WO2020119678A1 - 简易碳点的制备方法 - Google Patents

简易碳点的制备方法 Download PDF

Info

Publication number
WO2020119678A1
WO2020119678A1 PCT/CN2019/124310 CN2019124310W WO2020119678A1 WO 2020119678 A1 WO2020119678 A1 WO 2020119678A1 CN 2019124310 W CN2019124310 W CN 2019124310W WO 2020119678 A1 WO2020119678 A1 WO 2020119678A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfuric acid
concentrated sulfuric
carbon
solution
aromatic hydrocarbon
Prior art date
Application number
PCT/CN2019/124310
Other languages
English (en)
French (fr)
Inventor
金宗文
赵江林
罗擎颖
袁静
苏少博
卫小元
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2020119678A1 publication Critical patent/WO2020119678A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"

Definitions

  • the invention belongs to the technical field of nanomaterials, and particularly relates to a simple carbon dot preparation method.
  • the carbon dot is a kind of dispersed spherical-like fluorescent carbon nanoparticles with a size less than 10 nm. It was first discovered by Scirvens research group in 2004. Since its discovery, due to its low toxicity, good biocompatibility, and superior luminous properties, it has attracted the interest of scientists. At present, the preparation methods of carbon dots are generally divided into two types: top-down method and bottom-up method. Specifically, it mainly includes: arc discharge, laser ablation, electrochemical oxidation method, combustion method, template method, hydrothermal method, thermal decomposition of organic matter and other methods. However, most of these methods require expensive instruments, or require superb experimental skills, or high temperature and high pressure, which have great potential safety hazards and greatly limit the development of carbon points.
  • the preparation of carbon dots by this method eliminates the need for steps such as pretreatment and preparation of precursors, which greatly reduces the experimental difficulty and cost.
  • the uniformity of the particle size of the carbon dots prepared by this method is not good, and a large amount of sulfuric acid residues when preparing carbon dots by this method affect the research of carbon dots in non-acid-resistant and non-corrosive objects.
  • the purpose of the present invention is to provide a simple method for preparing carbon dots.
  • This method uses ultrafiltration post-processing technology to prepare carbon dots, which lowers the threshold of carbon dot research and can solve the problem of the uniformity of carbon dots prepared by the prior art. Poor problem.
  • the first aspect of the present invention provides a method for preparing a carbon dot, including the following steps:
  • the second aspect of the present invention provides the carbon dot prepared by the above method.
  • the third aspect of the present invention provides the application of the carbon dot prepared by the above method in the field of cell imaging technology.
  • the method for preparing carbon dots provided by the present invention uses a condensed ring aromatic hydrocarbon compound as a carbon source, and after mixing with concentrated sulfuric acid, heat treatment under the conditions of 25°C to 80°C can prepare carbon dots; further, the obtained reaction solution After neutralization with alkali, ultrafiltration treatment is performed using 3KD and 5KD ultrafiltration tubes, respectively.
  • the carbon dots prepared by this method have the following advantages: First, the carbon dots prepared by this method not only have high luminous efficiency, but also have good particle size uniformity. Secondly, the carbon dot prepared by this method can be completely dissolved in water, has stable fluorescence performance under physiological conditions, and its performance is excellent, there is no acid-base corrosion phenomenon, and it has a good application prospect in the field of cell imaging technology.
  • the yield of carbon dots prepared by this method is high, which can reach more than 50%.
  • the method of preparing carbon dots is mild, and the carbon dots with high yield can be prepared under the condition of less than 50°C, and does not require the use of expensive instruments, and has simple reaction operation (one-step reaction) and mild green conditions The advantages.
  • the carbon dot provided by the present invention is prepared by the above method, therefore, it has the advantages of good particle size uniformity, stable fluorescence performance, and no acid-base corrosion phenomenon, and has a good application prospect in the field of cell imaging technology.
  • the application of the carbon dot provided by the present invention in the field of cell imaging technology can be used in the field of cell imaging technology due to the fact that the provided carbon dot can be completely dissolved in water and the fluorescence performance is stable under physiological conditions. insufficient.
  • FIG. 1 is a fluorescence spectrum diagram of carbon dots prepared under different temperature conditions provided by examples of the present invention.
  • FIG. 3 is a graph showing the change in fluorescence intensity of carbon dots in different concentrations of sodium chloride solution provided by an embodiment of the present invention
  • FIG. 4 is a graph showing the change in fluorescence intensity of carbon dots irradiated with an excitation wavelength of 365 nm provided by an embodiment of the present invention
  • 5 is a graph showing the change in fluorescence intensity of carbon dots under different pH conditions provided by an embodiment of the present invention.
  • 6a is a bright field fluorescence imaging diagram after carbon dot incubation of cells provided by an embodiment of the present invention.
  • FIG. 6b is a dark field fluorescence imaging diagram after incubating cells with carbon dots provided in an embodiment of the present invention.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless otherwise specifically limited.
  • a first aspect of the embodiments of the present invention provides a method for preparing carbon dots, including the following steps:
  • reaction solution is dissolved in deionized water to form a mixed solution, and an inorganic base is added to adjust the pH of the solution to neutral;
  • the method for preparing carbon dots provided in the embodiments of the present invention uses a fused ring aromatic hydrocarbon compound as a carbon source, and after mixing with concentrated sulfuric acid, heat treatment can be performed at 25°C to 80°C; further, the obtained After the reaction solution was neutralized by adding alkali, 3KD and 5KD ultrafiltration tubes were used for ultrafiltration treatment.
