CN106219666A - 一种Pt掺杂In2O3光催化降解水中PFOA的方法 - Google Patents

一种Pt掺杂In2O3光催化降解水中PFOA的方法 Download PDF

Info

Publication number
CN106219666A
CN106219666A CN201610529587.4A CN201610529587A CN106219666A CN 106219666 A CN106219666 A CN 106219666A CN 201610529587 A CN201610529587 A CN 201610529587A CN 106219666 A CN106219666 A CN 106219666A
Authority
CN
China
Prior art keywords
pfoa
doping
photocatalytic degradation
water
adulterates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610529587.4A
Other languages
English (en)
Other versions
CN106219666B (zh
Inventor
喻泽斌
刘晴
李明洁
胡晓
张搏
朱有慧
匡瑜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CN201610529587.4A priority Critical patent/CN106219666B/zh
Publication of CN106219666A publication Critical patent/CN106219666A/zh
Application granted granted Critical
Publication of CN106219666B publication Critical patent/CN106219666B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • B01J37/345Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy of ultraviolet wave energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Water Supply & Treatment (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Catalysts (AREA)

Abstract

本发明属于水处理技术领域,具体涉及一种Pt掺杂In2O3光催化降解水中PFOA的方法。一种Pt掺杂In2O3光催化降解水中PFOA的方法,包括如下步骤:光还原法制备Pt掺杂In2O3催化剂和利用Pt掺杂In2O3光催化降解PFOA。本发明方法掺杂的Pt能作为电子贮存点有效转移In2O3上产生的光生电子,阻止光生电子和空穴的复合,从而提高PFOA的脱氟效率,Pt掺杂后的In2O3对PFOA的光催化脱氟效率是In2O3的2‑4倍;本发明方法利用Pt掺杂在In2O3上大大提高了In2O3的光吸收能力,使得In2O3对350nm之后的光有强烈的吸收,有利于实现对清洁能源太阳光能的利用。

