CN106298937B - 一种沟槽型vdmos - Google Patents

一种沟槽型vdmos Download PDF

Info

Publication number
CN106298937B
CN106298937B CN201610677976.1A CN201610677976A CN106298937B CN 106298937 B CN106298937 B CN 106298937B CN 201610677976 A CN201610677976 A CN 201610677976A CN 106298937 B CN106298937 B CN 106298937B
Authority
CN
China
Prior art keywords
groove
heavily doped
polysilicon
type heavily
doped region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610677976.1A
Other languages
English (en)
Other versions
CN106298937A (zh
Inventor
任敏
李爽
钟子期
包惠萍
李泽宏
张金平
高巍
张波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201610677976.1A priority Critical patent/CN106298937B/zh
Publication of CN106298937A publication Critical patent/CN106298937A/zh
Application granted granted Critical
Publication of CN106298937B publication Critical patent/CN106298937B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode

Abstract

本发明属于半导体技术领域,特别涉及一种沟槽型VDMOS器件。本发明主要在体内沟槽中有二氧化硅层包裹的多晶硅柱,多晶硅柱中存储着均匀负电荷。多晶硅柱的形状为上宽下窄,其与硅片间的二氧化硅的厚度由上至下增加。器件反向阻断时,N‑型漂移区与多晶硅柱内的负电荷之间产生横向电场,辅助耗尽漂移区。由于N‑型漂移区的电势由下至上逐渐降低,而多晶硅柱侧壁的二氧化硅的厚度由上至下增加,使漂移区的横向电场分布更均匀,从而纵向电场更接近矩形分布,提高器件的反向阻断电压。同时,由于没有采用与源电极相连的体场板结构,本发明中的栅漏电容Cds较低。