  • the carbon dots prepared by this method have the following advantages: First, the carbon dots prepared by this method not only have high luminous efficiency, but also have good particle size uniformity. Secondly, the carbon dot prepared by this method can be completely dissolved in water, has stable fluorescence performance under physiological conditions, and its performance is excellent, there is no acid-base corrosion phenomenon, and it has a good application prospect in the field of cell imaging technology.
  • the yield of carbon dots prepared by this method is high, which can reach more than 50%.
  • the method of preparing carbon dots is mild, and the carbon dots with high yield can be prepared under the condition of less than 50°C, and does not require the use of expensive instruments, and has simple reaction operation (one-step reaction) and mild green conditions The advantages.
  • the condensed ring aromatic hydrocarbon compound is used as a carbon source, and concentrated sulfuric acid is used for heat treatment, and the obtained carbon dot has the advantage of high luminous efficiency.
  • the fused ring aromatic hydrocarbon compound is 9-((4-(tert-butyl)-2,6-dimethylphenoxy)methyl)anthracene.
  • the carbon dots prepared by other fused ring aromatic hydrocarbon compounds as a carbon source also have better luminous efficiency, but among them, 9-((4-(tert-butyl)-2,6-dimethyl Phenoxy)methyl)anthracene as the carbon source produced the highest luminous efficiency.
  • the concentrated sulfuric acid used for carbonizing the fused aromatic compound is concentrated sulfuric acid with a mass percentage higher than 98%, and particularly preferably, concentrated sulfuric acid with a mass percentage of 98.3% is selected. Concentrated sulfuric acid with a mass percentage of 98.3% not only has a good carbonization effect, but is relatively easy to obtain.
  • the condensed aromatic ring compound is mixed with the concentrated sulfuric acid to form a mixture of the condensed aromatic ring compound and concentrated sulfuric acid system. If the mass-volume ratio of the fused ring aromatic hydrocarbon compound to concentrated sulfuric acid is less than 50 mg: 1 mL, the concentration of concentrated sulfuric acid during the reaction is too low to carbonize the fused ring aromatic hydrocarbon compound to form a carbon point.
  • the thick The ring aromatic hydrocarbon compound is added to the concentrated sulfuric acid.
  • the fused ring aromatic hydrocarbon compound is 9-((4-(tert-butyl)-2,6-dimethylphenoxy)methyl)anthracene
  • 9-((4- (Tert-butyl)-2,6-dimethylphenoxy)methyl)anthracene and concentrated sulfuric acid have a mass-to-volume ratio of 50 mg: 1.5 mL
  • 9-((4-(tert-butyl)-2 ,6-dimethylphenoxy)methyl)anthracene is added to the concentrated sulfuric acid to obtain a mixed system of condensed ring aromatic hydrocarbon compound and concentrated sulfuric acid.
  • the mixed system of the condensed ring aromatic hydrocarbon compound and concentrated sulfuric acid is heat-treated, and the condensed ring aromatic hydrocarbon compound is carbonized to a carbon point by concentrated sulfuric acid.
  • the embodiment of the present invention uses concentrated sulfuric acid to carbonize the fused ring aromatic compound into a carbon point at a heating temperature of 25°C to 80°C. Under this temperature condition, the conversion of the fused ring aromatic compound to a carbon point can be achieved, and The particle size uniformity, fluorescence performance stability and water solubility of the obtained carbon dots are all good.
  • the progress of the reaction is monitored by monitoring the solubility of the reaction solution in water.
  • the reaction solution is completely water-soluble to represent the completion of the reaction.
  • the time of the heat treatment is 1.5h ⁇ 10min, and the specific carbonization time varies according to the carbonization temperature. Generally, the higher the carbonization temperature, the shorter the carbonization time; the lower the carbonization temperature, the longer the carbonization time. It is worth noting that at different temperatures, the yield of carbon points will be different. At temperatures below 38 °C, it is difficult for the fused ring aromatic compounds to be fully carbonized; at temperatures between 38 °C and 80 °C, the concentrated sulfuric acid The fused ring aromatic hydrocarbon compound can be completely carbonized to obtain a higher yield of carbon points. Therefore, in a preferred embodiment, the step of heating the mixed system of the fused ring aromatic hydrocarbon compound and concentrated sulfuric acid is performed under the condition of a temperature of 38°C to 80°C.
  • carbon dots can be prepared by carbonizing fused ring aromatic hydrocarbon compounds under heating conditions of 80°C
  • high temperatures can be prepared under relatively low temperatures, such as heating conditions of 38°C to 50°C.
  • the yield and high performance (particle size uniformity, fluorescence stability and water solubility), compared with the existing high temperature conditions, provide mild reaction conditions, reduce the difficulty of the reaction, and can effectively avoid hidden safety hazards.
  • the reaction solution is dissolved in deionized water, and the prepared carbon dots are dissolved to form a mixed solution.
  • the reaction solution in the step of dissolving the reaction solution in deionized water to form a mixed solution, the reaction solution is added according to the volume ratio of concentrated sulfuric acid to deionized water (1 ⁇ 5):50 In deionized water, the obtained carbon dots are fully dissolved in the water, which can be collected by subsequent ultrafiltration.
  • adding an inorganic base to the mixed solution to adjust the pH of the solution to neutral fully remove the concentrated sulfuric acid in the solution and attached to the carbon point, and at the same time, convert it to a water-soluble sulfate or sulfate precipitate, thereby It can avoid the influence of residual sulfuric acid on the performance of carbon point, and further avoid the influence of residual sulfuric acid on the application of carbon point, especially in the application of non-acid resistance and non-corrosion resistance.
  • the inorganic base is used to adjust the pH of the solution, which has good reaction safety, only salt impurities are introduced, and it does not react with the carbon point, which affects the performance of the carbon point.
