水浴和油浴中的一种或几种的联合使用。
本发明具有以下优点:
利用沥青类材料为原料制备石墨烯量子点,相比于其他办法,原料更易获得,成本较低。原料更容易被剪切成小片,反应快速、均匀。可以采用多种氧化体系对预处理过的中间相沥青进行氧化,均能得到性能较为优异的石墨烯量子点,处理过程简单、产率较高。
附图说明
图1为本发明石墨烯量子点的制备工艺流程图。
图2为实施例1所制备的石墨烯量子点的紫外吸收光谱。
图3为实施例1所制备的石墨烯量子点的荧光发射光谱。
图4为实施例2所制备的石墨烯量子点的紫外吸收光谱。
图5为实施例2所制备的石墨烯量子点的荧光发射光谱。
具体实施方式
下面结合附图和实施例对本发明进行详细说明:
实施例1
将0.5 g NaNO3、4 g KMnO4加入到35 mL浓H2SO4中搅拌混合30 min值得氧化剂混合溶液。同时将1 g中间相沥青粉末与5 mL浓H2SO4一同加入到100 mL三口烧瓶中等待处理。
30 min后,使用常压分液漏斗在冰浴环境下将氧化剂混合溶液以60 d/min的速度滴加入三口烧瓶中,并开始搅拌。
35 min以后,将水浴温度提高到35 ℃,继续搅拌氧化反应6 h后得到产物溶液。
随后将反应溶液倒入250 mL去离子水中,加入H2O2至400 mL后搅拌24 h,以去除未反应的氧化剂。将上述溶液10000 rpm,5 min离心分离,得到上清液后进行透析处理,即为石墨烯量子点溶液。其紫外吸收光谱和荧光发射光谱分别如图2和图3所示。
实施例2
将浓H2SO4与H2O2(30%)按7:3体积比混合搅拌30 min得到氧化剂混合溶液。同时将1 g中间相沥青粉末加入到100 mL三口烧瓶中等待处理。
30 min后,使用常压分液漏斗在冰浴环境下将40 mL氧化剂混合溶液以60 d/min的速度滴加入三口烧瓶中,并开始搅拌。冰浴反应24 h。
随后将反应溶液倒入300 mL去离子水中,搅拌24 h。将上述溶液10000 rpm,5 min离心分离,得到上清液后进行透析处理,即为石墨烯量子点溶液。其紫外吸收光谱和荧光发射光谱分别如图4和图5所示。
实施例3
将1 g中间相沥青粉末、30 mL浓H2SO4和10mL浓HNO3加入到三口烧瓶中,在85 ℃条件下搅拌反应24 h。
随后将反应溶液倒入250 mL去离子水中,加入H2O2至400 mL后搅拌24 h,以去除未反应的氧化剂。将上述溶液10000 rpm,5 min离心分离,得到上清液后进行透析处理,即为石墨烯量子点溶液。
实施例4
操作条件与步骤如同实施例3,不同之处在于添加原料为1 g中间相沥青粉末与40 mL浓HNO3
实施例5
将4 g KMnO4加入到35 mL浓H2SO4中搅拌混合30 min,同时将1 g焦炭粉末与5 mL浓H2SO4一同加入到100 mL三口烧瓶中等待处理。
30 min后,使用常压分液漏斗在冰浴环境下将混合溶液以60 d/min的速度滴加入三口烧瓶中,并开始搅拌,反应24 h。
将反应溶液倒入250 mL去离子水中,加入H2O2至400 mL后搅拌24 h。将上述溶液10000 rpm,5 min离心分离,得到上清液后进行透析处理,即为石墨烯量子点溶液。
实施例6
操作条件与步骤如同实施例2,不同之处在于添加原料为1 g焦炭粉末。
以上已对本发明的较佳实施例进行了具体说明,但本发明并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出种种的等同的变型或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (5)