Description

一种沟槽型VDMOS
技术领域
本发明属于半导体技术领域,特别涉及一种沟槽型VDMOS器件。
背景技术
功率VDMOS是多子导电器件,具有开关速度快、输入阻抗高、易驱动等优点。理想的VDMOS应具有较低的导通电阻、开关损耗和较高的阻断电压。但是导通电阻和击穿电压、导通电阻和开关损耗之间存在着牵制作用,限制了功率VDMOS的发展。为了提高器件性能,减小导通电阻,陈星弼院士提出了超结VDMOS结构。对比传统结构,超结结构获得更为优异的器件耐压与导通电阻的折中关系,在相同的器件耐压的条件下,超结结构的VDMOS的导通电阻更小。
由于超结结构VDMOS对于P/N柱的电荷平衡极为敏感,并且在实际工艺中P/N柱的最小宽度限制了元胞尺寸的减小,因此,专利号US6710,403提出了采用多晶硅充当的体内场板结构替代P/N柱来降低漂移区导通电阻,避免电荷平衡的影响,其结构图如图1所示。由于多晶硅的电位和源极相连,体场板型VDMOS反向耐压时,多晶硅电位为低电位,N型漂移区和场板之间形成横向电场,该横向电场起到辅助耗尽N型漂移区的作用,产生类似超结结构的效果,可以使器件在具有高耐压的同时可采用更高杂质浓度的漂移区。但是,体场板型VDMOS也存在一定的缺点,其漂移区内的电场分布如图2所示,可以看出,由于整个场板上的电位相同,漂移区内的电场值沿着垂直方向下降,制约了反向耐压的进一步提高。同时,由于体场板与VDMOS的源极相连,其源漏电容Cds会较高,影响了器件的动态特性。
发明内容
本发明所要解决的,就是针对体场板型VDMOS的上述问题,为了更好的改善反向耐压和导通电阻的折衷关系,在相同的导通电阻的条件下,提高器件的反向耐压,提出了一种沟槽型VDMOS。
本发明的技术方案是:一种沟槽型VDMOS,包括从下至上依次层叠设置的金属化漏极11、N+衬底1、N-漂移区2和金属化源极4;所述N-漂移区2中具有体内沟槽3、P型掺杂区5、N型重掺杂区6、P型重掺杂区7和沟槽8,所述P型掺杂区5位于两侧的体内沟槽3之间,且P型掺杂区5的侧面与体内沟槽3的侧面接触;所述N型重掺杂区6位于P型掺杂区5的上表面,N型重掺杂区6的上表面与金属化源极4的下表面接触;所述P型重掺杂区7位于体内沟槽3与N型重掺杂区6之间并分别于体内沟槽3和N型重掺杂区6接触;所述体内沟槽3的上表面与金属化源极4的下表面接触;所述沟槽8的上表面与金属化源极4的下表面接触,沟槽8的下端沿垂直方向依次贯穿N型重掺杂区6和P型重掺杂区7并延伸至N-漂移区2中,所述沟槽8中填充有第一二氧化硅层9,在第一二氧化硅层9中具有多晶硅10;其特征在于,所述体内沟槽3中填充有第二二氧化硅层12,所述第二二氧化硅层12中具有多晶硅柱13,所述多晶硅柱13的上表面不高于P型掺杂区5的下表面,所述多晶硅岛13中均匀存储有负电荷,所述多晶硅岛13与P-漂移区2之间的二氧化硅12的厚度由上至下逐渐增加。
一种沟槽型VDMOS,包括从下至上依次层叠设置的金属化漏极11、P+衬底1、P-漂移区2和金属化源极4;所述P-漂移区2中具有体内沟槽3、N型掺杂区5、P型重掺杂区6、N型重掺杂区7和沟槽8,所述N型掺杂区5位于两侧的体内沟槽3之间,且N型掺杂区5的侧面与体内沟槽3的侧面接触;所述P型重掺杂区6位于N型掺杂区5的上表面,P型重掺杂区6的上表面与金属化源极4的下表面接触;所述N型重掺杂区7位于体内沟槽3与P型重掺杂区6之间并分别于体内沟槽3和P型重掺杂区6接触;所述体内沟槽3的上表面与金属化源极4的下表面接触;所述沟槽8的上表面与金属化源极4的下表面接触,沟槽8的下端沿垂直方向依次贯穿P型重掺杂区6和N型重掺杂区7并延伸至P-漂移区2中,所述沟槽8中填充有第一二氧化硅层9,在第一二氧化硅层9中具有多晶硅10;其特征在于,所述体内沟槽3中填充有第二二氧化硅层12,所述第二二氧化硅层12中具有多晶硅柱13,所述多晶硅柱13的上表面不高于P型掺杂区5的下表面,所述多晶硅岛13中均匀存储有正电荷,所述多晶硅岛13与P-漂移区2之间的二氧化硅12的厚度由上至下逐渐增加。
进一步的,所述多晶硅10与沟槽8侧壁之间的第一二氧化硅层9的厚度为5-100nm,多晶硅10与沟槽8下表面之间的第一二氧化硅层9的厚度为200—500nm。
本发明的有益效果为,本发明所提供的一种沟槽型VDMOS器件,在体内沟槽3中有二氧化硅层包裹的多晶硅柱13,多晶硅柱13中存储着均匀负电荷。多晶硅柱13的形状为上宽下窄,其与硅片间的二氧化硅12的厚度由上至下增加。器件反向阻断时,N-型漂移区2与多晶硅柱13内的负电荷之间产生横向电场,辅助耗尽漂移区。由于N-型漂移区的电势由下至上逐渐降低,而多晶硅柱13侧壁的二氧化硅12的厚度由上至下增加,使漂移区的横向电场分布更均匀,从而纵向电场更接近矩形分布,提高器件的反向阻断电压。同时,由于没有采用与源电极相连的体场板结构,本发明中的栅漏电容Cds较低。