Description

一种Pt掺杂In2O3光催化降解水中PFOA的方法
技术领域
本发明属于水处理技术领域,具体涉及一种Pt掺杂In2O3光催化材料的制备及将该材料作为催化剂,以紫外光为光源,光催化降解水中持久性有机污染物PFOA的方法。
背景技术
全氟辛酸(Perfluorooctanoic Acid,PFOA)是一种典型的全氟类有机化合物(Perfluorinated Compounds,PFCs),近年来受到世界各国的广泛关注。PFOA具有优良的稳定性及疏水疏油的特性,被广泛应用于工业生产和消费产品,包括防火薄膜、地板上光剂、香波、皮革制品、泡沫灭火剂、农药、油漆添加剂、杀虫剂等的生产。由于PFOA的化学惰性及其生产和使用的广泛性,已造成严重的环境积累和污染,成为继有机氯农药和二恶因之后的一种新型持久性有机污染物(POPs)。其神经毒性、免疫毒性、生殖毒性对人类和生物体的健康造成巨大威胁,因此,有效处理PFOA并降低其对环境和人体的危害刻不容缓。由于PFOA极强的化学稳定性,迄今为止,没有发现其任何自然降解的途径。常用的生物降解法、吸附法、焚烧法存在周期较长、降解不彻底、易造成环境的二次污染等缺点。
光催化法具有反应条件温和、操作简便、二次污染少、对污染物无选择性等优点而普遍应用于有机污染物的处理,是一项重要的高级氧化技术。TiO2是常用的光催化剂,但TiO2对于全氟羧酸类物质的光催化活性不高。据Environ.Sci.Technol.2012,46(10):5528报道,李振民等用In2O3和TiO2做光催化剂对全氟羧酸类物质进行光催化降解,In2O3显示出高于TiO2的光催化活性,但其整体的活性仍有待提高。在光照条件下,In2O3被激发出电子-空穴对,空穴和电子会分别与吸附在In2O3表面的有机物发生氧化还原反应,但电子-空穴对的复合效率高,导致其不能有效地与有机物进行反应,从而降低光催化效率。因此,减缓光生电子与空穴的复合,提高氧化镓的光催化活性成为研究的首要内容。贵金属掺杂是一种提高催化剂活性的方法,贵金属在In2O3表面沉积形成捕获陷阱,可将电子暂时捕获,提高电子空穴的分离效率,从而提高光催化活性。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本发明的目的在于提供一种提高PFOA光催化降解效率的方法,采用光还原法制备得到Pt掺杂In2O3作为光催化剂,在紫外光照射下实现PFOA的光催化降解,达到去除水中PFOA的目的。该方法在温和条件下即可实现PFOA的高效降解,提高脱氟率,缩短反应时间。
本发明提供的技术方案是:
一种Pt掺杂In2O3光催化降解水中PFOA的方法,包括如下步骤:
(1)光还原法制备Pt掺杂In2O3催化剂:将In2O3加入去离子水中,配制成In2O3悬浮液,然后超声10-30min,加入含Pt盐溶液,搅拌15min,再加入甲酸,得混合液;将混合液置于紫外灯下光照3h使Pt2+还原为Pt单质,光照过程伴随N2曝气以去除水中溶解氧;待光照结束后,将沉淀分离,用去离子水洗涤沉淀3-5次,干燥,即得到Pt掺杂In2O3光催化剂,研磨后备用;
(2)利用Pt掺杂In2O3光催化降解PFOA:将PFOA溶液置于带有冷却夹套的圆柱形石英容器中,调节pH,加入90mg步骤(1)制备的Pt掺杂In2O3光催化剂,得到混合体系;再将该混合体系置于光催化反应装置中,避光搅拌20-50min达到吸附-脱附平衡,打开光源紫外灯进行光催化反应,定时取样并用离子计对溶液中的氟离子浓度进行测定。
本发明所述方案中,步骤(1)中所述的In2O3悬浮液的浓度为5g/L。
本发明所述方案中,步骤(1)中所述的含Pt盐溶液与In2O3的摩尔比为n(Pt2+):n(In3+)=0.01-0.05:1;所述的含Pt盐溶液为H2PtCl6溶液。
本发明所述方案中,步骤(1)中所述的甲酸的比例按n(甲酸):n(含Pt盐溶液)=500:1计算。
本发明所述方案中,步骤(1)中所述的紫外灯为254nm紫外灯。
本发明所述方案中,步骤(2)中所述的pH范围为3-4。
本发明所述方案中,步骤(2)中所述的PFOA的浓度范围为10-40mg/L。
本发明所述方案中,步骤(2)中所述紫外灯的中心波长小于300nm。
本发明所述方案中,步骤(2)中所述光催化反应的时间为3h。
与现有技术相比,本发明具有如下有益效果:
(1)本发明方法掺杂的Pt能作为电子贮存点有效转移In2O3上产生的光生电子,阻止光生电子和空穴的复合,从而提高PFOA的脱氟效率,Pt掺杂后的In2O3对PFOA的光催化脱氟效率是In2O3的2-4倍。
(2)本发明方法利用Pt掺杂在In2O3上大大提高了In2O3的光吸收能力,使得In2O3对350nm之后的光有强烈的吸收,有利于实现对清洁能源太阳光能的利用。
(3)本发明的方法降解PFOA反应条件温和,操作简单易行、效率高,本发明的方法在水处理领域具有广阔的应用前景。