1.一种通过沥青制备石墨烯量子点的方法,其特征在于按下列步骤进行:
步骤一:选择富含稠环芳烃的沥青类原料作为反应原料;
步骤二:将沥青原料放入破碎机进行细化处理;
步骤三:将步骤二中得到的预处理后原料放入强氧化剂中进行氧化反应;
步骤四:当步骤三的反应结束以后,取出并稀释在去离子水中;
步骤五:将步骤四得到的溶液进行高速离心处理,取上清液;
步骤六:将步骤五得到的上层清液进行过滤、透析等纯化处理。
2.如权利要求1所述的一种通过沥青制备石墨烯量子点的方法,其特征在于:所述的沥青类原料为工业化沥青原料、氧化沥青、中间相沥青、焦炭等沥青及沥青的后处理物。
3.如权利要求1所述的一种通过沥青制备石墨烯量子点的方法,其特征在于:所述的沥青类原料优选为中间相沥青和针状焦。
4.如权利要求1所述的一种通过沥青制备石墨烯量子点的方法,其特征在于:所述的氧化剂为浓硫酸、浓硝酸、高锰酸钾、过氧化氢中的一种或者几种的混合溶液。
5.如权利要求1所述的一种通过沥青制备石墨烯量子点的方法,其特征在于:所述合适的氧化条件指冰浴、温水浴和油浴中的一种或几种的联合使用。
CN201510337947.6A 2015-06-18 2015-06-18 一种通过沥青制备石墨烯量子点的方法 Pending CN106315540A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510337947.6A CN106315540A (zh) 2015-06-18 2015-06-18 一种通过沥青制备石墨烯量子点的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510337947.6A CN106315540A (zh) 2015-06-18 2015-06-18 一种通过沥青制备石墨烯量子点的方法

Publications (1)

Publication Number Publication Date
CN106315540A true CN106315540A (zh) 2017-01-11

Family

ID=57733012

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510337947.6A Pending CN106315540A (zh) 2015-06-18 2015-06-18 一种通过沥青制备石墨烯量子点的方法

Country Status (1)

Country Link
CN (1) CN106315540A (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108298524A (zh) * 2018-03-16 2018-07-20 河南理工大学 一种低成本石墨烯量子点制备方法
CN108423661A (zh) * 2018-03-29 2018-08-21 武汉科技大学 一种用中间相沥青衍生炭制备石墨烯的方法及其制备获得的石墨烯
CN108996492A (zh) * 2018-08-31 2018-12-14 中国石油大学(北京) 一种石油液体产品基石墨烯量子点及其制备方法和应用
CN109320983A (zh) * 2018-11-12 2019-02-12 宁夏交通建设股份有限公司 氧化石墨烯复合碳量子点改性沥青及其制备方法
WO2020119678A1 (zh) * 2018-12-12 2020-06-18 深圳先进技术研究院 简易碳点的制备方法
CN112421015A (zh) * 2020-12-02 2021-02-26 山东丰元化学股份有限公司 一种石墨烯量子点包覆三元正极材料的制备方法
CN113666357A (zh) * 2021-08-19 2021-11-19 中国矿业大学 一种多步致密化制备钾离子电池炭负极的方法及应用
CN114085540A (zh) * 2021-10-22 2022-02-25 东南大学 一种利用二氧化钛量子点制备抗老化改性沥青的方法及其应用
CN114479483A (zh) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 一种改性沥青颗粒及其制法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014179708A1 (en) * 2013-05-02 2014-11-06 William Marsh Rice University Methods of producing graphene quantum dots from coal and coke

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014179708A1 (en) * 2013-05-02 2014-11-06 William Marsh Rice University Methods of producing graphene quantum dots from coal and coke