附图说明
图1是专利号US6710,403提供的一种具有体内场板的VDMOS结构示意图;
图2是专利号US6710,403提供的一种具有体内场板的VDMOS结构在反向偏压时的漂移区内的电场分布示意图;
图3是本发明提供的一种沟槽型VDMOS器件示意图;
图4是本发明提供的一种沟槽型VDMOS器件在反向偏压时的漂移区内的耗尽线及电场分布示意图;
图5-图11是本发明提供的一种沟槽型VDMOS器件制作的关键工艺步骤。
具体实施方式
下面结合附图和实施例,详细描述本发明的技术方案:
实施例1
如图3所示,本例的一种沟槽型VDMOS,包括从下至上依次层叠设置的金属化漏极11、N+衬底1、N-漂移区2和金属化源极4;所述N-漂移区2中具有体内沟槽3、P型掺杂区5、N型重掺杂区6、P型重掺杂区7和沟槽8,所述P型掺杂区5位于两侧的体内沟槽3之间,且P型掺杂区5的侧面与体内沟槽3的侧面接触;所述N型重掺杂区6位于P型掺杂区5的上表面,N型重掺杂区6的上表面与金属化源极4的下表面接触;所述P型重掺杂区7位于体内沟槽3与N型重掺杂区6之间并分别于体内沟槽3和N型重掺杂区6接触;所述体内沟槽3的上表面与金属化源极4的下表面接触;所述沟槽8的上表面与金属化源极4的下表面接触,沟槽8的下端沿垂直方向依次贯穿N型重掺杂区6和P型重掺杂区7并延伸至N-漂移区2中,所述沟槽8中填充有第一二氧化硅层9,在第一二氧化硅层9中具有多晶硅10;其特征在于,所述体内沟槽3中填充有第二二氧化硅层12,所述第二二氧化硅层12中具有多晶硅柱13,所述多晶硅柱13的上表面不高于P型掺杂区5的下表面,所述多晶硅岛13中均匀存储有负电荷,所述多晶硅岛13与P-漂移区2之间的二氧化硅12的厚度由上至下逐渐增加。
(1)器件的正向导通
本发明所提供的一种沟槽型VDMOS器件,其正向导通时的电极连接方式为:多晶硅栅电极10正电位,金属化漏极11接正电位,金属化源极4接零电位。当多晶硅栅电极10所加正电压等于或大于开启电压之后,多子电子在金属化漏极11正电位的作用下从N型重掺杂区6流向金属化漏极11。由于槽型栅电极4底部的栅氧化层采取厚氧工艺,所以栅漏电容Cgd得到较大的改善。同时,由于没有采用与源电极相连的体场板,相较于专利号US6710,403中采用源极体内场板技术,本发明中的源漏电容Cds降低。
(2)器件的反向阻断
器件反向耐压时,N-漂移区和槽3内的多晶硅柱13中的固定负电荷之间存在横向电场,承担反向压降。此时,VDMOS的金属化漏极接高电位,金属化源极接低电位此,因此N-漂移区2由下至上的电势逐渐降低。多晶硅柱13的厚度是由下至上增加的,因此二氧化硅层12的厚度由下至上减少,而多晶硅柱13内存储的固定负电荷的电荷密度是均匀的,因此,N-漂移区2内的与槽3之间的横向电场强度沿着垂直方向基本保持不变。图4所示为器件反向耐压时的N-漂移区垂直方向上的电场分布,可以看出,电场分布近似矩形。此时,漂移区内的耗尽线由槽3两侧向N-漂移区2体内扩展,直至N-漂移区2完全耗尽。相较于专利号US6710,403的器件反向耐压时的N-漂移区垂直方向上的电场分布,电场斜率减小,电场分布E(Y)与Y轴之间围的面积增大,反向阻断耐压提高。
本发明的一种沟槽型VDMOS器件的一种制造工艺流程如下:
1、单晶硅准备及外延生长。在N型重掺杂单晶硅衬底1上,采用气相外延VPE等方法生长一定厚度和掺杂浓度的N-漂移区2,如图5所示。
2、刻蚀槽3,接着槽3内生长二氧化硅层,形成二氧化层12,进行刻蚀,形成斜面的槽,如图6所示。
3、在二氧化硅槽内淀积一定厚度的多晶硅柱13,并注入负离子,使多晶硅柱13带固定负电荷;
4、刻蚀绝缘层,在硅片表面淀积二氧化硅,形成槽3内的二氧化硅层12的顶部,如图7所示。
5、利用光刻板刻蚀P型掺杂区5窗口,进行硼注入,形成P型掺杂区5,如图8所示。
6、光刻N型注入区窗口,进行N型磷注入,形成N型重掺杂区6,如图9所示。
7、刻蚀形成槽8,生长介质层,形成二氧化硅层9的底部及侧壁,接着淀积多晶硅10形成栅电极,如图10所示。
8、生长氧化层,利用光刻板进行离子刻蚀形成窗口,注入硼,形成P型重掺杂区7,如图11所示。
9、金属化。刻蚀掉多余的氧化层,正面金属化,金属刻蚀,背面金属化,钝化等等。
实施例2
本例的结构在实施例1的基础上,将实施例1中的所有N型材料替换为P型材料,所有的P型材料替换为N型材料,多晶硅柱13中的负电荷替换为正电荷。
制作器件时,还可用碳化硅、砷化镓或锗硅等半导体材料替代硅。

