CN106222724A - 一种调控式Cu离子原位掺杂TiO2纳米管阵列的制备方法 - Google Patents

一种调控式Cu离子原位掺杂TiO2纳米管阵列的制备方法 Download PDF

Info

Publication number
CN106222724A
CN106222724A CN201610693801.XA CN201610693801A CN106222724A CN 106222724 A CN106222724 A CN 106222724A CN 201610693801 A CN201610693801 A CN 201610693801A CN 106222724 A CN106222724 A CN 106222724A
Authority
CN
China
Prior art keywords
nano
tube array
ion
situ
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610693801.XA
Other languages
English (en)
Other versions
CN106222724B (zh
Inventor
汤丁丁
史德亮
李亚龙
刘凤丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changjiang River Scientific Research Institute Changjiang Water Resources Commission
Original Assignee
Changjiang River Scientific Research Institute Changjiang Water Resources Commission
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changjiang River Scientific Research Institute Changjiang Water Resources Commission filed Critical Changjiang River Scientific Research Institute Changjiang Water Resources Commission
Priority to CN201610693801.XA priority Critical patent/CN106222724B/zh
Publication of CN106222724A publication Critical patent/CN106222724A/zh
Application granted granted Critical
Publication of CN106222724B publication Critical patent/CN106222724B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/26Anodisation of refractory metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • ing And Chemical Polishing (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及调控式Cu离子原位掺杂TiO2纳米管阵列的制备方法,包括以下步骤:1)以TA13合金片或TA13合金棒为阳极,Pt片或Pt棒为阴极,在含氟溶液中阳极氧化制备Cu离子原位掺杂TiO2纳米管阵列,清洗样品;2)采用超声辅助选择性酸溶解法浸出部分Cu离子,实现纳米管阵列中的Cu离子含量的定量调控;3)调控完成清洗,干燥即得到调控式Cu离子原位掺杂量TiO2纳米管阵列。本发明的优点和有益效果在于:1.以TA13合金为基材,不但简化Cu离子掺杂TiO2纳米管阵列的制备工艺,还使掺杂离子分散更均匀;2.采用超声辅助选择性酸溶解法能便捷可控地调节Cu离子掺杂量,为制备性能优良的催化剂提供可靠方法。

