CN106190092B - 以焦宝石熟料和白云石为原料制备的低密度陶粒支撑剂及其制备方法 - Google Patents

以焦宝石熟料和白云石为原料制备的低密度陶粒支撑剂及其制备方法 Download PDF

Info

Publication number
CN106190092B
CN106190092B CN201610540975.2A CN201610540975A CN106190092B CN 106190092 B CN106190092 B CN 106190092B CN 201610540975 A CN201610540975 A CN 201610540975A CN 106190092 B CN106190092 B CN 106190092B
Authority
CN
China
Prior art keywords
dolomite
flint clay
raw material
clinker
clay clinker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610540975.2A
Other languages
English (en)
Other versions
CN106190092A (zh
Inventor
武雅乔
王凯悦
田玉明
郝建英
周毅
力国民
邹欣伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Science and Technology
Original Assignee
Taiyuan University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Science and Technology filed Critical Taiyuan University of Science and Technology
Priority to CN201610540975.2A priority Critical patent/CN106190092B/zh
Publication of CN106190092A publication Critical patent/CN106190092A/zh
Application granted granted Critical
Publication of CN106190092B publication Critical patent/CN106190092B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Catalysts (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

以焦宝石熟料和白云石为原料制备的低密度陶粒支撑剂及其制备方法,属于油气田水力压裂施工开采用支撑剂技术领域,解决了现有技术中混料不匀,烧结过程中晶粒异常长大导致产品性能不稳定,无法规模化生产的问题。本发明采用球磨原料‑造粒‑烘干‑烧结‑过筛的方法制备陶粒支撑剂,它包括焦宝石熟料和白云石,各种原料的质量百分比为:焦宝石熟料86~98%,白云石2~14%,所述焦宝石熟料和白云石的总量为100%。本发明制备的陶粒支撑剂,制备的陶粒均匀性好,抗压强度高,性能稳定,具有低的体积密度、低的视密度、较高抗破碎能力及表面光洁度较好等优点,具有耐高温耐腐蚀等优异性能,能长期适用于高温和高腐蚀性的地下环境,性能符合SY/T5108‑2014技术标准。