Claims (4)

1.一种沟槽型VDMOS,包括从下至上依次层叠设置的金属化漏极(11)、N+衬底(1)、N-漂移区(2)和金属化源极(4);所述N-漂移区(2)中具有体内沟槽(3)、P型掺杂区(5)、N型重掺杂区(6)、P型重掺杂区(7)和沟槽(8),所述P型掺杂区(5)位于两侧的体内沟槽(3)之间,且P型掺杂区(5)的侧面与体内沟槽(3)的侧面接触;所述N型重掺杂区(6)位于P型掺杂区(5)的上表面,N型重掺杂区(6)的上表面与金属化源极(4)的下表面接触;所述P型重掺杂区(7)位于体内沟槽(3)与N型重掺杂区(6)之间并分别与体内沟槽(3)和N型重掺杂区(6)接触;所述体内沟槽(3)的上表面与金属化源极(4)的下表面接触;所述沟槽(8)的上表面与金属化源极(4)的下表面接触,沟槽(8)的下端沿垂直方向依次贯穿N型重掺杂区(6)和P型重掺杂区(7)并延伸至N-漂移区(2)中,所述沟槽(8)中填充有第一二氧化硅层(9),在第一二氧化硅层(9)中具有多晶硅(10);其特征在于,所述体内沟槽(3)中填充有第二二氧化硅层(12),所述第二二氧化硅层(12)中具有多晶硅柱(13),所述多晶硅柱(13)的上表面不高于P型掺杂区(5)的下表面,所述多晶硅柱(13)中均匀存储有负电荷,所述多晶硅柱(13)与N-漂移区(2)之间的二氧化硅(12)的厚度由上至下逐渐增加。
2.根据权利要求1所述的一种沟槽型VDMOS,其特征在于,所述多晶硅(10)与沟槽(8)侧壁之间的第一二氧化硅层(9)的厚度为5-100nm,多晶硅(10)与沟槽(8)下表面之间的第一二氧化硅层(9)的厚度为200-500nm。
3.一种沟槽型VDMOS,包括从下至上依次层叠设置的金属化漏极(11)、P+衬底(1)、P-漂移区(2)和金属化源极(4);所述P-漂移区(2)中具有体内沟槽(3)、N型掺杂区(5)、P型重掺杂区(6)、N型重掺杂区(7)和沟槽(8),所述N型掺杂区(5)位于两侧的体内沟槽(3)之间,且N型掺杂区(5)的侧面与体内沟槽(3)的侧面接触;所述P型重掺杂区(6)位于N型掺杂区(5)的上表面,P型重掺杂区(6)的上表面与金属化源极(4)的下表面接触;所述N型重掺杂区(7)位于体内沟槽(3)与P型重掺杂区(6)之间并分别与体内沟槽(3)和P型重掺杂区(6)接触;所述体内沟槽(3)的上表面与金属化源极(4)的下表面接触;所述沟槽(8)的上表面与金属化源极(4)的下表面接触,沟槽(8)的下端沿垂直方向依次贯穿P型重掺杂区(6)和N型重掺杂区(7)并延伸至P-漂移区(2)中,所述沟槽(8)中填充有第一二氧化硅层(9),在第一二氧化硅层(9)中具有多晶硅(10);其特征在于,所述体内沟槽(3)中填充有第二二氧化硅层(12),所述第二二氧化硅层(12)中具有多晶硅柱(13),所述多晶硅柱(13)的上表面不高于N型掺杂区(5)的下表面,所述多晶硅柱(13)中均匀存储有正电荷,所述多晶硅柱(13)与P-漂移区(2)之间的二氧化硅(12)的厚度由上至下逐渐增加。
4.根据权利要求3所述的一种沟槽型VDMOS,其特征在于,所述多晶硅(10)与沟槽(8)侧壁之间的第一二氧化硅层(9)的厚度为5-100nm,多晶硅(10)与沟槽(8)下表面之间的第一二氧化硅层(9)的厚度为200-500nm。
CN201610677976.1A 2016-08-17 2016-08-17 一种沟槽型vdmos Expired - Fee Related CN106298937B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610677976.1A CN106298937B (zh) 2016-08-17 2016-08-17 一种沟槽型vdmos