  • the inorganic base for adjusting the pH of the solution a conventional inorganic base may be used, and the inorganic base preferably uses at least one of sodium hydroxide, potassium hydroxide, and barium hydroxide. The use of these inorganic bases not only has a good effect of adjusting the pH, but also the generated salts are easy to remove, which is beneficial to obtain high-purity carbon points.
  • an ultrafiltration tube is used to purify the carbon dots in the mixed solution.
  • a 3KD ultrafiltration tube is used to perform ultrafiltration on the mixed solution, and small molecules such as salts and solvents are removed by centrifugation to collect products with a molecular weight greater than or equal to 3KD; at the same time, a 50KD ultrafiltration tube is used to treat the molecular weight greater than The product equal to 3KD is subjected to ultrafiltration treatment, and centrifugation removes large particles of impurities that do not have luminescent properties, resulting in a carbon point with a molecular weight of 3KD ⁇ 5KD.
  • the method for preparing the carbon dot includes the following steps:
  • the reaction solution is dissolved in deionized water to form a mixed solution, and sodium hydroxide is added to adjust the pH of the solution to neutral;
  • the preferred method has mild preparation reaction conditions, the obtained carbon dots have good particle size uniformity and fluorescence performance stability, can be completely dissolved in water, have good fluorescence performance and good biocompatibility to iron ions , You can monitor the content of iron ions in living cells under physiological conditions.
  • the second aspect of the embodiments of the present invention provides the carbon dot prepared by the above method.
  • the carbon dots provided by the embodiments of the present invention are prepared by the above-mentioned method. Therefore, they have the advantages of good particle size uniformity, stable fluorescent performance, and no acid-base corrosion phenomenon, and have good application prospects in the field of cell imaging technology.
  • the third aspect of the embodiments of the present invention provides the application of the carbon dot prepared by the above method in the field of cell imaging technology.
  • the application of the carbon dots provided in the embodiments of the present invention in the field of cell imaging technology Since the provided carbon dots are completely soluble in water and have stable fluorescence performance under physiological conditions, they can be used in the field of cell imaging technology to fill pure organic fluorescence detection. The lack of needles.
  • a method for preparing carbon dots includes the following steps:
  • a method for preparing carbon dots includes the following steps:
  • a method for preparing carbon dots includes the following steps:
  • a method for preparing carbon dots includes the following steps:
  • a method for preparing carbon dots includes the following steps:
  • the carbon dots prepared in Examples 1-5 were tested for fluorescence performance.
  • the fluorescence spectrum of the carbon dots prepared under different temperature conditions is shown in FIG. 1. It can be seen from FIG. 1 that under different temperature adjustments, the peak position of the fluorescence emission peak of the prepared carbon dot is consistent with the peak shape, and all have the maximum emission peak at 514 nm, but there is a certain difference in fluorescence intensity.
  • carbon dots have a quantum size effect, that is, the particle size is different, and the emission spectrum is different. It can be seen that the carbon dots prepared in the examples of the present invention have good particle size uniformity.
  • the carbon dots prepared in the embodiments of the present invention are prepared with secondary water to prepare a carbon dot solution with a concentration of 5 ppm, and excited at different excitation wavelengths.
  • the excitation spectrum is shown in FIG. 2.
  • the maximum fluorescence emission peak of the carbon dots does not change with the change of the excitation wavelength, indicating that the carbon dots prepared in the embodiments of the present invention have a uniform size, and thus have relatively independent fluorescence emission peaks.
  • the carbon dot prepared in the example was prepared with secondary water to a concentration of 5 ppm carbon dot solution, and sodium chloride solution was gradually added to the carbon dot solution.
  • concentration of sodium chloride was 0-100 mM
  • the fluorescence intensity of the carbon dot was somewhat Decrease, and then continue the sodium chloride concentration from 100-500mM, the carbon dot fluorescence intensity tends to stabilize almost unchanged, as shown in Figure 3. This shows that the carbon dot prepared in this example has strong ion tolerance.
  • the carbon dots prepared in the examples were prepared with secondary water at a concentration of 5 ppm, and the carbon dots were irradiated at an excitation wavelength of 365 nm for up to 7 hours.
  • the results are shown in FIG. 4 and can be seen from the figure. It is almost negligible, indicating that the carbon dot prepared in this example has a high degree of stability.
  • the carbon dots prepared in the test examples have a fluorescence intensity in the pH range (pH 3-pH 9), and the results are shown in FIG. 5. It can be seen from the figure that the carbon dots prepared in this example are relatively stable in the range of pH 3 to pH 9, that is, the carbon dots prepared in this example have good stability.
  • the carbon dots prepared in the example were incubated with cells under pure aqueous solution under physiological conditions, and observed under a fluorescence inverted microscope.
  • the bright field imaging diagram of the cell is shown in FIG. 6a.
  • the dark field, the green fluorescence of the cells under the green channel The imaging diagram is shown in Figure 6b. It is found from the figure that the cells have strong fluorescence, indicating that the cells have good absorption of carbon dots.
  • organic fluorescent probes have excellent fluorescence performance, but because they are often difficult to dissolve in water, which greatly restricts their research on imaging applications in living cells, this is the application of organic compounds in biology One of the natural drawbacks is difficult to overcome.
  • the carbon dots prepared in the embodiments of the present invention are completely soluble in water, and have stable fluorescence performance under physiological conditions, which just fills the deficiencies of pure organic fluorescent probes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Luminescent Compositions (AREA)