Description

以焦宝石熟料和白云石为原料制备的低密度陶粒支撑剂及其 制备方法
技术领域
本发明属于油气田水力压裂施工开采用支撑剂技术领域,特别涉及一种以焦宝石熟料和白云石为原料制备的低密度陶粒支撑剂及其制备方法。
背景技术
陶粒支撑剂是石油、天然气、页岩气、煤层气等低渗透油气井,开采压裂施工过程中使用的关键材料。使用陶粒支撑剂压裂的油井,不但能增加油气产量,而且更能延长油气井的服务年限。陶粒支撑剂的性能要求主要有:1、支撑剂要有足够高的抗压强度和抗磨损能力,能耐受注入时的强大压力和摩擦力,并有效支撑人工裂缝。2、支撑剂颗粒相对密度要低,便于泵入井下。3、支撑剂颗粒在温度为200度的条件下,与压裂液及储层流体不发生化学作用,酸溶解度最大允许值应小于7%。目前常用的支撑剂主要有石英砂、铝钒土陶粒砂及树脂覆膜砂等。由于石英砂成本低,同时密度较低、易于泵送,被大量使用,但石英砂强底低、球度差,裂缝导流能力低,不适合用于高闭合压力的深井。树脂覆膜砂的球度高,耐腐蚀性比较强,导流能力也较好,但产品保持期短,造价过高,制备工艺繁琐。而烧结陶粒支撑剂,球度好,耐腐蚀,耐高温,耐高压,同时成本可以得到较好的控制,因此越来越广泛的被油气田所采用。实践证明,使用陶粒支撑剂压裂的油井可提高产量30~50%。
国内大量的陶粒支撑剂厂家均是以高品位铝矾土为主要原料,但是随着铝矾土资源的日渐贫乏以及国际油价的降低,急需开发出一种利用其它廉价原料所制备的陶粒支撑剂。
目前有一些使用焦宝石制备陶粒支撑剂的报道:例如中国专利(公开号:CN103666443A)提出了一种低密陶粒支撑剂的制备方法,该方法以焦宝石为主要原料,添加钾长石为助剂,羧甲基纤维素为粘结剂,聚丙烯酸钠为分散剂,经混料球磨、造粒、在1300~1450℃烧结2~3小时制得;中国专利(公开号:CN103484098A)公开了一种制备低密度高强度陶粒支撑剂的方法,该方法以铝土矿尾矿和焦宝石为主要原料,添加石英砂、铁红粉和氧化铝粉,在1100~1500℃烧结3~5小时制得;中国专利(公开号:CN 103468240A)报道了一种以焦宝石尾矿为原料的超低密陶粒支撑剂的制备方法,该方法以焦宝石、焦宝石尾矿、硅石和添加剂为原料;中国专利(公开号:CN103468239A)公开了一种以焦宝石熟料为原料的低密度陶粒支撑剂的制备方法,该方法以焦宝石熟料为原料,未添加任何助剂,在1200~1500℃烧结2~3小时制得;中国专利(公开号:CN103756665A)公开了一种以焦宝石为原料的低密度支撑剂及其制备方法,该方法以焦宝石生料、欠烧焦宝石、易磨砂岩为主要原料,在此基础上另外加入0.5~3%的熔剂;所述熔剂为白云石、石灰石、碱式碳酸镁中的一种或多种。
总之,现有技术中制备以焦宝石为原料的低密高强陶粒支撑剂一般会选用多种原料混合制备,其原因是为了提高机械强度常加入强度增加剂如:铝矾土、锆英砂、钛精矿等,为了提高陶粒的成球性常加入黏土、粘结剂等,这样在混料过程中经常会导致混料不匀,烧结过程中晶粒异常长大,最后产品性能不稳定,不利于陶粒支撑剂的大范围、规模化生产。
发明内容
本发明要解决的技术问题是:针对现有技术中陶粒支撑剂存在的不足之处,采用的原料种类只有焦宝石熟料和白云石两种,陶粒均匀性好,抗压强度高,制备工艺简单,降低油气井开采成本,并能使油气井增产,同时缓解高品位铝矾土资源的使用压力,本发明提出一种利用焦宝石熟料和白云石制备低密度陶粒支撑剂及其制备方法。
本发明通过以下技术方案予以实现。
以焦宝石熟料为原料的低密度陶粒支撑剂,它包括焦宝石熟料和白云石,各种原料的质量百分比为:焦宝石熟料86~98%,白云石2~14%,所述焦宝石熟料和白云石的总量为100%。
进一步的,所述焦宝石熟料的化学组成按重量比如下:Al2O3含量为49~59%,SiO2含量为25~35%,TiO2含量为2.5~3.5%,Fe2O3含量为0.5~2%,其它不可避免的杂质含量为10~15%。
进一步的,所述白云石的化学组成按重量比如下:CaO含量为30~40%,MgO含量为20~25%,Fe2O3含量为0.05~0.2%,SiO2含量为0.5~1.5%,Al2O3含量为0.05~1%,烧失量40~50%。
制备以焦宝石熟料和白云石为原料的低密度陶粒支撑剂的方法,按照下述步骤依次进行:
a、将焦宝石生矿进行煅烧处理,获得焦宝石熟料;
b、将白云石和经过煅烧焦宝石熟料分别破碎球磨至300目;
c、按原料及其质量百分比:焦宝石熟料86~98%、白云石2~14%的干料进行均匀混合;
d、向混合均匀的干料中添加水,所述添加的水的质量为混合干料总质量的15~25%,混合干料加水后置于混合机中滚动成球粒;
e、将球粒置于烘干箱中进行干燥,获得粒径在20~26目之间的球粒为半成品;
f、将上述半成品置于加热炉中进行煅烧,其中煅烧温度为1250~1450℃,煅烧时间为2~3小时;
g、将上述成品过筛,取得20-40目之间的陶粒,即为以焦宝石熟料为原料的低密度陶粒支撑剂。
进一步的,所述步骤a中煅烧温度为800~1200℃,煅烧时间为2.5~4小时。
进一步的,所述步骤b中破碎球磨后焦宝石熟料及白云石的粒度均小于0.054mm。
进一步的,所述步骤e中干燥温度为90~110℃。
进一步的,所述步骤f中升温速率为5℃/min。
本发明与现有技术相比具有以下有益效果。
1、利用本发明技术方案制备的陶粒支撑剂,由于原料种类只有两种,所以在制备过程中利于混料均匀,烧结制备的陶粒均匀性好,抗压强度高,性能稳定,实验重复性高,该陶粒支撑剂具有低的体积密度、低的视密度、较高抗破碎能力及表面光洁度较好等优点,性能符合SY/T5108-2014技术标准。
2、本发明技术方案制备的陶粒支撑剂,其原料一种为添加白云石,可以明显降低陶粒支撑剂的体密以及视密,但仍然保持较高的抗压强度,降低作业成本提高油气井开采效率;另一种为焦宝石熟料,在其中加入适量的白云石制备的陶粒支撑剂,其物相中只含有莫来石晶相,没有方石英相,说明该陶粒支撑剂具有耐高温耐腐蚀等优异性能,能长期适用于高温和高腐蚀性的地下环境。
3、本发明提出的制备以焦宝石熟料和白云石为原料制备的低密度陶粒支撑剂的方法,采用球磨原料-造粒-烘干-烧结-过筛即可得到陶粒成品,制备工艺简单,能有效降低油气井开采成本,并能使油气井增产,同时缓解高品位铝矾土资源的使用压力。
附图说明
图1为实施例一制得的陶粒支撑剂放大1万倍后微观组织形貌图。
图2为实施例二制得的陶粒支撑剂放大1万倍后微观组织形貌图。
图3为实施例三制得的陶粒支撑剂放大1万倍后微观组织形貌图。
图4为实施例四制得的陶粒支撑剂放大1万倍后微观组织形貌图。
具体实施方式
下面结合实施例对本发明做详细说明:本实施例是以本发明技术方案为前提进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下面的实施例。
实施例一
如图1所示,以焦宝石熟料和白云石为原料的低密度陶粒支撑剂,它包括焦宝石熟料和白云石,各种原料的质量百分比为:焦宝石熟料96%,白云石4%,所述焦宝石熟料和白云石的总量为100%。
进一步的,所述焦宝石熟料的化学组成按重量比如下:Al2O3含量为50%,SiO2含量为32%,TiO2含量为3%,Fe2O3含量为1%,其它含量14%。
进一步的,所述白云石的化学组成按重量比如下:CaO含量为32%,MgO含量为22%,Fe2O3含量为0.1%,SiO2含量为1%,Al2O3含量为0.05%,烧失量43.85%。
制备上述以焦宝石熟料和白云石为原料的低密度陶粒支撑剂的方法,其特征在于按照下述步骤依次进行:
a、将焦宝石生矿进行煅烧处理,获得焦宝石熟料,其中煅烧温度为800℃,煅烧时间为4小时;
b、将白云石和经过煅烧焦宝石熟料分别破碎球磨至300目,使破碎球磨后焦宝石熟料及白云石的粒度均小于0.054mm。
c、将原料及其质量百分比:焦宝石熟料96%、白云石4%的干料进行均匀混合;
d、向混合均匀的干料中添加水,所述添加的水的质量为混合干料总质量的15%,混合干料加水后置于混合机中滚动成球粒,本实施例中采用的混合机为爱丽许强力混合机;
e、将球粒置于烘干箱中进行干燥,干燥温度为90℃,获得粒径在20~26目之间的球粒为半成品;
f、将上述半成品置于加热炉中进行煅烧,其中煅烧温度为1450℃,煅烧时间为2小时,其中,加热炉升温速率为5℃/min;
g、将上述成品过筛,取得20-40目之间的陶粒,即为以焦宝石熟料为原料的低密度陶粒支撑剂。
本实施例一中采用焦宝石熟料为陶粒支撑剂原料,经不同烧结制度得到的焦宝石熟料,其里面化学成分含量不同,本发明中所提到的焦宝石熟料是由焦宝石生料(Al2O3占39.5%,SiO2占40.9%)经过烧结之后得到的。通过大量实验研究表明,纯焦宝石熟料制备的陶粒物相里不仅含有莫来石相还有石英相,只有当烧结温度提高到1500℃以上石英相才会消失,而以焦宝石熟料和白云石为主要原料制备的陶粒支撑剂,烧结温度范围为1300-1500℃,在该烧结温度内,陶粒支撑剂物相仅含有莫来石晶相,而没有石英相,有研究表明石英相的存在会导致耐酸性的下降,使制备的陶粒支撑剂耐腐蚀性降低,所以加入白云石可以有效提高陶粒的耐酸性能并降低陶粒的烧成温度,节约能耗。
白云石为CaCO3和MgCO3的固溶体,一般为灰白色或微带浅红色,化学式为CaCO3·MgCO3,主要的化学成分有CaO、MgO、Al2O3、SiO2以及Fe2O3。其中CaO、MgO等成分可以作为烧结助熔剂或矿化剂,而SiO2和Al2O3正是陶粒支撑剂的主要成分,所以白云石适合用来制备陶粒支撑剂。
实施例二
如图2所示,以焦宝石熟料和白云石为原料的低密度陶粒支撑剂,它包括焦宝石熟料和白云石, 各种原料的质量百分比为:焦宝石熟料94%,白云石6%,所述焦宝石熟料和白云石的总量为100%。
进一步的,所述焦宝石熟料的化学组成按重量比如下:Al2O3含量为52%,SiO2含量为31%,Fe2O3含量为0.5%,TiO2含量为3%,其它含量为13.5%。
进一步的,所述白云石的化学组成按重量比如下:CaO含量为34%,MgO含量为23%,Fe2O3含量为0.2%,SiO2含量为0.8%,Al2O3含量为0.08%,烧失量41.92%。
制备上述以焦宝石熟料和白云石为原料的低密度陶粒支撑剂的方法,其特征在于按照下述步骤依次进行:
a、将焦宝石生矿进行煅烧处理,获得焦宝石熟料,其中煅烧温度为1000℃,煅烧时间为3.5小时;
b、将白云石和经过煅烧焦宝石熟料分别破碎球磨至300目,使破碎球磨后焦宝石熟料及白云石的粒度均小于0.054mm。
c、将原料及其质量百分比:焦宝石熟料94%、白云石6%的干料进行均匀混合;
d、向混合均匀的干料中添加水,所述添加的水的质量为混合干料总质量的18%,混合干料加水后置于混合机中滚动成球粒,本实施例中采用的混合机为爱丽许强力混合机;
e、将球粒置于烘干箱中进行干燥,干燥温度为95℃,获得粒径在20~26目之间的球粒为半成品;
f、将上述半成品置于加热炉中进行煅烧,其中煅烧温度为1400℃,煅烧时间为2小时,其中,加热炉升温速率为5℃/min;
g、将上述成品过筛,取得20-40目之间的陶粒,即为以焦宝石熟料为原料的低密度陶粒支撑剂。
实施例三
如图3所示,以焦宝石熟料和白云石为原料的低密度陶粒支撑剂,它包括焦宝石熟料和白云石, 各种原料的质量百分比为:焦宝石熟料90%,白云石10%,所述焦宝石熟料和白云石的总量为100%。
进一步的,所述焦宝石熟料的化学组成按重量比如下:Al2O3含量为54%,SiO2含量为28%,Fe2O3含量为1%,TiO2含量为2.5%,其它含量14.5%。
进一步的,所述白云石的化学组成按重量比如下:CaO含量为35%,MgO含量为22%,Fe2O3含量为0.2%,SiO2含量为1.5%,Al2O3含量为1%,烧失量41.3%。
制备上述以焦宝石熟料和白云石为原料的低密度陶粒支撑剂的方法,其特征在于按照下述步骤依次进行:
a、将焦宝石生矿进行煅烧处理,获得焦宝石熟料,其中煅烧温度为1100℃,煅烧时间为3小时;
b、将白云石和经过煅烧焦宝石熟料分别破碎球磨至300目,使破碎球磨后焦宝石熟料及白云石的粒度均小于0.054mm。
c、将原料及其质量百分比:焦宝石熟料90%、白云石10%的干料进行均匀混合;
d、向混合均匀的干料中添加水,所述添加的水的质量为混合干料总质量的15%,混合干料加水后置于混合机中滚动成球粒,本实施例中采用的混合机为爱丽许强力混合机;
e、将球粒置于烘干箱中进行干燥,干燥温度为100℃,获得粒径在20~26目之间的球粒为半成品;
f、将上述半成品置于加热炉中进行煅烧,其中煅烧温度为1350℃,煅烧时间为2.5小时,其中,加热炉升温速率为5℃/min;
g、将上述成品过筛,取得20-40目之间的陶粒,即为以焦宝石熟料为原料的低密度陶粒支撑剂。
实施例四
如图4所示,以焦宝石熟料和白云石为原料的低密度陶粒支撑剂,它包括焦宝石熟料和白云石, 各种原料的质量百分比为:焦宝石熟料88%,白云石12%,所述焦宝石熟料和白云石的总量为100%。
进一步的,所述焦宝石熟料的化学组成按重量比如下:Al2O3含量为56%,SiO2含量为25%,Fe2O3含量为0.5%,TiO2含量为3.5%,其它含量为15%。
进一步的,所述白云石的化学组成按重量比如下:CaO含量为30%,MgO含量为20%,Fe2O3含量为0.2%,SiO2含量为1.5%,Al2O3含量为1%,烧失量为47.3%。
制备上述以焦宝石熟料和白云石为原料的低密度陶粒支撑剂的方法,其特征在于按照下述步骤依次进行:
a、将焦宝石生矿进行煅烧处理,获得焦宝石熟料,其中煅烧温度为1200℃,煅烧时间为2.5小时;
b、将白云石和经过煅烧焦宝石熟料分别破碎球磨至300目,使破碎球磨后焦宝石熟料及白云石的粒度均小于0.054mm。
c、将原料及其质量百分比:焦宝石熟料88%、白云石12%的干料进行均匀混合;
d、向混合均匀的干料中添加水,所述添加的水的质量为混合干料总质量的25%,混合干料加水后置于混合机中滚动成球粒,本实施例中采用的混合机为爱丽许强力混合机;
e、将球粒置于烘干箱中进行干燥,干燥温度为110℃,获得粒径在20~26目之间的球粒为半成品;
f、将上述半成品置于加热炉中进行煅烧,其中煅烧温度为1300℃,煅烧时间为3小时,其中,加热炉升温速率为5℃/min;
g、将上述成品过筛,取得20-40目之间的陶粒,即为以焦宝石熟料为原料的低密度陶粒支撑剂。
按照中国石油天然气行业标准《压裂支撑剂性能测试推荐方法》SY/T5108-2014对实施
例一至实施例四制备的陶粒支撑剂产品进行性能测试,主要性能指标如下表一所示。
由上表可知,采用本发明专利所提供的制备方法以及原料配方制备的陶粒支撑剂,均能很好地满足中国石油与天然气最新公布的行业标准。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (8)

