CN106229359B - 一种基于碳纤维@二硫化钨纳米片核壳复合结构的高效光电转换器及其制备方法 - Google Patents

一种基于碳纤维@二硫化钨纳米片核壳复合结构的高效光电转换器及其制备方法 Download PDF

Info

Publication number
CN106229359B
CN106229359B CN201610616209.XA CN201610616209A CN106229359B CN 106229359 B CN106229359 B CN 106229359B CN 201610616209 A CN201610616209 A CN 201610616209A CN 106229359 B CN106229359 B CN 106229359B
Authority
CN
China
Prior art keywords
carbon fiber
tungsten disulfide
disulfide nano
nano slices
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610616209.XA
Other languages
English (en)
Other versions
CN106229359A (zh
Inventor
彭志坚
钱静雯
符秀丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Geosciences Beijing
Original Assignee
China University of Geosciences Beijing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Geosciences Beijing filed Critical China University of Geosciences Beijing
Priority to CN201610616209.XA priority Critical patent/CN106229359B/zh
Publication of CN106229359A publication Critical patent/CN106229359A/zh
Application granted granted Critical
Publication of CN106229359B publication Critical patent/CN106229359B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种基于碳纤维@二硫化钨纳米片核壳复合结构的高效光电转换器及其制备方法,属于新材料及其应用技术领域。本发明提出的光电转换器采用碳纤维@二硫化钨纳米片核壳复合结构为光电转换材料,并在每根碳纤维@二硫化钨纳米片核壳复合结构的碳纤维两端构建欧姆电极,然后并联到太阳能接收装置中,与低压电源和电器串联组合,即得到所述光电转换器。本发明所设计的光电转换器的结构简洁,器件的制备设备和工艺简单,所制备的器件的结构和性能稳定,产品收率高、成本低廉、生产过程清洁环保。本发明所制备的光电转换器,光电转化效率高,可用作太阳能发电装置和光信号灵敏探测器。