Abstract

本申请提供了一种碳点的制备方法,包括以下步骤:按照稠环芳烃化合物与浓硫酸的质量体积比为50mg:(1~5mL)的比例,提供稠环芳烃化合物和浓硫酸的混合体系;将所述稠环芳烃化合物和浓硫酸的混合体系在25℃~80℃的条件下加热处理,反应1.5h~10min后,收集反应液;将所述反应液溶于去离子水中形成混合液,加入无机碱调节溶液pH至中性;采用3KD的超滤管对所述混合液进行超滤处理,收集分子量大于等于3KD的产物;采用50KD的超滤管对所述分子量大于等于3KD的产物进行超滤处理,得到分子量为3KD~5KD的碳点。

Description

简易碳点的制备方法 技术领域
本发明属于纳米材料技术领域,尤其涉及一种简易碳点的制备方法。
背景技术
碳点是一种尺寸小于10 nm的分散的类球形荧光碳纳米颗粒。于2004年首次被Scirvens课题组研究发现。自发现以来,由于碳点的低毒、生物兼容性好,发光性能优越等优点吸引了广大科学家的研究兴趣。目前碳点的制备方法总的来说分为两种:自上而下法和自下而上法。具体来说主要包括:电弧放电、激光消融、电化学氧化法、燃烧法、模板法、水热法、有机物热分解等方法。但这些方法大多需要用到价格昂贵的仪器,或者需要高超的实验技巧,或者高温、高压,有极大的安全隐患,极大的限制了碳点的发展。
研究学者通过加热乙二醇的浓硫酸溶液,于140℃热解获得粒径为1-4 nm,荧光量子产率为25%的石墨化的碳点(Y. Liu, C.-y. Liu and Z.-y. Zhang, Applied Surface Science, 2012, 263, 481-485)。经研究学者进一步研究发现,热解温度降至80℃后,其荧光量子产率可以进一步提升,并高达62.9%(Y. Liu, C.-y. Liu and Z.-y. Zhang, Journal of Materials Chemistry C, 2013, 1, 4902-4907)。通过该方法制备碳点,无需预处理、制备前驱体等步骤,大大的降低了实验难度,成本等问题。但是,该方法制备得到的碳点粒径均一性不佳,且该方法制备碳点时大量硫酸残余,影响碳点在非耐酸性、非耐腐蚀性对象中的研究。
技术问题
本发明的目的在于提供一种简易碳点的制备方法,该方法采用超滤的后处理技术制备碳点,降低可碳点研究的门槛,可以解决现有技术制备的碳点粒径均一性较差的问题。
技术解决方案
为实现上述发明目的,本发明采用的技术方案如下:
本发明第一方面提供一种碳点的制备方法,包括以下步骤:
按照稠环芳烃化合物与浓硫酸的质量体积比大于等于50mg:1mL的比例,提供稠环芳烃化合物和浓硫酸的混合体系;
将所述稠环芳烃化合物和浓硫酸的混合体系在25℃~80℃的条件下加热处理,反应1.5h~10min后,收集反应液;
将所述反应液溶于去离子水中形成混合液,加入无机碱调节溶液pH至中性;
采用3KD的超滤管对所述混合液进行超滤处理,收集分子量大于等于3KD的产物;采用50KD的超滤管对所述分子量大于等于3KD的产物进行超滤处理,得到分子量为3KD~5KD的碳点。
本发明第二方面提供了上述方法制备的碳点。
本发明第三方面提供了上述方法制备的碳点在细胞成像技术领域的应用。
有益效果
本发明提供的碳点的制备方法,采用稠环芳烃化合物作为碳源,与浓硫酸混合后,在25℃~80℃的条件下加热处理即可制备碳点;进一步的,对得到的反应液加碱中和后,分别采用3KD和5KD的超滤管进行超滤处理。该方法制备碳点具有以下优点:首先,该方法制备得到的碳点不仅发光效率高,而且具有很好的粒径均匀性。其次,该方法制备得到的碳点,能完全溶于水,在生理条件下荧光性能稳定,且其性能优良,不存在酸碱腐蚀现象,在细胞成像技术领域,有很好的应用前景。再次,该方法制备得到的碳点产率高,可达到50%以上。此外,该方法制备碳点条件温和,在低于50℃的条件下即可制备获得高收率的碳点,且不需要使用价格昂贵的仪器,具有反应操作简单(一步反应)、条件绿色温和的优点。
本发明提供的碳点,采用上述方法制备获得,因此,具有粒径均匀性好、荧光性能稳定、不存在酸碱腐蚀现象的优点,在细胞成像技术领域,有很好的应用前景。
本发明提供的碳点在细胞成像技术领域的应用,由于提供的碳点能完全溶于水,且在生理条件下荧光性能稳定,能够用于细胞成像技术领域,填补纯有机类荧光探针的不足。
附图说明
图1是本发明实施例提供的不同温度条件下制备得到的碳点的荧光光谱图;
图2是本发明实施例提供的碳点的激发光谱图;
图3是本发明实施例提供的碳点在不同浓度氯化钠溶液中的荧光强度的变化图;
图4是本发明实施例提供的碳点在365nm激发波长照射下的荧光强度的变化图;
图5是本发明实施例提供的碳点在不同pH条件下的荧光强度的变化图;
图6a是本发明实施例提供的碳点孵育细胞后的明场荧光成像图;
图6b是本发明实施例提供的碳点孵育细胞后的暗场荧光成像图。
本发明的实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本发明实施例第一方面提供一种碳点的制备方法,包括以下步骤:
S01.按照稠环芳烃化合物与浓硫酸的质量体积比大于等于50mg:1mL的比例,提供稠环芳烃化合物和浓硫酸的混合体系;
S02.将所述稠环芳烃化合物和浓硫酸的混合体系在25℃~80℃的条件下加热处理,反应1.5h~10min后,收集反应液;
S03.将所述反应液溶于去离子水中形成混合液,加入无机碱调节溶液pH至中性;
S04.采用3KD的超滤管对所述混合液进行超滤处理,收集分子量大于等于3KD的产物;采用50KD的超滤管对所述分子量大于等于3KD的产物进行超滤处理,得到分子量为3KD~5KD的碳点。
本发明实施例提供的碳点的制备方法,采用稠环芳烃化合物作为碳源,与浓硫酸混合后,在25℃~80℃的条件下加热处理即可制备碳点;进一步的,对得到的反应液加碱中和后,分别采用3KD和5KD的超滤管进行超滤处理。该方法制备碳点具有以下优点:首先,该方法制备得到的碳点不仅发光效率高,而且具有很好的粒径均匀性。其次,该方法制备得到的碳点,能完全溶于水,在生理条件下荧光性能稳定,且其性能优良,不存在酸碱腐蚀现象,在细胞成像技术领域,有很好的应用前景。再次,该方法制备得到的碳点产率高,可达到50%以上。此外,该方法制备碳点条件温和,在低于50℃的条件下即可制备获得高收率的碳点,且不需要使用价格昂贵的仪器,具有反应操作简单(一步反应)、条件绿色温和的优点。
具体的,上述步骤S01中,以所述稠环芳烃化合物作为碳源,采用浓硫酸进行加热处理,得到的碳点具有发光效率高的优点。本发明实施例中,特别优选的,所述稠环芳烃化合物为9-((4-(叔丁基)-2,6-二甲基苯氧基)甲基)蒽。当然,应当理解的是,其他稠环芳烃化合物作为碳源制备的碳点也具有较好的发光效率,但其中,以9-((4-(叔丁基)-2,6-二甲基苯氧基)甲基)蒽作为碳源制备的碳点的发光效率最高。
本发明实施例中,用于碳化所述稠环芳烃化合物的浓硫酸,为质量百分含量高于98%的浓硫酸,特别优选的,选择质量百分含量为98.3%的浓硫酸。质量百分含量为98.3%的浓硫酸不仅具有较好的碳化效果,而且相对易于获取。
本发明实施例中,按照稠环芳烃化合物与浓硫酸的质量体积比大于等于50mg:1mL的比例,将所述稠环芳烃化合物与所述浓硫酸混合,形成稠环芳烃化合物和浓硫酸的混合体系。若所述稠环芳烃化合物与浓硫酸的质量体积比小于50mg:1mL,则反应时由于浓硫酸浓度过低,不足以将所述稠环芳烃化合物碳化,成碳点。
在一些优选实施例中,提供稠环芳烃化合物和浓硫酸的混合体系的步骤中,按照稠环芳烃化合物与浓硫酸的质量体积比为50mg:(1~3)mL的比例,将所述稠环芳烃化合物加入所述浓硫酸中。在具体实施例中,当所述稠环芳烃化合物为9-((4-(叔丁基)-2,6-二甲基苯氧基)甲基)蒽时,按照9-((4-(叔丁基)-2,6-二甲基苯氧基)甲基)蒽与浓硫酸的质量体积比为50mg:1.5mL的比例,将9-((4-(叔丁基)-2,6-二甲基苯氧基)甲基)蒽加入所述浓硫酸中,获得稠环芳烃化合物和浓硫酸的混合体系。
上述步骤S02中,将所述稠环芳烃化合物和浓硫酸的混合体系进行加热处理,通过浓硫酸将所述稠环芳烃化合物碳化成碳点。具体的,本发明实施例采用浓硫酸将所述稠环芳烃化合物碳化成碳点的加热温度为25℃~80℃,在该温度条件下,能够实现稠环芳烃化合物向碳点的转化,且得到的碳点粒径均匀性、荧光性能稳定性和水溶性均较好。反应过程中通过监测反应溶液在水中的溶解度监测反应进程,反应液能完全水溶代表反应完全。在本发明实施例中,所述加热处理的时间为1.5h~10min,具体碳化时间根据碳化温度变化。通常,碳化温度越高,碳化时间相对较短;碳化温度越低,碳化时间相对较长。值得注意的是,不同的温度,碳点的产率会有差异,在温度低于38℃时,稠环芳烃化合物难以完全碳化;在温度为38℃~80℃的条件下,所述浓硫酸能将所述稠环芳烃化合物完全碳化,得到更高收率的碳点。因此,在优选实施例中,将所述稠环芳烃化合物和浓硫酸的混合体系进行加热处理的步骤,在温度为38℃~80℃的条件下进行。
本发明实施例制备碳点的方法中,尽管可以在80℃的加热条件下碳化稠环芳烃化合物制备碳点,但在相对较低的温度如38℃~50℃的加热条件下即可制备高收率、高性能(粒径均匀性、荧光稳定性和水溶性),与现有高温条件相比,提供了温和的反应条件,降低了反应的难度,可以有效避免安全隐患。
反应结束后,收集反应液,进行进一步处理。
上述步骤S03中,将所述反应液溶于去离子水中,将制备得到的碳点溶解,形成混合液。在优选实施例中,将所述反应液溶于去离子水中形成混合液的步骤中,按照浓硫酸与去离子水的体积比为(1~5):50的比例,将所述反应液加入去离子水中,有利于得到的碳点充分溶解在水中,进而可以通过后续超滤收集。
进一步的,在所述混合液中加入无机碱,调节溶液pH至中性,充分去除溶液中以及附着在碳点上的浓硫酸,同时,转化为水溶性的硫酸盐或硫酸盐沉淀,由此,可以避免残留的硫酸对碳点的性能产生影响,进一步避免残留的硫酸对碳点应用产生影响,特别是在非耐酸性、非耐腐蚀性的对象中的应用的问题。
本发明实施例中,采用无机碱调节溶液pH,具有较好的反应安全性,只会引入盐杂质,且不会与碳点发生反应,影响碳点的性能。用于调节溶液pH的无机碱可以采用常规的无机碱,所述无机碱优选采用氢氧化钠、氢氧化钾、氢氧化钡中的至少一种。采用这几种无机碱,不仅具有较好的调节pH的效果,而且生成的盐容易去除,有利于获得高纯的碳点。
上述步骤S04中,本发明实施例中,采用超滤管对混合液中的碳点进行纯化。一方面,采用3KD的超滤管对所述混合液进行超滤处理,离心将盐、溶剂等小分子去除,收集分子量大于等于3KD的产物;同时,采用50KD的超滤管对所述分子量大于等于3KD的产物进行超滤处理,离心将不具有发光性能的大颗粒杂质去除,得到分子量为3KD~5KD的碳点。
作为一个最优选实施例,所述碳点的制备方法,包括以下步骤:
按照9-((4-(叔丁基)-2,6-二甲基苯氧基)甲基)蒽与浓硫酸的质量体积比为50mg:1.5mL的比例,提供9-((4-(叔丁基)-2,6-二甲基苯氧基)甲基)蒽和浓硫酸的混合体系,其中,所述硫酸的质量百分含量为98.3%;
将所述9-((4-(叔丁基)-2,6-二甲基苯氧基)甲基)蒽和浓硫酸的混合体系在38℃的条件下加热处理,反应1.5h后,收集反应液;
按照浓硫酸与去离子水的体积比为3:50的比例,将所述反应液溶于去离子水中形成混合液,加入氢氧化钠调节溶液pH至中性;
采用3KD的超滤管对所述混合液进行超滤处理,收集分子量大于等于3KD的产物;采用50KD的超滤管对所述分子量大于等于3KD的产物进行超滤处理,得到分子量为3KD~5KD的碳点。
该优选方法制备反应条件温和,得到的碳点得到的具有很好的粒径均匀性和荧光性能稳定性,且能够完全溶于水,对铁离子具有良好的荧光性能及很好的生物兼容性,可在生理条件下监测活细胞内铁离子的含量。
本发明实施例第二方面提供了上述方法制备的碳点。
本发明实施例提供的碳点,采用上述方法制备获得,因此,具有粒径均匀性好、荧光性能稳定、不存在酸碱腐蚀现象的优点,在细胞成像技术领域,有很好的应用前景。
本发明实施例第三方面提供了上述方法制备的碳点在细胞成像技术领域的应用。
本发明实施例提供的碳点在细胞成像技术领域的应用,由于提供的碳点能完全溶于水,且在生理条件下荧光性能稳定,能够用于细胞成像技术领域,填补纯有机类荧光探针的不足。
下面结合具体实施例进行说明。
实施例1
一种碳点的制备方法,包括以下步骤:
准确称取50mg的9-((4-(叔丁基)-2,6-二甲基苯氧基)甲基)蒽加入1.5mL浓硫酸,在室温25℃条件下反应(反应过程中通过监测反应溶液在水中的溶解度监测反应进程,反应液能完全水溶代表反应完全)。我们发现,在此条件下,反应20小时后,取一滴反应液滴入10mL水溶液中,部分反应物能溶于水,但是还有一定的不溶物,即反应还未完全,溶液呈白色荧光,延长反应时间也没有明显的变化。
将反应溶液全部缓慢滴加到25mL二次水中,加入NaOH,调节溶液至中性,用3KD的超滤管超滤离心将盐、溶剂等小分子去除,然后用50KD的超滤管超滤离心将大颗粒杂质去除,留取3KD-5KD部分的碳点产品。
实施例2
一种碳点的制备方法,包括以下步骤:
准确称取50mg的9-((4-(叔丁基)-2,6-二甲基苯氧基)甲基)蒽加入1.5mL浓硫酸,在38℃温度下反应(反应过程中通过监测反应溶液在水中的溶解度监测反应进程,反应液能完全水溶代表反应完全)。我们发现,在此条件下,反应约1.5小时后,取一滴反应液滴入10mL水溶液中,反应物全部能溶于水,溶液澄清透明,即反应完全,溶液呈强白色荧光。
将反应溶液全部缓慢滴加到25mL二次水中,加入KOH,调节溶液至中性,用3KD的超滤管超滤离心将盐、溶剂等小分子去除,然后用50KD的超滤管超滤离心将大颗粒杂质去除,留取3KD-5KD部分的碳点产品。
实施例3
一种碳点的制备方法,包括以下步骤:
准确称取50mg的9-((4-(叔丁基)-2,6-二甲基苯氧基)甲基)蒽加入1.5mL浓硫酸,在50℃温度下反应(反应过程中通过监测反应溶液在水中的溶解度监测反应进程,反应液能完全水溶代表反应完全)。我们发现,在此条件下,反应约1.2小时后,取一滴反应液滴入10mL水溶液中,反应物全部能溶于水,溶液澄清透明,即反应完全,溶液呈强白色荧光。
将反应溶液全部缓慢滴加到25mL二次水中,加入NaOH,调节溶液至中性,用3KD的超滤管超滤离心将盐、溶剂等小分子去除,然后用50KD的超滤管超滤离心将大颗粒杂质去除,留取3KD-5KD部分的目标碳点产品。
实施例4
一种碳点的制备方法,包括以下步骤:
准确称取50mg的9-((4-(叔丁基)-2,6-二甲基苯氧基)甲基)蒽加入1.5mL浓硫酸,在65℃温度下反应(反应过程中通过监测反应溶液在水中的溶解度监测反应进程,反应液能完全水溶代表反应完全)。我们发现,在此条件下,反应约1.0小时后,取一滴反应液滴入10mL水溶液中,反应物全部能溶于水,溶液澄清透明,即反应完全,溶液呈强白色荧光。
将反应溶液全部缓慢滴加到25mL二次水中,加入NaOH,调节溶液至中性,用3KD的超滤管超滤离心将盐、溶剂等小分子去除,然后用50KD的超滤管超滤离心将大颗粒杂质去除,留取3KD-5KD部分的碳点产品。
实施例5
一种碳点的制备方法,包括以下步骤:
准确称取50mg的9-((4-(叔丁基)-2,6-二甲基苯氧基)甲基)蒽加入1.5mL浓硫酸,在80℃温度下反应(反应过程中通过监测反应溶液在水中的溶解度监测反应进程,反应液能完全水溶代表反应完全)。我们发现,在此条件下,反应约10分钟后,取一滴反应液滴入10mL水溶液中,反应物全部能溶于水,溶液澄清透明,即反应完全,溶液呈强白色荧光。
将反应溶液全部缓慢滴加到25mL二次水中,加入NaOH,调节溶液至中性,用3KD的超滤管超滤离心将盐、溶剂等小分子去除,然后用50KD的超滤管超滤离心将大颗粒杂质去除,留取3KD-5KD部分的碳点产品。
将实施例1-5制备的碳点进行荧光性能测试,不同温度条件下制备得到的碳点的荧光光谱图如图1所示。由图1可见,不同的温度调节下,制备得到的碳点的荧光发射峰的峰位置跟峰形是一致的,均在514nm处有最大发射峰,只是荧光强度有一定的差异。通常来说碳点具有量子尺寸效应的,即粒径尺寸大小不一样,发光光谱是不一样的。可见,本发明实施例制备的碳点具有较好的粒径均匀性。
将本发明实施例制备的碳点用二次水配制浓度为5ppm的碳点溶液,以不同的激发波长激发,激发光谱图如图2所示。如图2所示,碳点的最大荧光发射峰,不随激发波长的改变而改变,说明本发明实施例制备的的碳点尺寸均一,从而拥有相对独立的荧光发射峰。
将实施例制备的碳点用二次水配制浓度为5ppm的碳点溶液,在碳点溶液中逐渐加入氯化钠溶液,当氯化钠的浓度为0-100mM,碳点的荧光强度有所下降,然后继续氯化钠浓度从100-500mM,碳点荧光强度趋于稳定几乎不改变,如图3所示。由此说明本实施例制备的碳点具有较强的离子耐受性。
将实施例制备的碳点用二次水配制浓度为5ppm的碳点溶液,在365nm激发波长下照射长达7h,结果如图4所示,由图可见,长时间照射后,荧光强度的变化几乎可以忽略不计,说明本实施例制备的碳点具有高度的稳定性。
测试实施例制备的碳点在pH范围内(pH 3 - pH 9)荧光强度,结果如图5所示。由图可见,在pH 3 - pH 9的范围内,本实施例制备的碳点也相对稳定,即本发明实施例制备的碳点具有很好的稳定性。
将实施例制备的碳点,在纯水溶液,生理条件下,与细胞一同孵育,在荧光倒置显微镜下观察,细胞明场成像图如图6a所示,暗场,细胞在绿色通道下的绿色荧光成像图如图6b所示。由图发现,细胞具有很强的荧光,说明细胞对碳点具有很好的吸收性。值得一提的是,目前,有机类荧光探针其荧光性能优越,但是由于其往往难溶于水,极大的制约了其在细胞活体等方面的成像应用研究,这是有机化合物在生物应用当中的一个天然弊端,难以逾越。而本发明实施例制备所得的碳点,能完全溶于水,且在生理条件下荧光性能稳定,恰好填补了纯有机类荧光探针的不足。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种碳点的制备方法,其特征在于,包括以下步骤:
    按照稠环芳烃化合物与浓硫酸的质量体积比大于等于50mg:1mL的比例,提供稠环芳烃化合物和浓硫酸的混合体系;
    将所述稠环芳烃化合物和浓硫酸的混合体系在25℃~80℃的条件下加热处理,反应1.5h~10min后,收集反应液;
    将所述反应液溶于去离子水中形成混合液,加入无机碱调节溶液pH至中性;
    采用3KD的超滤管对所述混合液进行超滤处理,收集分子量大于等于3KD的产物;采用50KD的超滤管对所述分子量大于等于3KD的产物进行超滤处理,得到分子量为3KD~5KD的碳点。
  2. 如权利要求1所述的碳点的制备方法,其特征在于,所述稠环芳烃化合物为9-((4-(叔丁基)-2,6-二甲基苯氧基)甲基)蒽。
  3. 如权利要求1或2所述的碳点的制备方法,其特征在于,将所述稠环芳烃化合物和浓硫酸的混合体系进行加热处理的步骤,在温度为38℃~80℃的条件下进行。
  4. 如权利要求1或2所述的碳点的制备方法,其特征在于,提供稠环芳烃化合物和浓硫酸的混合体系的步骤中,按照稠环芳烃化合物与浓硫酸的质量体积比为50mg:(1~3)mL的比例,将所述稠环芳烃化合物加入所述浓硫酸中。
  5. 如权利要求1或2所述的碳点的制备方法,其特征在于,所述无机碱选自氢氧化钠、氢氧化钾、氢氧化钡中的至少一种。
  6. 如权利要求1或2所述的碳点的制备方法,其特征在于,将所述反应液溶于去离子水中形成混合液的步骤中,按照浓硫酸与去离子水的体积比为(1~5):50的比例,将所述反应液加入去离子水中。
  7. 如权利要求1或2所述的碳点的制备方法,其特征在于,所述浓硫酸为质量百分含量为98.3%的硫酸。
  8. 如权利要求1所述的碳点的制备方法,其特征在于,包括以下步骤:
    按照9-((4-(叔丁基)-2,6-二甲基苯氧基)甲基)蒽与浓硫酸的质量体积比为50mg:1.5mL的比例,提供9-((4-(叔丁基)-2,6-二甲基苯氧基)甲基)蒽和浓硫酸的混合体系,其中,所述硫酸的质量百分含量为98.3%;
    将所述9-((4-(叔丁基)-2,6-二甲基苯氧基)甲基)蒽和浓硫酸的混合体系在38℃的条件下加热处理,反应1.5h后,收集反应液;
    按照浓硫酸与去离子水的体积比为3:50的比例,将所述反应液溶于去离子水中形成混合液,加入氢氧化钠调节溶液pH至中性;
    采用3KD的超滤管对所述混合液进行超滤处理,收集分子量大于等于3KD的产物;采用50KD的超滤管对所述分子量大于等于3KD的产物进行超滤处理,得到分子量为3KD~5KD的碳点。
  9. 一种碳点,其特征在于,所述碳点由权利要求1至8任一项所述方法制备获得。
  10. 如权利要求1至8任一项所述方法制备获得的碳点在细胞成像技术领域的应用。
PCT/CN2019/124310 2018-12-12 2019-12-10 简易碳点的制备方法 WO2020119678A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811515618.6A CN109536162B (zh) 2018-12-12 2018-12-12 简易碳点的制备方法
CN201811515618.6 2018-12-12

Publications (1)

Publication Number Publication Date
WO2020119678A1 true WO2020119678A1 (zh) 2020-06-18

Family

ID=65854366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124310 WO2020119678A1 (zh) 2018-12-12 2019-12-10 简易碳点的制备方法

Country Status (2)

Country Link
CN (1) CN109536162B (zh)
WO (1) WO2020119678A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116751586A (zh) * 2023-06-16 2023-09-15 山西大学 一种氮掺杂红色荧光碳点及其制备方法和应用

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110724528B (zh) * 2019-11-07 2020-08-11 东北林业大学 一种松香基碳点材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104743545A (zh) * 2015-03-11 2015-07-01 中国科学院青岛生物能源与过程研究所 一种石油沥青基碳量子点的制备方法及该方法制备的石油沥青基碳量子点的应用
CN105523543A (zh) * 2015-12-21 2016-04-27 哈尔滨工业大学 成级别增长制备石墨烯量子点的方法
CN105836739A (zh) * 2016-05-12 2016-08-10 安徽大学 一种多元素掺杂石墨烯量子点的制备方法
CN105860968A (zh) * 2016-04-29 2016-08-17 中国科学院理化技术研究所 一种单层单晶石墨烯量子点及其制备方法
CN106315540A (zh) * 2015-06-18 2017-01-11 北京化工大学 一种通过沥青制备石墨烯量子点的方法
US20170152145A1 (en) * 2013-05-02 2017-06-01 William Marsh Rice University Bandgap engineering of carbon quantum dots
CN107431211A (zh) * 2014-11-06 2017-12-01 威廉马歇莱思大学 由各种碳源制造石墨烯量子点的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103160279A (zh) * 2011-12-12 2013-06-19 中国科学院大连化学物理研究所 一种功能性碳点及其制备和应用
CN102897745B (zh) * 2012-08-06 2014-06-04 中国科学院理化技术研究所 一种利用共轭聚合物制备碳量子点的方法及其应用
CN104087296B (zh) * 2014-07-08 2016-06-29 合肥工业大学 一种激光辐照制备荧光碳量子点的方法
CN104843664B (zh) * 2015-03-04 2018-04-17 东华大学 一种基于化学切割制备碳纳米点的方法
CN108502866B (zh) * 2017-12-21 2019-11-19 中国石油大学(北京) 一种碳量子点及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170152145A1 (en) * 2013-05-02 2017-06-01 William Marsh Rice University Bandgap engineering of carbon quantum dots
CN107431211A (zh) * 2014-11-06 2017-12-01 威廉马歇莱思大学 由各种碳源制造石墨烯量子点的方法
CN104743545A (zh) * 2015-03-11 2015-07-01 中国科学院青岛生物能源与过程研究所 一种石油沥青基碳量子点的制备方法及该方法制备的石油沥青基碳量子点的应用
CN106315540A (zh) * 2015-06-18 2017-01-11 北京化工大学 一种通过沥青制备石墨烯量子点的方法
CN105523543A (zh) * 2015-12-21 2016-04-27 哈尔滨工业大学 成级别增长制备石墨烯量子点的方法
CN105860968A (zh) * 2016-04-29 2016-08-17 中国科学院理化技术研究所 一种单层单晶石墨烯量子点及其制备方法
CN105836739A (zh) * 2016-05-12 2016-08-10 安徽大学 一种多元素掺杂石墨烯量子点的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116751586A (zh) * 2023-06-16 2023-09-15 山西大学 一种氮掺杂红色荧光碳点及其制备方法和应用
CN116751586B (zh) * 2023-06-16 2024-03-12 山西大学 一种氮掺杂红色荧光碳点及其制备方法和应用

Also Published As

Publication number Publication date
CN109536162B (zh) 2020-05-22
CN109536162A (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
Shen et al. The production of pH-sensitive photoluminescent carbon nanoparticles by the carbonization of polyethylenimine and their use for bioimaging
Wei et al. Simple one-step synthesis of water-soluble fluorescent carbon dots derived from paper ash
CN107934936B (zh) 一种碳量子点的快速制备方法
Ding et al. Gram-scale synthesis of single-crystalline graphene quantum dots derived from lignin biomass
Liu et al. A facile microwave-hydrothermal approach towards highly photoluminescent carbon dots from goose feathers
Yang et al. Preparation of sulfur-doped carbon quantum dots from lignin as a sensor to detect Sudan I in an acidic environment
Wang et al. Polyethyleneimine‐functionalized fluorescent carbon dots: water stability, pH sensing, and cellular imaging
Liu et al. Boron nitride quantum dots with solvent‐regulated blue/green photoluminescence and electrochemiluminescent behavior for versatile applications
Zhu et al. Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging.
Liang et al. Sustainable carbon quantum dots from forestry and agricultural biomass with amplified photoluminescence by simple NH 4 OH passivation
Yang et al. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan
CN108410457B (zh) 一种多功能荧光碳量子点及其制备方法和应用
CN107418567B (zh) 一种生物质基碳量子点及其制备方法
Du et al. Green synthesis of fluorescent carbon quantum dots and carbon spheres from pericarp
Huang et al. A facile, green, and solvent-free route to nitrogen–sulfur-codoped fluorescent carbon nanoparticles for cellular imaging
CN104150473A (zh) 一种氮掺杂石墨烯量子点的化学制备方法
Chen et al. Multicolor upconversion NaLuF 4 fluorescent nanoprobe for plant cell imaging and detection of sodium fluorescein
WO2020119678A1 (zh) 简易碳点的制备方法
Wu et al. Efficient two-photon luminescence for cellular imaging using biocompatible nitrogen-doped graphene quantum dots conjugated with polymers
Wang et al. Microwave-assisted synthesis, characterization, cell imaging of fluorescent carbon dots using l-asparagine as precursor
CN108037171B (zh) 一种水相中高分散的氮掺杂石墨烯量子点的制备方法和应用
CN102911664A (zh) 荧光聚合物点、其线性非共轭聚合物水热合成方法及应用
CN110591692B (zh) 四氟硼酸亚硝修饰的上转换纳米粒子、纳米探针及其制备方法以及含硫化合物的检测方法
Wu et al. A versatile platform for the highly efficient preparation of graphene quantum dots: photoluminescence emission and hydrophilicity–hydrophobicity regulation and organelle imaging
CN108359452B (zh) 一种水溶性类石墨烯量子点及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895982

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1)EPC DATED 03.11.2021(EPO FORM 1205A)

122 Ep: pct application non-entry in european phase

Ref document number: 19895982

Country of ref document: EP

Kind code of ref document: A1