1.以焦宝石熟料和白云石为原料制备的低密度陶粒支撑剂,其特征在于:它包括焦宝石熟料和白云石, 各种原料的质量百分比为:焦宝石熟料86~98%,白云石2~14%,所述焦宝石熟料和白云石的总量为100%。
2.根据权利要求1所述的以焦宝石熟料和白云石为原料制备的低密度陶粒支撑剂,其特征在于:所述焦宝石熟料的化学组成按重量比如下:Al2O3含量为49~59%,SiO2含量为25~35%,TiO2含量为2.5~3.5%,Fe2O3含量为0.5~2%,其它不可避免的杂质含量为10~15%。
3.根据权利要求1所述的以焦宝石熟料和白云石为原料制备的低密度陶粒支撑剂,其特征在于:所述白云石的化学组成按重量比如下:CaO含量为30~40%,MgO含量为20~25%,Fe2O3含量为0.05~0.2%,SiO2含量为0.5~1.5%,Al2O3含量为0.05~1%,烧失量40~50%。
4.制备如权利要求1~3任一项所述的以焦宝石熟料和白云石为原料制备的低密度陶粒支撑剂的方法,其特征在于按照下述步骤依次进行:
a、将焦宝石生矿进行煅烧处理,获得焦宝石熟料;
b、将白云石和经过煅烧焦宝石熟料分别破碎球磨至300目;
c、按原料及其质量百分比:焦宝石熟料86~98%、白云石2~14%的干料进行均匀混合;
d、向混合均匀的干料中添加水,所述添加的水的质量为混合干料总质量的15~25%,混合干料加水后置于混合机中滚动成球粒;
e、将球粒置于烘干箱中进行干燥,获得粒径在20~26目之间的球粒为半成品;
f、将上述半成品置于加热炉中进行煅烧,其中煅烧温度为1250~1300℃,煅烧时间为2~3小时;
g、将上述成品过筛,取得20-40目之间的陶粒,即为以焦宝石熟料为原料的低密度陶粒支撑剂。
5.根据权利要求4所述的制备以焦宝石熟料和白云石为原料的低密度陶粒支撑剂的方法,其特征在于:所述步骤a中煅烧温度为800~1200℃,煅烧时间为2.5~4小时。
6.根据权利要求4所述的制备以焦宝石熟料和白云石为原料的低密度陶粒支撑剂的方法,其特征在于:所述步骤b中破碎球磨后焦宝石熟料及白云石的粒度均小于0.054mm。
7.根据权利要求4所述的制备以焦宝石熟料和白云石为原料的低密度陶粒支撑剂的方法,特征在于:所述步骤e中干燥温度为90~110℃。
8.根据权利要求4所述的制备以焦宝石熟料和白云石为原料的低密度陶粒支撑剂的方法,其特征在于:所述步骤f中升温速率为5℃/min。
CN201610540975.2A 2016-07-11 2016-07-11 以焦宝石熟料和白云石为原料制备的低密度陶粒支撑剂及其制备方法 Expired - Fee Related CN106190092B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610540975.2A CN106190092B (zh) 2016-07-11 2016-07-11 以焦宝石熟料和白云石为原料制备的低密度陶粒支撑剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610540975.2A CN106190092B (zh) 2016-07-11 2016-07-11 以焦宝石熟料和白云石为原料制备的低密度陶粒支撑剂及其制备方法