Description

一种基于碳纤维@二硫化钨纳米片核壳复合结构的高效光电 转换器及其制备方法
技术领域
本发明涉及一种基于碳纤维@二硫化钨纳米片核壳复合结构的高效光电转换器及其制备方法,属于新材料及其应用技术领域。
背景技术
随着人类社会的发展以及化石能源的日益枯竭,能源危机已经越来越成为当今社会需要解决的首要问题。如何开发新型能源,寻求解决能源危机的新途径已经迫在眉睫。自然界中的太阳光取之不尽、用之不竭,是非常理想的清洁能源。但是,目前的太阳能利用方式,包括光热转换器、太阳能电池等普遍具有转换率低,不能充分利用光能的缺点。所以,开发研究新型材料及其器件,将太阳光能高效率地转化为电能具有十分重要的现实意义。
类似于石墨烯,二维纳米结构的二硫化钨(WS2)具有其他形貌无法比拟的电学、光学及电化学性质。由于其特殊的微观结构和组成,二硫化钨已经广泛应用于润滑剂以及催化剂等领域。此外,二硫化钨在锂电池、储氢、电化学、光催化剂等方面也有着广泛的应用前景。在光学领域,二硫化钨由于其带隙在1.7-2.0eV左右,在可见光范围内有着出众的吸收能力。但是,由于其光生电子和空穴极易重新复合,其光催化能力欠佳;其光生电子不能有效的传导利用,也限制了这类材料在光电转化领域的应用。
因此,本发明提出采用碳纤维@二硫化钨纳米片核壳复合结构作为光电转换材料,在此基础上设计开发了一款高效光电转换器。本发明所使用的碳纤维@二硫化钨纳米片核壳复合结构为按照本发明人在发明专利“一种碳纤维@二硫化钨纳米片核壳复合结构及其制备方法”(见专利号或申请号:中国专利201610322521.8)中所提出的方法合成的产品。本发明所采用的这种复合结构的内核是碳纤维,外壳是成阵列状的二硫化钨纳米片;当这种复合结构材料被光照时,既能充分利用二硫化钨纳米片带隙较小的特点,提高可见光的吸收率,还能利用碳纤维的良好的导电性能,促进光生电子和空穴的分离,提高光电转化效率。因此,本发明所制备的光电转换器,能高效地将太阳光能转化为电能,可用作太阳能发电装置;而当电容量较小并外接电信号探测器时,这种装置还可以用作光信号灵敏探测器。此外,由于本发明所采用的这种碳纤维@二硫化钨纳米片核壳复合结构外观呈现纤维状,产量大、密度高、纯度高、形貌可控,因此本发明所设计的光电转换器的结构简洁,器件的制备设备和工艺简单,所制备的器件的结构和性能稳定,产品收率高、成本低廉、生产过程清洁环保。
发明内容
本发明的目的在于提出一种基于碳纤维@二硫化钨纳米片核壳复合结构的高效光电转换器及其制备方法。在所述光电转换器中,采用本发明人在发明专利“一种碳纤维@二硫化钨纳米片核壳复合结构及其制备方法”(见专利号或申请号:中国专利201610322521.8)中所合成的碳纤维@二硫化钨纳米片核壳复合结构作为光电转换材料,并在该材料的碳纤维两端构建欧姆电极,然后并联到太阳能接收装置中,在低压电场下促使光生电子定向移动,并与电器(用电设备或电流信号倍增器、检测器)串联组合,即得到所述光电转换器。由于本发明所采用的这种复合结构的内核是碳纤维,外壳是成阵列状的二硫化钨纳米片;当这种复合结构材料被光照时,既能充分利用二硫化钨纳米片带隙较小的特点,提高可见光的吸收率,还能利用碳纤维的良好的导电性能,促进光生电子和空穴的分离,提高光电转化效率。因此,本发明所制备的光电转换器,能高效地将太阳光能转化为电能,可用作太阳能发电装置;而当电容量较小并外接电信号探测器时,这种装置还可以用作光信号灵敏探测器。此外,由于本发明所采用的这种碳纤维@二硫化钨纳米片核壳复合结构外观呈现纤维状,产量大、密度高、纯度高、形貌可控,因此本发明所设计的光电转换器的结构简洁,器件的制备设备和工艺简单,所制备的器件的结构和性能稳定,产品收率高、成本低廉、生产过程清洁环保。
为了达成上述目标,本发明提出的基于碳纤维@二硫化钨纳米片核壳复合结构的高效光电转换器及其制备方法,其特征在于,所述光电转换器采用碳纤维@二硫化钨纳米片核壳复合结构作为光电转换材料,并在每根碳纤维@二硫化钨纳米片核壳复合结构的碳纤维两端构建欧姆电极,然后并联到太阳能接收装置中,与低压电源和电器串联组合,即得到所述光电转换器。
本发明提出的基于碳纤维@二硫化钨纳米片核壳复合结构的高效光电转换器的制备方法,包括以下步骤和内容:
(1)选取碳纤维@二硫化钨纳米片核壳复合结构作为光电转换材料,将其两端的二硫化钨纳米片剥离,裸露出其中间的碳纤维。
(2)将其生长有二硫化钨纳米片的部分放置到绝缘基片上,在其裸露的碳纤维两端上构建欧姆电极,然后并联到太阳能接收装置的两端电极上。
(3)将太阳能接收装置外接低压电源,并和电器串联组合。
(4)封装,备用。
在上述制备方法中,所述步骤(1)中,所采用的光电转换材料为碳纤维@二硫化钨纳米片核壳复合结构,是按照本发明人在发明专利“一种碳纤维@二硫化钨纳米片核壳复合结构及其制备方法”(见专利号或申请号:中国专利201610322521.8)中所提出的方法合成的。
在上述制备方法中,所述步骤(1)中,将碳纤维@二硫化钨纳米片核壳复合结构两端的二硫化钨纳米片剥离的方法为机械剥离、化学腐蚀、激光侵蚀之一种。
在上述制备方法中,所述步骤(2)中,绝缘基片为表面氧化了的硅片、石英玻璃片、高纯氧化铝片之一种。
在上述制备方法中,所述步骤(2)中,在碳纤维@二硫化钨纳米片核壳复合结构的碳纤维两端上构建欧姆电极的方法为半导体微加工、焊接、敷涂导电浆料之一种。
在上述制备方法中,所述步骤(2)中,在碳纤维@二硫化钨纳米片核壳复合结构的碳纤维两端上构建的欧姆电极的电极材料为铂、银、金、镍、铜、导电炭胶之一种。
在上述制备方法中,所述步骤(3)中,太阳能接收装置中的透明外壳为石英玻璃片、透明塑料片、纤维素复合薄膜之一种。
在上述制备方法中,所述步骤(3)中,外接低压电源为0.01-10V的电源。
在上述制备方法中,所述步骤(3)中,当所述光电转换器用作太阳能发电装置时,电器为用电设备,如照明设备;当用作光信号灵敏探测器时,电器为电流信号检测器(含信号倍增器)。
采用本技术制备的基于碳纤维@二硫化钨纳米片核壳复合结构的光电转换器,器件的结构简洁,器件的制备设备和工艺简单,器件的结构和性能稳定,产品收率高、成本低廉、生产过程清洁环保。这种结构的光电转换器,根据电容量的大小和外接电器的不同,本发明提出的高效光电转换器可分别用作太阳能发电装置或者光信号探测器。
附图说明
图1是本发明实施例1所制得的基于碳纤维@二硫化钨纳米片核壳复合结构的光电转换器的结构示意图(其中,1为透明外壳;2为光电转换材料,即碳纤维@二硫化钨纳米片核壳复合结构;3为太阳能接收装置的电极;4为太阳能接收装置的绝缘基片;5为外接低压电源;6为电器,即用电设备或者电流信号检测器)。
图2是本发明实施例1所制得的基于碳纤维@二硫化钨纳米片核壳复合结构的光电转换器的光电流响应曲线。
具体实施方式
下面结合实施例对本发明的技术方案做进一步说明。
本发明提出的基于碳纤维@二硫化钨纳米片核壳复合结构的高效光电转换器及其制备方法,其特征在于,所述光电转换器采用碳纤维@二硫化钨纳米片核壳复合结构作为光电转换材料,并在每根碳纤维@二硫化钨纳米片核壳复合结构的碳纤维两端构建欧姆电极,然后并联到太阳能接收装置中,与低压电源和电器串联组合,即得到所述光电转换器。并包括如下步骤和内容:
(1)选取按照本发明人在发明专利“一种碳纤维@二硫化钨纳米片核壳复合结构及其制备方法”(见专利号或申请号:中国专利201610322521.8)中所提出的方法合成的碳纤维@二硫化钨纳米片核壳复合结构作为光电转换材料,用机械剥离、化学腐蚀或激光侵蚀法将其两端的二硫化钨纳米片剥离,裸露出其中间的碳纤维。
(2)将其生长有二硫化钨纳米片的部分放置到表面氧化了的硅片、石英玻璃片或高纯氧化铝片绝缘基片上,用半导体微加工、焊接或敷涂导电浆料方法在其裸露的碳纤维两端上构建欧姆电极,其电极材料为铂、银、金、镍、铜或导电炭胶。然后并联到太阳能接收装置的两端电极上。
(3)将表面装有石英玻璃片、透明塑料片或纤维素复合薄膜透明外壳的太阳能接收装置外接串联0.01-10V的低压电源,然后和电器(用电设备或电流信号检测器)串联组合。
(4)封装,备用。
所得到的基于碳纤维@二硫化钨纳米片核壳复合结构的高效光电转换器外观上为平板式装置。
在50-500W氙灯光源照射下,外接0.01-10V电压下进行I-t测试,本发明提出的这种光电转换器具有优异的光响应特性,其光生电流较相同条件下采用纯WS2纳米片作为光电转换材料所制备的光电转换器的性能提高6倍。
总之,用本技术能得到高性能的基于碳纤维@二硫化钨纳米片核壳复合结构的光电转换器。
实施例1:将按照本发明人在发明专利“一种碳纤维@二硫化钨纳米片核壳复合结构及其制备方法”(见专利号或申请号:中国专利201610322521.8)中所提出的方法合成的一束质量为10mg、直径为约10μm、长度约3cm的碳纤维@二硫化钨纳米片核壳复合结构作作为电转换材料,用机械剥离的方法将其两端的二硫化钨纳米片进行剥离,然后将其安装到太阳能接收装置中的表面经氧化的硅片上;在其裸露的碳纤维两端上焊接上铜丝构建欧姆电极,然后并联到太阳能接收装置的电极上;在太阳能接收装置表面覆盖一层石英玻璃片透明外壳,并串联外接电压为1V的电源和光电流探测器,即得到一种所述基于碳纤维@二硫化钨纳米片核壳复合结构的高效光电转换器。
所制备的基于碳纤维@二硫化钨纳米片核壳复合结构的光电转换器外观上为平板式装置(见图1);本发明提出的这种光电转换器的制备方法设备和工艺简单、制备条件严格可控、产品收率高、成本低廉,且制备方法经济环保;本发明提出的这种光电转换器结构简洁,结构和性能稳定,光电响应性能良好(见图2);其光生电流较相同条件下采用相同质量的纯二硫化钨纳米片作为光电转换材料所制备的光电转换器的性能提高6倍。

Claims (2)

1.一种基于碳纤维@二硫化钨纳米片核壳复合结构的高效光电转换器,其特征在于,所述光电转换器采用碳纤维@二硫化钨纳米片核壳复合结构作为光电转换材料,并在每根碳纤维@二硫化钨纳米片核壳复合结构的碳纤维两端构建欧姆电极,然后并联到太阳能接收装置中,与外接电源和电器串联组合,即得到所述光电转换器;包括如下步骤和内容:
(1)选取碳纤维@二硫化钨纳米片核壳复合结构作为光电转换材料,将其两端的二硫化钨纳米片剥离,裸露出其中间的碳纤维;
(2)将其生长有二硫化钨纳米片的部分放置到绝缘基片上,在其裸露的碳纤维两端上构建欧姆电极,然后并联到太阳能接收装置的两端电极上;
(3)将太阳能接收装置外接电源,并和电器串联组合;
(4)封装,备用。
2.按照权利要求1所述的碳纤维@二硫化钨纳米片核壳复合结构的高效光电转换器,其特征在于,所述步骤(1)中,所采用的光电转换材料为碳纤维@二硫化钨纳米片核壳复合结构;所述步骤(1)中,将碳纤维@二硫化钨纳米片核壳复合结构两端的二硫化钨纳米片剥离的方法为机械剥离、化学腐蚀、激光侵蚀之一种;所述步骤(2)中,绝缘基片为表面氧化了的硅片、石英玻璃片、高纯氧化铝片之一种;所述步骤(2)中,在碳纤维@二硫化钨纳米片核壳复合结构的碳纤维两端上构建欧姆电极的方法为半导体微加工、焊接、敷涂导电浆料之一种;所述步骤(2)中,在碳纤维@二硫化钨纳米片核壳复合结构的碳纤维两端上构建的欧姆电极的电极材料为铂、银、金、镍、铜、导电炭胶之一种;所述步骤(3)中,太阳能接收装置中的透明外壳为石英玻璃片、透明塑料片、纤维素复合薄膜之一种;所述步骤(3)中,外接电源为0.01-10V。
CN201610616209.XA 2016-07-29 2016-07-29 一种基于碳纤维@二硫化钨纳米片核壳复合结构的高效光电转换器及其制备方法 Expired - Fee Related CN106229359B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610616209.XA CN106229359B (zh) 2016-07-29 2016-07-29 一种基于碳纤维@二硫化钨纳米片核壳复合结构的高效光电转换器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610616209.XA CN106229359B (zh) 2016-07-29 2016-07-29 一种基于碳纤维@二硫化钨纳米片核壳复合结构的高效光电转换器及其制备方法

Publications (2)

Publication Number Publication Date
CN106229359A CN106229359A (zh) 2016-12-14
CN106229359B true CN106229359B (zh) 2017-08-29

Family

ID=57535558

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610616209.XA Expired - Fee Related CN106229359B (zh) 2016-07-29 2016-07-29 一种基于碳纤维@二硫化钨纳米片核壳复合结构的高效光电转换器及其制备方法

Country Status (1)