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108298524A (zh) * 2018-03-16 2018-07-20 河南理工大学 一种低成本石墨烯量子点制备方法
CN108423661A (zh) * 2018-03-29 2018-08-21 武汉科技大学 一种用中间相沥青衍生炭制备石墨烯的方法及其制备获得的石墨烯
CN108996492B (zh) * 2018-08-31 2020-10-02 中国石油大学(北京) 一种石油液体产品基石墨烯量子点及其制备方法和应用
CN108996492A (zh) * 2018-08-31 2018-12-14 中国石油大学(北京) 一种石油液体产品基石墨烯量子点及其制备方法和应用
CN109320983B (zh) * 2018-11-12 2020-12-22 宁夏交通建设股份有限公司 氧化石墨烯复合碳量子点改性沥青及其制备方法
CN109320983A (zh) * 2018-11-12 2019-02-12 宁夏交通建设股份有限公司 氧化石墨烯复合碳量子点改性沥青及其制备方法
WO2020119678A1 (zh) * 2018-12-12 2020-06-18 深圳先进技术研究院 简易碳点的制备方法
CN114479483A (zh) * 2020-10-27 2022-05-13 中国石油化工股份有限公司 一种改性沥青颗粒及其制法和应用
CN112421015A (zh) * 2020-12-02 2021-02-26 山东丰元化学股份有限公司 一种石墨烯量子点包覆三元正极材料的制备方法
CN113666357A (zh) * 2021-08-19 2021-11-19 中国矿业大学 一种多步致密化制备钾离子电池炭负极的方法及应用
CN113666357B (zh) * 2021-08-19 2023-06-30 中国矿业大学 一种多步致密化制备钾离子电池炭负极的方法及应用
CN114085540A (zh) * 2021-10-22 2022-02-25 东南大学 一种利用二氧化钛量子点制备抗老化改性沥青的方法及其应用
CN114085540B (zh) * 2021-10-22 2022-09-09 东南大学 一种利用二氧化钛量子点制备抗老化改性沥青的方法及其应用

Similar Documents

Publication Publication Date Title
CN106315540A (zh) 一种通过沥青制备石墨烯量子点的方法
Li et al. Kilogram-scale synthesis and functionalization of carbon dots for superior electrochemical potassium storage
Xia et al. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots
Han et al. Functionalised hexagonal boron nitride for energy conversion and storage
Amiri et al. A review on liquid-phase exfoliation for scalable production of pure graphene, wrinkled, crumpled and functionalized graphene and challenges
Zhou et al. One-pot synthesis of B-doped three-dimensional reduced graphene oxide via supercritical fluid for oxygen reduction reaction
Choi et al. Upcycling plastic waste into high value‐added carbonaceous materials
EP3056469B1 (en) Production method for graphene
Huang et al. Two dimensional nanocarbons from biomass and biological molecules: synthetic strategies and energy related applications
CN106882796B (zh) 一种三维石墨烯结构体/高质量石墨烯的制备方法
CN104174422B (zh) 高氮掺杂石墨烯与类富勒烯硒化钼空心球纳米复合材料及其制备方法
TWI542643B (zh) 分散劑、其製備方法及包含彼之建基於碳材料的經分散組成物
KR101103672B1 (ko) 대량생산용 산화 그래핀의 원심분리형 연속 합성 정제 장치, 및 이를 이용한 산화 그래핀의 합성 정제 방법
Sumdani et al. Recent advances of the graphite exfoliation processes and structural modification of graphene: a review
CN103072980A (zh) 快速制备石墨烯薄片的方法
CN105502366A (zh) 一种以生物质为原料制备石墨烯的方法
Rao et al. Effect of surface modification on multi-walled carbon nanotubes for catalytic oxidative dehydrogenation using CO2 as oxidant
Zhang et al. Regulating cations and solvents of the electrolyte for ultra-efficient electrochemical production of high-quality graphene
Huang et al. A polyimide-pyrolyzed carbon waste approach for the scalable and controlled electrochemical preparation of size-tunable graphene
Gohda et al. Carbonization of phloroglucinol promoted by heteropoly acids
Hou et al. Application of coal-based carbon dots for photocatalysis and energy storage: a minireview
Guo et al. A Fullerene Seeded Strategy for Facile Construction of Nitrogen‐Doped Carbon Nano‐Onions as Robust Electrocatalysts
JP2009023886A (ja) カーボンナノチューブ分散液およびその製造方法、並びにその利用
CN108996492B (zh) 一种石油液体产品基石墨烯量子点及其制备方法和应用
Lv et al. High-yield bamboo-shaped carbon nanotubes from cresol for electrochemical application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170111