Publications (2)

Publication Number Publication Date
CN106190092A CN106190092A (zh) 2016-12-07
CN106190092B true CN106190092B (zh) 2019-01-25

Family

ID=57473585

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610540975.2A Expired - Fee Related CN106190092B (zh) 2016-07-11 2016-07-11 以焦宝石熟料和白云石为原料制备的低密度陶粒支撑剂及其制备方法

Country Status (1)

Country Link
CN (1) CN106190092B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110606728A (zh) * 2019-09-21 2019-12-24 河南祥盛陶粒有限公司 一种轻质微孔陶粒砂及其制备工艺
CN110590393A (zh) * 2019-09-21 2019-12-20 郑州德赛尔陶粒有限公司 一种添加橄榄石的轻质陶粒砂及其制备工艺
CN115180920A (zh) * 2022-08-09 2022-10-14 陕西延长石油压裂材料有限公司 一种超低密陶粒支撑剂及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103468239A (zh) * 2013-09-24 2013-12-25 淄博嘉丰矿业有限公司 以焦宝石为原料的低密高强陶粒支撑剂及其制备方法
CN103756665A (zh) * 2014-01-25 2014-04-30 金刚新材料股份有限公司 一种以焦宝石为原料的低密度支撑剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103468239A (zh) * 2013-09-24 2013-12-25 淄博嘉丰矿业有限公司 以焦宝石为原料的低密高强陶粒支撑剂及其制备方法
CN103756665A (zh) * 2014-01-25 2014-04-30 金刚新材料股份有限公司 一种以焦宝石为原料的低密度支撑剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
利用焦宝石和钾长石制备低密高强陶粒支撑剂的研究;冯伟乐,等;《人工晶体学报》;20160115;摘要,表1
含焦宝石的陶瓷支撑剂的制备及性能;赵 俊,等;《中国粉体技术》;20100615;第16卷(第3期);第78-81页
白云石掺杂制备高强度压裂支撑剂及其机理探讨;刘军,等;《功能材料》;20130607;摘要,表1

Also Published As

Publication number Publication date
CN106190092A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
CN101617018B (zh) 支撑剂、支撑剂制备方法以及支撑剂的用途
CN105925257B (zh) 一种低密度陶粒支撑剂及其制备方法
CN103666442B (zh) 低密高强陶粒支撑剂及其制备方法
CN103288426B (zh) 一种利用工业废料制备页岩气专用压裂支撑剂的方法
CN103820101B (zh) 一种耐酸的石油压裂支撑剂及其制造方法
CN101914374A (zh) 高强度陶粒支撑剂及其生产方法
CN106190092B (zh) 以焦宝石熟料和白云石为原料制备的低密度陶粒支撑剂及其制备方法
CN103468239B (zh) 以焦宝石为原料的低密高强陶粒支撑剂及其制备方法
CN103351154B (zh) 一种减薄陶瓷砖及其制造方法
CN105906318A (zh) 利用煤矸石制备低密度陶粒支撑剂及其制备方法
CN104371703B (zh) 一种以高铝粉煤灰为原料制备石油压裂支撑剂的方法
CN104560006A (zh) 一种利用镁渣制备陶粒支撑剂的工艺及陶粒支撑剂
CN102660252A (zh) 一种利用低铝高硅型铝土矿为主要原料的低密度陶粒支撑剂及其制备方法
CN103740356A (zh) 一种石油压裂支撑剂及其制造方法
CN101774800B (zh) 含硬质碳化物的陶瓷颗粒及其制造方法
CN102757780A (zh) 一种石油压裂支撑剂及其生产方法
CN104671801B (zh) 一种刚玉耐磨耐火可塑料及其制备方法
CN106190093A (zh) 煤层气水力压裂开采中使用的陶粒支撑剂及其制备方法
CN106830904A (zh) 一种超低密高强度陶瓷压裂支撑剂及其制备方法
CN104876605A (zh) 锅炉用耐火砖
CN101717628B (zh) 低密度陶粒支撑剂及其制备方法
CN107216868B (zh) 一种超高密度超高强度陶粒支撑剂及其制备方法
CN102992783B (zh) 瓶罐玻璃窑小炉燃烧室煤气通道部位用刚玉砖
CN109320218A (zh) 一种铝锆尖晶石耐火材料砖及其制备方法
CN104177070A (zh) 微晶锆铝复合磨介的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190125

CF01 Termination of patent right due to non-payment of annual fee