附图说明
图1为Pt掺杂In2O3的能谱分析图;
图2为掺杂量为5at%的Pt掺杂In2O3光催化剂的紫外-可见漫反射图;
图3为采用Pt掺杂In2O3为光催化剂的PFOA脱氟率-时间图。
具体实施方式
下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
实施例1
一种Pt掺杂In2O3光催化降解水中PFOA的方法,包括如下步骤:
将0.2g In2O3加入40mL去离子水中形成5g/L的悬浮液后超声20min,加入0.72mL浓度为0.02mol/L的H2PtCl6溶液搅拌15min,再按比例加入0.27mL甲酸作为空穴捕获剂;将混合液置于254nm紫外灯下光照3h使Pt2+还原为Pt单质,光照过程伴随N2曝气以去除水中溶解氧;光照结束后将沉淀分离,用去离子水洗涤沉淀数次并干燥,制备得到掺杂量为1at%的Pt掺杂In2O3光催化剂,研磨后备用。
将浓度为10mg/L的PFOA溶液置于带有冷却夹套的圆柱形石英容器中,调节pH=3,加入90mg步骤(1)制备的Pt掺杂In2O3光催化剂,再将该混合体系置于光催化反应装置中,避光搅拌20min达到吸附-脱附平衡,打开紫外灯光源进行光催化反应,定时取样并用离子计对溶液中的氟离子浓度进行测定。该方法3h对水中PFOA的脱氟率为5.11%,是In2O3的2.2倍。
实施例2
一种Pt掺杂In2O3光催化降解水中PFOA的方法,包括如下步骤:
将0.2g In2O3加入40mL去离子水中形成5g/L的悬浮液后超声20min,加入1.44mL浓度为0.02mol/L的H2PtCl6溶液搅拌15min,再按比例加入0.54mL甲酸作为空穴捕获剂;将混合液置于254nm紫外灯下光照3h使Pt2+还原为Pt单质,光照过程伴随N2曝气以去除水中溶解氧;光照结束后将沉淀分离,用去离子水洗涤沉淀数次并干燥,制备得到掺杂量为2at%的Pt掺杂In2O3光催化剂,研磨后备用。
将浓度为20mg/L的PFOA溶液置于带有冷却夹套的圆柱形石英容器中,调节pH=3,加入90mg步骤(1)制备的Pt掺杂In2O3光催化剂,再将该混合体系置于光催化反应装置中,避光搅拌50min达到吸附-脱附平衡,打开紫外灯光源进行光催化反应,定时取样并用离子计对溶液中的氟离子浓度进行测定。该方法3h对水中PFOA的脱氟率为5.80%,是In2O3的2.5倍。
实施例3:
一种Pt掺杂In2O3光催化降解水中PFOA的方法,包括如下步骤:
将0.2g In2O3加入40mL去离子水中形成5g/L的悬浮液后超声20min,加入3.6mL浓度为0.02mol/L的H2PtCl6溶液搅拌15min,再按比例加入1.3mL甲酸作为空穴捕获剂;将混合液置于254nm紫外灯下光照3h使Pt2+还原为Pt单质,光照过程伴随N2曝气以去除水中溶解氧;光照结束后将沉淀分离,用去离子水洗涤沉淀数次并干燥,制备得到掺杂量为5at%的Pt掺杂In2O3光催化剂,研磨后备用。
将浓度为40mg/L的PFOA溶液置于带有冷却夹套的圆柱形石英容器中,调节pH=3,加入90mg步骤(1)制备的Pt掺杂In2O3光催化剂,再将该混合体系置于光催化反应装置中,避光搅拌30min达到吸附-脱附平衡,打开紫外灯光源进行光催化反应,定时取样并用离子计对溶液中的氟离子浓度进行测定。该方法3h对水中PFOA的脱氟率为9.38%,是In2O3的4.1倍。
对照
将浓度为20mg/L的PFOA溶液置于带有冷却夹套的圆柱形石英容器中,调节pH=3,加入90mg In2O3光催化剂,再将该混合体系置于光催化反应装置中,避光搅拌30min达到吸附-脱附平衡,打开紫外灯光源进行光催化反应,定时取样并用离子计对溶液中的氟离子浓度进行测定。该方法3h对水中PFOA的脱氟率为2.31%。
使用上述实施例1-3得到的Pt掺杂In2O3光催化材料在254nm的紫外光照射下降解PFOA,对其降解能力进行分析,结果表1所示。
表1本发明的Pt掺杂In2O3光催化材料的性能分析
注:对照采用的光催化剂为In2O3,其它操作相同。
由表1可知,本发明的Pt掺杂In2O3光催化降解水中PFOA的方法,反应3h后的氟离子浓度均高于对照,反应3h后的脱氟率为对照1.7-4.06倍。
综上所述,本发明的方法掺杂的Pt能作为电子贮存点有效转移In2O3上产生的光生电子,阻止光生电子和空穴的复合,从而提高PFOA的脱氟效率,Pt掺杂后的In2O3对PFOA的光催化脱氟效率是In2O3的2-4倍;本发明的方法利用Pt掺杂在In2O3上大大提高了In2O3的光吸收能力,使得In2O3对350nm之后的光有强烈的吸收,有利于实现对清洁能源太阳光能的利用。
本发明的方法降解PFOA反应条件温和,操作简单易行、效率高,在水处理领域具有广阔的应用前景。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (9)