Description

一种调控式Cu离子原位掺杂TiO2纳米管阵列的制备方法
技术领域
本发明属于纳米材料制备领域,涉及一种调控式Cu离子原位掺杂TiO2纳米管阵列的制备方法。
背景技术
TiO2纳米管阵列具有优异的光(电)催化活性和化学稳定性,广泛应用于光(电)催化产氢、光(电)催化治理环境污染物和太阳能电池等领域。Cu离子掺杂后形成能量较低的掺杂能级以吸收可见光,拓宽光谱响应范围,同时还可以在TiO2表面形成氧空位,促使Ti3+氧化中心的形成,有利于电荷俘获并抑制电子-空穴复合,提升光量子效率。目前,Cu离子掺杂TiO2纳米管阵列主要采用常规的后期引入方式,即先制备TiO2纳米管阵列,再通过化学或电化学等方法将Cu离子引入至TiO2纳米管阵列表面。但该方式存在以下两方面难题:
1.TiO2纳米管阵列管底为封闭结构,Cu离子从管口进入,依靠扩散作用向管内输入,因管内溶液缺乏流动性,Cu离子扩散至管底的过程中易形成浓度差,使管口区域的Cu离子溶度较高,沉积也较多,而接近管底区域的Cu离子溶度较低,沉积也较少,Cu离子浓度差造成了掺杂不均匀的现象;
2.TiO2纳米管阵列结构致密,管与管之间空隙非常小,管外壁难以有效附着Cu氧化物。
这两方面难题导致大部分Cu氧化物集中在管开口处,分散程度较差,管开口处掺杂效果较好,但随着管长的延伸管内掺杂效果逐渐下降,并且管外壁难以掺杂。近年来,研究者们采用提前引入法对TiO2纳米管阵列进行金属离子掺杂,取得了良好的效果。该方法以钛合金代替纯钛作电解阳极,提前引入掺杂金属,制备了金属离子原位掺杂的TiO2纳米管阵列。但提前引入的金属掺杂量主要由钛合金成分决定,因此该方法存在金属离子掺杂比例难以调控的问题。众多研究表明掺杂比例是金属离子改性TiO2光催化性能的决定性因素之一。如Choi等系统研究了不同掺杂比例(0.1-3at%)的21种金属离子对TiO2光催化活性的影响,发现除无改性效果的金属离子外,纳米TiO2的光催化性能随金属离子掺杂比例的增加,表现出先上升后下降的抛物线型变化规律,研究认为掺杂量需要控制在适宜的比例(约0.5at%),比例过少不能充分发挥掺杂的作用,过多则会引起大量的结构缺陷,形成电子-空穴的复合中心。López等详细探索了不同比例(0.1-5wt%)Cu掺杂纳米TiO2的性能,发现0.5wt%的掺杂比例具有最佳的光催化性能,1wt%和0.1wt%的掺杂比例效果相当,更过量的掺杂会引起性能的退化。TA13合金中Cu含量较高,由其制备的纳米管阵列可能也存在Cu离子掺杂过量的问题。因此,对Cu离子原位掺杂TiO2纳米管阵列进行再处理,以优化Cu离子的掺杂比例,可实现光催化性能的最优化。
发明内容
本发明所要解决的技术问题是提供一种成本低、工艺简单的调控式Cu离子原位掺杂TiO2纳米管阵列的制备方法。
本发明解决上述技术问题所采用的技术方案是:一种调控式Cu离子原位掺杂TiO2纳米管阵列的制备方法,包括以下步骤:
1)以TA13合金片或TA13合金棒为阳极,Pt片或Pt棒为阴极,在含氟溶液中阳极氧化制备Cu离子原位掺杂TiO2纳米管阵列,清洗样品;
2)利用Cu和Ti的化学性质差异,通过选取恰当的酸溶液,并精确控制浸出条件,采用超声辅助选择性酸溶解法浸出部分Cu离子,实现纳米管阵列中的Cu离子含量的定量调控;
3)调控完成后清洗,干燥即得到调控式Cu离子原位掺杂量TiO2纳米管阵列。
按上述方案,步骤1)所述的阳极氧化的电压为5-50V,温度为20-50℃,时间为30min-4h。
按上述方案,步骤2)所述的超声辅助采用的超声波频率为30-60KHz,所加入的酸溶液pH为1-4。
按上述方案,步骤2)所述的溶解温度为20-60℃,溶解时间为20min-4h。
按上述方案,所述的含氟溶液为含氟化铵的有机溶液或含氢氟酸的无机溶液。
按上述方案,所述的含氟溶液为含氟化铵的乙二醇、丙三醇溶液或含氢氟酸的水溶液。
按上述方案,所述的酸溶液为有机酸或无机酸。
按上述方案,所述的酸溶液为草酸、柠檬酸、乙酸或盐酸、硫酸、硝酸、磷酸。
按上述方案,所述的Cu离子原位掺杂量的调控范围为0-1.5wt%。
本发明首次采用TA13合金为基材壳实现更优良的Cu离子掺杂效果,为实现Cu离子的调控,同时保持纳米管阵列的结构不被破坏,首次开发了温和的超声辅助选择性溶解法调控Cu离子含量,在较低频率的超声波辅助下,适宜的酸溶液可以深入纳米管内部,可控的溶出Cu离子,实现调控式Cu离子原位掺杂TiO2纳米管阵列的制备。
本发明的优点和有益效果在于:
1.以TA13合金为基材,不但简化Cu离子掺杂TiO2纳米管阵列的制备工艺,还使掺杂离子分散更均匀;
2.采用超声辅助选择性酸溶解法能便捷可控地调节Cu离子掺杂量,为制备性能优良的催化剂提供可靠方法。
具体实施方式
下面结合实施例对本发明做进一步详细的说明,此说明不会构成对于本发明的限制。
实施例1
将厚度为2mm的TA13合金片裁剪为2×8cm2长条状,通过砂纸打磨并超声清洗后作待用阳极,以相同尺寸Pt片为阴极并配制含2wt%水、0.3wt%氟化铵的乙二醇溶液作电解质。电解过程采用两电极直流电解系统,电压为50V,温度为20℃,时间为30min。电解完成后用去离子水冲洗阳极表面的残留液体,再浸渍于恒温20℃的0.1M的HCl溶液中,30KHz频率下超声4h后取出并用去离子水冲洗干净,得到Cu离子掺杂量为0的TiO2纳米管阵列。将该纳米管阵列与常规TiO2纳米管阵列应用于紫外光降解初始溶度为10mg/L甲基蓝溶液,由于Cu离子的完全浸出,对比发现该纳米管阵列的光催化降解甲基蓝效率与常规的TiO2纳米管阵列相当,2h降解后甲基蓝溶液的剩余溶度分别为1.2mg/L和1.3mg/L。
实施例2
将直径为2cm的TA13合金棒裁剪长8cm的短棒状,通过砂纸打磨并超声清洗后作待用阳极,以2×8cm2的Pt片为阴极并配制含2wt%水、0.3wt%氟化铵的丙三醇溶液作电解质。电解过程采用两电极直流电解系统,电压为40V,温度为30℃,时间为1h。电解完成后用去离子水冲洗阳极表面的残留液体,再浸渍于恒温30℃的0.01M的H3PO4溶液中,30KHz频率下超声3h后取出并用去离子水冲洗干净,得到Cu离子掺杂量为0.2wt%的TiO2纳米管阵列。将该纳米管阵列与常规TiO2纳米管阵列应用于紫外光降解10mg/L甲基蓝溶液,由于0.2wt%的Cu离子掺杂,对比发现该纳米管阵列的光催化降解甲基蓝效率优于常规的TiO2纳米管阵列,2h降解后甲基蓝溶液的剩余溶度分别为1.0mg/L和1.3mg/L。
实施例3
将厚度为2mm的TA13合金片裁剪为2×8cm2长条状,通过砂纸打磨并超声清洗后作待用阳极,以相同尺寸Pt片为阴极并配制含2wt%水、0.3wt%氟化铵的乙二醇溶液作电解质。电解过程采用两电极直流电解系统,电压为30V,温度为40℃,时间为2h。电解完成后用去离子水冲洗阳极表面的残留液体,再浸渍于恒温40℃的0.001M的H2SO4溶液中,40KHz频率下超声2h后取出并用去离子水冲洗干净,得到Cu离子掺杂量为0.5wt%的TiO2纳米管阵列。将该纳米管阵列与常规TiO2纳米管阵列应用于紫外光降解10mg/L甲基蓝溶液,由于0.5wt%的Cu离子掺杂,对比发现该纳米管阵列的光催化降解甲基蓝效率明显优于常规的TiO2纳米管阵列,2h降解后甲基蓝溶液的剩余溶度分别为0.4mg/L和1.3mg/L。
实施例4
将厚度为2mm的TA13合金片裁剪为2×8cm2长条状,通过砂纸打磨并超声清洗后作待用阳极,以相同尺寸Pt片为阴极并配制含2wt%水、0.3wt%氟化铵的乙二醇溶液作电解质。电解过程采用两电极直流电解系统,电压为20V,温度为50℃,时间为3h。电解完成后用去离子水冲洗阳极表面的残留液体,再浸渍于恒温50℃的0.0001M的HCl溶液中,50KHz频率下超声1h后取出并用去离子水冲洗干净,得到Cu离子掺杂量为1.0wt%的TiO2纳米管阵列。将该纳米管阵列与常规TiO2纳米管阵列应用于紫外光降解10mg/L甲基蓝溶液,由于1wt%的Cu离子掺杂,对比发现该纳米管阵列的光催化降解甲基蓝效率优于常规的TiO2纳米管阵列,2h降解后甲基蓝溶液的剩余溶度分别为0.6mg/L和1.3mg/L。
实施例5
将厚度为2mm的TA13合金片裁剪为2×8cm2长条状,通过砂纸打磨并超声清洗后作待用阳极,以相同尺寸Pt片为阴极并配制含0.3wt%氟化铵的水溶液作电解质。电解过程采用两电极直流电解系统,电压为10V,温度为30℃,时间为1h。电解完成后用去离子水冲洗阳极表面的残留液体,再浸渍于恒温60℃的0.1M的草酸溶液中,60KHz频率下超声40min后取出并用去离子水冲洗干净,得到Cu离子掺杂量为1.2wt%的TiO2纳米管阵列。将该纳米管阵列与常规TiO2纳米管阵列应用于紫外光降解10mg/L甲基蓝溶液,由于1.2wt%的Cu离子掺杂,对比发现该纳米管阵列的光催化降解甲基蓝效率优于常规的TiO2纳米管阵列,2h降解后甲基蓝溶液的剩余溶度分别为0.8mg/L和1.3mg/L。
实施例6
将厚度为2mm的TA13合金片裁剪为2×8cm2长条状,通过砂纸打磨并超声清洗后作待用阳极,以相同尺寸Pt片为阴极并配制含0.3wt%氟化铵的水溶液作电解质。电解过程采用两电极直流电解系统,电压为5V,温度为30℃,时间为1h。电解完成后用去离子水冲洗阳极表面的残留液体,再浸渍于恒温30℃的0.1M的乙酸溶液中,50KHz频率下超声40min后取出并用去离子水冲洗干净,得到Cu离子掺杂量为1.3wt%的TiO2纳米管阵列。将该纳米管阵列与常规TiO2纳米管阵列应用于紫外光降解10mg/L甲基蓝溶液,由于1.3wt%的Cu离子掺杂,对比发现该纳米管阵列的光催化降解甲基蓝效率优于常规的TiO2纳米管阵列,2h降解后甲基蓝溶液的剩余溶度分别为0.9mg/L和1.3mg/L。
实施例7
将厚度为2mm的TA13合金片裁剪为2×8cm2长条状,通过砂纸打磨并超声清洗后作待用阳极,以相同尺寸Pt片为阴极并配制含2wt%水、0.3wt%氟化铵的乙二醇溶液作电解质。电解过程采用两电极直流电解系统,电压为50V,温度为30℃,时间为4h。电解完成后用去离子水冲洗阳极表面的残留液体,再浸渍于恒温30℃的0.1M的柠檬酸溶液中,50KHz频率下超声2h后取出并用去离子水冲洗干净,得到Cu离子掺杂量为0.8wt%的TiO2纳米管阵列。将该纳米管阵列与常规TiO2纳米管阵列应用于紫外光降解10mg/L甲基蓝溶液,由于0.8wt%的Cu离子掺杂,对比发现该纳米管阵列的光催化降解甲基蓝效率优于常规的TiO2纳米管阵列,2h降解后甲基蓝溶液的剩余溶度分别为0.5mg/L和1.3mg/L。

Claims (9)

1.一种调控式Cu离子原位掺杂TiO2纳米管阵列的制备方法,包括以下步骤:
1)以TA13合金片或TA13合金棒为阳极,Pt片或Pt棒为阴极,在含氟溶液中阳极氧化制备Cu离子原位掺杂TiO2纳米管阵列,清洗样品;
2)利用Cu和Ti的化学性质差异,通过选取恰当的酸溶液,并精确控制浸出条件,采用超声辅助选择性酸溶解法浸出部分Cu离子,实现纳米管阵列中的Cu离子含量的定量调控;
3)调控完成后清洗,干燥即得到调控式Cu离子原位掺杂量TiO2纳米管阵列。
2.根据权利要求1所述的调控式Cu离子原位掺杂TiO2纳米管阵列的制备方法,其特征在于步骤1)所述的阳极氧化的电压为5-50V,温度为20-50℃,时间为30min-4h。
3.根据权利要求1所述的调控式Cu离子原位掺杂TiO2纳米管阵列的制备方法,其特征在于步骤2)所述的超声辅助采用的超声波频率为30-60KHz,所加入的酸溶液pH为1-4。
4.根据权利要求1所述的调控式Cu离子原位掺杂TiO2纳米管阵列的制备方法,其特征在于步骤2)所述的溶解温度为20-60℃,溶解时间为20min-4h。
5.根据权利要求1所述的调控式Cu离子原位掺杂TiO2纳米管阵列的制备方法,其特征在于所述的含氟溶液为含氟化铵的有机溶液或含氢氟酸的无机溶液。
6.根据权利要求5所述的调控式Cu离子原位掺杂TiO2纳米管阵列的制备方法,其特征在于所述的含氟溶液为含氟化铵的乙二醇、丙三醇溶液或含氢氟酸的水溶液。
7.根据权利要求1所述的调控式Cu离子原位掺杂TiO2纳米管阵列的制备方法,其特征在于所述的酸溶液为有机酸或无机酸。
8.根据权利要求7所述的调控式Cu离子原位掺杂TiO2纳米管阵列的制备方法,其特征在于所述的酸溶液为草酸、柠檬酸、乙酸或盐酸、硫酸、硝酸、磷酸。
9.根据权利要求1所述的调控式Cu离子原位掺杂TiO2纳米管阵列的制备方法,其特征在于所述的Cu离子原位掺杂量的调控范围为0-1.5wt%。
CN201610693801.XA 2016-08-19 2016-08-19 一种调控式Cu离子原位掺杂TiO2纳米管阵列的制备方法 Expired - Fee Related CN106222724B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610693801.XA CN106222724B (zh) 2016-08-19 2016-08-19 一种调控式Cu离子原位掺杂TiO2纳米管阵列的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610693801.XA CN106222724B (zh) 2016-08-19 2016-08-19 一种调控式Cu离子原位掺杂TiO2纳米管阵列的制备方法

Publications (2)

Publication Number Publication Date
CN106222724A true CN106222724A (zh) 2016-12-14
CN106222724B CN106222724B (zh) 2017-12-12

Family

ID=57553996

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610693801.XA Expired - Fee Related CN106222724B (zh) 2016-08-19 2016-08-19 一种调控式Cu离子原位掺杂TiO2纳米管阵列的制备方法

Country Status (1)

Country Link
CN (1) CN106222724B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111952384A (zh) * 2020-07-02 2020-11-17 深圳大学 光电探测器及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050224360A1 (en) * 2004-04-02 2005-10-13 The Penn Research Foundation Titania nanotube arrays for use as sensors and method of producing
CN101204649A (zh) * 2006-12-20 2008-06-25 中国科学院金属研究所 一种制备阳离子掺杂氧化钛纳米管阵列的方法
CN102220618A (zh) * 2011-05-27 2011-10-19 华南理工大学 一种制备掺杂银的TiO2纳米棒阵列的方法
CN102485969A (zh) * 2010-12-06 2012-06-06 长沙理工大学 氮、钆共掺杂二氧化钛纳米管阵列的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050224360A1 (en) * 2004-04-02 2005-10-13 The Penn Research Foundation Titania nanotube arrays for use as sensors and method of producing
CN101204649A (zh) * 2006-12-20 2008-06-25 中国科学院金属研究所 一种制备阳离子掺杂氧化钛纳米管阵列的方法
CN102485969A (zh) * 2010-12-06 2012-06-06 长沙理工大学 氮、钆共掺杂二氧化钛纳米管阵列的制备方法
CN102220618A (zh) * 2011-05-27 2011-10-19 华南理工大学 一种制备掺杂银的TiO2纳米棒阵列的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DINGDING TANG ET AL.: "Effect of the composition of Ti alloy on the photocatalytic activities ofTi-based oxide nanotube arrays prepared by anodic oxidation", 《APPLIED SURFACE SCIENCE》 *
JU-YOUNG PARK EA AL.: "Fabrication and characterization of metal-doped TiO2 nanofibers for photocatalytic reactions", 《MATERIALS LETTERS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111952384A (zh) * 2020-07-02 2020-11-17 深圳大学 光电探测器及其制备方法
CN111952384B (zh) * 2020-07-02 2022-05-10 深圳大学 光电探测器及其制备方法