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610677976.1A CN106298937B (zh) 2016-08-17 2016-08-17 一种沟槽型vdmos

Publications (2)

Publication Number Publication Date
CN106298937A CN106298937A (zh) 2017-01-04
CN106298937B true CN106298937B (zh) 2019-02-01

Family

ID=57678124

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610677976.1A Expired - Fee Related CN106298937B (zh) 2016-08-17 2016-08-17 一种沟槽型vdmos

Country Status (1)

Country Link
CN (1) CN106298937B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109119488A (zh) * 2018-08-24 2019-01-01 电子科技大学 一种具有多晶硅岛的金属氧化物半导体二极管

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040021173A1 (en) * 2002-07-30 2004-02-05 Fairchild Semiconductor Corporation Dual trench power mosfet
CN1605119A (zh) * 2001-10-17 2005-04-06 费查尔德半导体有限公司 有改善的较小正向电压损耗和较高截断能力的半导体结构
US20070052060A1 (en) * 2005-08-23 2007-03-08 Yang Robert K DMOS transistor with floating poly-filled trench for improved performance through 3-D field shaping

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1605119A (zh) * 2001-10-17 2005-04-06 费查尔德半导体有限公司 有改善的较小正向电压损耗和较高截断能力的半导体结构
US20040021173A1 (en) * 2002-07-30 2004-02-05 Fairchild Semiconductor Corporation Dual trench power mosfet
US20070052060A1 (en) * 2005-08-23 2007-03-08 Yang Robert K DMOS transistor with floating poly-filled trench for improved performance through 3-D field shaping

Also Published As

Publication number Publication date
CN106298937A (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
CN110148629B (zh) 一种沟槽型碳化硅mosfet器件及其制备方法
CN107275383B (zh) 一种含有异质结的超结igbt
CN105810754B (zh) 一种具有积累层的金属氧化物半导体二极管
CN106711207B (zh) 一种纵向沟道的SiC结型栅双极型晶体管及其制备方法
CN105789314A (zh) 一种横向soi功率ldmos
CN104835836B (zh) 一种具有双电场调制的横向超结双扩散金属氧化物半导体场效应管
CN108461537A (zh) 一种沟槽栅电荷存储型igbt及其制作方法
CN102097480A (zh) N型超结横向双扩散金属氧化物半导体管
CN103700697B (zh) 纵向超结金属氧化物场效应晶体管
CN106298939A (zh) 一种具有复合介质层结构的积累型dmos
CN106098777A (zh) 一种分裂栅积累型dmos器件
CN103515443B (zh) 一种超结功率器件及其制造方法
CN106024859B (zh) 一种超结半导体器件终端结构
CN105140121B (zh) 具有载流子存储层的沟槽栅igbt制备方法
CN110473917A (zh) 一种横向igbt及其制作方法
CN106098781B (zh) 一种沟槽结构的vdmos
WO2024021977A1 (zh) 沟槽栅功率mosfet及其制造方法
CN106298937B (zh) 一种沟槽型vdmos
CN102097481B (zh) P型超结横向双扩散金属氧化物半导体管
CN208489191U (zh) 一种屏蔽栅功率mosfet器件
CN203871337U (zh) 沟槽型igbt器件
CN104638004B (zh) 超级结mosfet器件的结构
CN106057906B (zh) 一种具有p型埋层的积累型dmos
CN110010694A (zh) 一种高压多次外延型超结mosfet的结构及制造方法
CN109461769A (zh) 一种沟槽栅igbt器件结构及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190201

Termination date: 20210817

CF01 Termination of patent right due to non-payment of annual fee