1.一种Pt掺杂In2O3光催化降解水中PFOA的方法,其特征在于,包括如下步骤:
(1)光还原法制备Pt掺杂In2O3催化剂:将In2O3加入去离子水中,配制成In2O3悬浮液,然后超声10-30min,加入含Pt盐溶液,搅拌15min,再加入甲酸,得混合液;将混合液置于紫外灯下光照3h使Pt2+还原为Pt单质,光照过程伴随N2曝气以去除水中溶解氧;待光照结束后,将沉淀分离,用去离子水洗涤沉淀3-5次,干燥,即得到Pt掺杂In2O3光催化剂,研磨后备用;
(2)利用Pt掺杂In2O3光催化降解PFOA:将PFOA溶液置于带有冷却夹套的圆柱形石英容器中,调节pH,加入90mg步骤(1)制备的Pt掺杂In2O3光催化剂,得到混合体系;再将该混合体系置于光催化反应装置中,避光搅拌20-50min达到吸附-脱附平衡,打开光源紫外灯进行光催化反应,定时取样并用离子计对溶液中的氟离子浓度进行测定。
2.根据权利要求1所述的Pt掺杂In2O3光催化降解水中PFOA的方法,其特征在于,步骤(1)中所述的In2O3悬浮液的浓度为5g/L。
3.根据权利要求1所述的Pt掺杂In2O3光催化降解水中PFOA的方法,其特征在于,步骤(1)中所述的含Pt盐溶液与In2O3的摩尔比为n(Pt2+):n(In3+)=0.01-0.05:1;所述的含Pt盐溶液为H2PtCl6溶液。
4.根据权利要求1所述的Pt掺杂In2O3光催化降解水中PFOA的方法,其特征在于,步骤(1)中所述的甲酸的加入量按n(甲酸):n(含Pt盐溶液)=500:1计。
5.根据权利要求1所述的Pt掺杂In2O3光催化降解水中PFOA的方法,其特征在于,步骤(1)中所述的紫外灯为254nm紫外灯。
6.根据权利要求1所述的Pt掺杂In2O3光催化降解水中PFOA的方法,其特征在于,步骤(2)中所述的pH范围为3-4。
7.根据权利要求1所述的Pt掺杂In2O3光催化降解水中PFOA的方法,其特征在于,步骤(2)中所述的PFOA的浓度范围为10-40mg/L。
8.根据权利要求1所述的Pt掺杂In2O3光催化降解水中PFOA的方法,其特征在于,步骤(2)中所述紫外灯的中心波长小于300nm。
9.根据权利要求1所述的Pt掺杂In2O3光催化降解水中PFOA的方法,其特征在于,步骤(2)中所述光催化反应的时间为3h。
CN201610529587.4A 2016-07-06 2016-07-06 一种Pt掺杂In2O3光催化降解水中PFOA的方法 Active CN106219666B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610529587.4A CN106219666B (zh) 2016-07-06 2016-07-06 一种Pt掺杂In2O3光催化降解水中PFOA的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610529587.4A CN106219666B (zh) 2016-07-06 2016-07-06 一种Pt掺杂In2O3光催化降解水中PFOA的方法