Also Published As

Publication number Publication date
CN106222724B (zh) 2017-12-12

Similar Documents

Publication Publication Date Title
CN106086991B (zh) 一种调控式金属离子原位掺杂TiO2纳米管阵列的制备方法
Yao et al. Electrocatalytic degradation of methylene blue on PbO2-ZrO2 nanocomposite electrodes prepared by pulse electrodeposition
Ding et al. Controlled chemical etching leads to efficient silicon–bismuth interface for photoelectrochemical CO2 reduction to formate
Mao et al. Efficient electrochemical reduction of bromate by a Pd/rGO/CFP electrode with low applied potentials
Bessegato et al. Enhancement of photoelectrocatalysis efficiency by using nanostructured electrodes
CN101235515B (zh) 一种活性银电极的制备方法
CN103539227B (zh) 含CuO中间层的负载Ag掺杂MnO2-CeO2活性氧化铝粒子电极的制备工艺
Quan et al. Synergetic degradation of 2, 4-D by integrated photo-and electrochemical catalysis on a Pt doped TiO2/Ti electrode
Ma et al. Development and reaction mechanism of efficient nano titanium electrode: Reconstructed nanostructure and enhanced nitrate removal efficiency
CN107445244B (zh) 光电催化-氯自由基脱氮方法
US20130032470A1 (en) Systems including nanotubular arrays for converting carbon dioxide to an organic compound
CN102689948B (zh) 一种处理含氟有机污染物的SnO2电极
CN103285891A (zh) 卤氧化铋-氧化钛纳米管阵列复合光催化薄膜的制备方法
CN102190351A (zh) 一种用于废水处理的Ce掺杂PbO2电极及制备方法
CN106277229A (zh) 一种修饰电极电催化氧化处理有毒有机污染物阿特拉津的方法
JP2016509529A5 (zh)
CN103320839B (zh) 去除有机污染物的二氧化钛纳米管阵列光电极的制备方法
KR100930929B1 (ko) 펜톤산화처리 촉매용 금속철, 그 제조방법 및 이를 이용한 폐수처리방법
CN106222724B (zh) 一种调控式Cu离子原位掺杂TiO2纳米管阵列的制备方法
CN107841777B (zh) 一种钨掺杂二氧化钛纳米管阵列的制备方法
WO2012026799A1 (en) An apparatus and method for rapid rate of titanium dioxide (tio2) nanotubes arrays formation
CN107570140A (zh) 一种光敏化WO3/TiO2催化膜及其制备方法
Liu et al. Two-dimensional peak-valley alternating self-supporting electrode accelerating nitrate electrocatalytic reduction: Ammonia synthesis and wastewater treatment
CN114534726B (zh) 铁/氧掺杂碳基过滤式电芬顿阴极及其制备方法与应用
Yang et al. Oxygen vacancy-rich nanoporous Cu-CoOx/CC hybrid catalyst for controllable electrocatalytic reduction of nitrate

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171212