Country Link
CN (1) CN106229359B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107799322B (zh) * 2016-09-06 2019-11-05 中国科学院苏州纳米技术与纳米仿生研究所 三维结构硫铜化合物/碳纤维复合材料、其制法及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219403A (zh) * 2013-04-19 2013-07-24 苏州大学 基于二维层状原子晶体材料的光探测器
CN105280900A (zh) * 2015-09-22 2016-01-27 复旦大学 一种二硫化钨/石墨烯纳米带复合材料及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070170068A1 (en) * 2006-01-24 2007-07-26 Usc, Llc Electrocomposite coatings for hard chrome replacement
US20110104551A1 (en) * 2009-11-05 2011-05-05 Uchicago Argonne, Llc Nanotube composite anode materials suitable for lithium ion battery applications
CN102142550B (zh) * 2011-02-25 2013-10-16 浙江大学 一种石墨烯纳米片/ws2的复合纳米材料及其制备方法
CN103531664B (zh) * 2013-10-28 2016-08-17 苏州大学 柔性衬底上制备石墨烯基光电晶体管的方法
CN103641173B (zh) * 2013-11-04 2016-03-02 江苏大学 一种类石墨烯二硫化钨纳米片的制备方法
CN105322147B (zh) * 2015-09-28 2017-07-28 复旦大学 一种二硫化钨/碳纳米纤维/石墨烯复合材料及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103219403A (zh) * 2013-04-19 2013-07-24 苏州大学 基于二维层状原子晶体材料的光探测器
CN105280900A (zh) * 2015-09-22 2016-01-27 复旦大学 一种二硫化钨/石墨烯纳米带复合材料及其制备方法

Also Published As

Publication number Publication date
CN106229359A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
Myung et al. Composition-tuned ZnO− CdSSe core− shell nanowire arrays
US7638706B2 (en) Fibril solar cell and method of manufacture
Ren et al. Highly efficient polypyrrole sensitized TiO2 nanotube films for photocathodic protection of Q235 carbon steel
Li et al. Counter electrodes from conducting polymer intercalated graphene for dye-sensitized solar cells
Park et al. Photoelectrochemical tandem cell with bipolar dye-sensitized electrodes for vectorial electron transfer for water splitting
Luo et al. Preparation of polypyrrole sensitized TiO2 nanotube arrays hybrids for efficient photoelectrochemical water splitting
JP2014056962A (ja) ペロブスカイト化合物を用いた光電変換素子およびその製造方法
CN102122579A (zh) 一种碳纳米管阵列光阴极材料及其制备方法和应用
CN102201459B (zh) 一种纳米多孔金属负载半导体的光电极材料及其制备方法
JP2016060887A (ja) 発電性組成物及びこれを用いた発電素子、発電装置及び蓄発電装置
Song et al. Dye-sensitized solar cells based on graphene-TiO2 nanoparticles/TiO2 nanotubes composite films
Peng et al. Influence of ZnO nano-array interlayer on the charge transfer performance of quantum dot sensitized solar cells
CN101567274B (zh) 使用复合半导体材料的染敏太阳能电池
CN106319556A (zh) 一种高效光电催化产氢电极的制备方法及应用
Nasori et al. Realizing super-long Cu2O nanowires arrays for high-efficient water splitting applications with a convenient approach
Park et al. Unassisted Water Splitting from Bipolar Pt∕ Dye-Sensitized TiO2 Photoelectrode Arrays
CN106229359B (zh) 一种基于碳纤维@二硫化钨纳米片核壳复合结构的高效光电转换器及其制备方法
CN105513812B (zh) 一种石墨烯太阳能电池及其制备方法
CN208368522U (zh) 一种小功率太阳能电池组
CN103757656B (zh) 结合原电池和光电化学电池的光电化学制氢装置
Miao et al. Enhancement of the efficiency of dye-sensitized solar cells with highly ordered Pt-decorated nanostructured silicon nanowires based counter electrodes
KR20190063962A (ko) 슁글드 어레이 접합 방식을 이용한 광전기화학적 물분해용 고전압 광전극의 제조 방법 및 이에 따른 광전극
Zhao et al. Addition of electrospun TiO2 nanofibers for improving the charge capabilities of polymer electrolyte-based DSSCs
CN112563338B (zh) 一种柔性自供电光电探测器及其制备方法和应用
JP6608789B2 (ja) 発電性組成物及びこれを用いた発電素子、発電装置及び蓄発電装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170829

Termination date: 20180729

CF01 Termination of patent right due to non-payment of annual fee