Publications (2)

Publication Number Publication Date
CN106219666A true CN106219666A (zh) 2016-12-14
CN106219666B CN106219666B (zh) 2019-03-29

Family

ID=57520175

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610529587.4A Active CN106219666B (zh) 2016-07-06 2016-07-06 一种Pt掺杂In2O3光催化降解水中PFOA的方法

Country Status (1)

Country Link
CN (1) CN106219666B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109234760A (zh) * 2018-10-31 2019-01-18 北京化工大学 一种活性阴极及其制备方法和应用
CN114502251A (zh) * 2019-10-11 2022-05-13 科勒沃特科技公司 可重复使用的复合过滤材料及制备和使用其去除和破坏水中分子污染物的方法
US11548800B2 (en) * 2019-04-26 2023-01-10 Geyser Remediation LLC Water purification apparatus and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007541A (ja) * 2005-06-30 2007-01-18 Catalysts & Chem Ind Co Ltd 硝酸性窒素含有水の処理方法
CN101623635A (zh) * 2009-08-13 2010-01-13 湖南理工学院 一种可见光响应的复合光催化剂及制备方法
CN104475089A (zh) * 2014-11-25 2015-04-01 三明学院 通用光源响应改性二氧化钛固体酸催化剂及制备方法
WO2015059503A1 (en) * 2013-10-24 2015-04-30 Queen Mary University Of London Photocatalysts
CN105060389A (zh) * 2015-07-16 2015-11-18 广西大学 一种贵金属掺杂氧化镓光催化降解水中全氟辛酸的方法
CN105618039A (zh) * 2016-02-04 2016-06-01 湖南理工学院 一种太阳光驱动高效还原CO2的Pt-ZnGa2O4光催化剂的制备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007541A (ja) * 2005-06-30 2007-01-18 Catalysts & Chem Ind Co Ltd 硝酸性窒素含有水の処理方法
CN101623635A (zh) * 2009-08-13 2010-01-13 湖南理工学院 一种可见光响应的复合光催化剂及制备方法
WO2015059503A1 (en) * 2013-10-24 2015-04-30 Queen Mary University Of London Photocatalysts
CN104475089A (zh) * 2014-11-25 2015-04-01 三明学院 通用光源响应改性二氧化钛固体酸催化剂及制备方法
CN105060389A (zh) * 2015-07-16 2015-11-18 广西大学 一种贵金属掺杂氧化镓光催化降解水中全氟辛酸的方法
CN105618039A (zh) * 2016-02-04 2016-06-01 湖南理工学院 一种太阳光驱动高效还原CO2的Pt-ZnGa2O4光催化剂的制备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAOYUNLI ETAL.: ""Efficient photocatalytic decomposition of perfluorooctanoic acid (PFOA) by indium oxide and its mechanism"", 《ENVIRONMENTAL SCIENCE TECHNOLOGY》 *
刘阳等: ""紫外光原位还原法制备 Pt/TiO2 及其光催化性能研究"", 《浙江理工大学学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109234760A (zh) * 2018-10-31 2019-01-18 北京化工大学 一种活性阴极及其制备方法和应用
CN109234760B (zh) * 2018-10-31 2020-12-25 北京化工大学 一种活性阴极及其制备方法和应用
US11548800B2 (en) * 2019-04-26 2023-01-10 Geyser Remediation LLC Water purification apparatus and method
CN114502251A (zh) * 2019-10-11 2022-05-13 科勒沃特科技公司 可重复使用的复合过滤材料及制备和使用其去除和破坏水中分子污染物的方法

Also Published As

Publication number Publication date
CN106219666B (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
Pandey et al. Recent advancement in visible‐light‐responsive photocatalysts in heterogeneous photocatalytic water treatment technology
Leonello et al. Light-induced advanced oxidation processes as pfas remediation methods: A review
Tang et al. A novel S-scheme heterojunction in spent battery-derived ZnFe2O4/g-C3N4 photocatalyst for enhancing peroxymonosulfate activation and visible light degradation of organic pollutant
CN108176403B (zh) 一种活性炭纤维负载Co3O4催化材料的制备方法
CN105601002B (zh) 一种净化有机废水的处理系统及方法
CN106881111A (zh) 氧化亚铜和银共同负载的钒酸铋复合光催化剂及其制备方法和应用
Yao et al. Photocatalytic oxidation and removal of arsenite by titanium dioxide supported on granular activated carbon
CN109499573A (zh) 一种磁性木基材料的原位制备方法
CN105566400B (zh) 非均相钴金属-有机骨架及制备与在废水处理领域中的应用
CN107469834A (zh) 一种ZnS/CuS纳米片复合光催化剂制备方法
Du et al. Coupling photocatalytic and electrocatalytic oxidation towards simultaneous removal of humic acid and ammonia− nitrogen in landscape water
Shaban Effective photocatalytic reduction of Cr (VI) by carbon modified (CM)-n-TiO2 nanoparticles under solar irradiation
CN105060389B (zh) 一种贵金属掺杂氧化镓光催化降解水中全氟辛酸的方法
CN103230802A (zh) 一种可见光响应的复合光催化剂的制备方法及其除砷方法
CN106219666B (zh) 一种Pt掺杂In2O3光催化降解水中PFOA的方法
CN106345450A (zh) 一种负载型臭氧氧化催化剂及其制备方法与应用
CN110841714A (zh) 一种基于2,5-二羟基对苯二甲酸配体的铁钴双金属-有机骨架材料及其制备方法和应用
CN109054034B (zh) 双金属铜/钴金属-有机骨架材料及其制备方法和应用
Yang et al. Well-designed MOF-derived hollow octahedral structure TiO2 coupled with ultra-thin porous g-C3N4 to enhance the degradation of real liquor brewing wastewater
CN114100642A (zh) 一种具有磁性的Ag/AgBr/LaFeO3复合光催化剂及其制备方法
CN102659126A (zh) 铁锰复合硅酸盐的制备方法及其应用
Trabelsi et al. Sunlight-activated photocatalysis of malachite green using a TiO2/cellulosic fiber
CN105642298B (zh) 还原性石墨烯负载纳米Ce0/Fe0复合材料及其制备方法和应用
CN104326524A (zh) 光催化降解苯酚的方法
CN108355686B (zh) 一种PtO/Pt4+-BiOCl光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant