CN106186666B - 陶瓷制备方法、陶瓷及玄武岩拉丝漏板 - Google Patents

陶瓷制备方法、陶瓷及玄武岩拉丝漏板 Download PDF

Info

Publication number
CN106186666B
CN106186666B CN201610514467.7A CN201610514467A CN106186666B CN 106186666 B CN106186666 B CN 106186666B CN 201610514467 A CN201610514467 A CN 201610514467A CN 106186666 B CN106186666 B CN 106186666B
Authority
CN
China
Prior art keywords
ceramic
powder
preparing
additive
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610514467.7A
Other languages
English (en)
Other versions
CN106186666A (zh
Inventor
曹柏青
杨萌
杨世伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Aerospace Tuoxin Basalt Industrial Co., Ltd.
Original Assignee
Sichuan Aerospace Tuoxin Basalt Industrial Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Aerospace Tuoxin Basalt Industrial Co ltd filed Critical Sichuan Aerospace Tuoxin Basalt Industrial Co ltd
Priority to CN201610514467.7A priority Critical patent/CN106186666B/zh
Publication of CN106186666A publication Critical patent/CN106186666A/zh
Application granted granted Critical
Publication of CN106186666B publication Critical patent/CN106186666B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/08Bushings, e.g. construction, bushing reinforcement means; Spinnerettes; Nozzles; Nozzle plates
    • C03B37/095Use of materials therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5025Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with ceramic materials
    • C04B41/5027Oxide ceramics in general; Specific oxide ceramics not covered by C04B41/5029 - C04B41/5051
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及陶瓷制备方法、陶瓷及玄武岩拉丝漏板。所述陶瓷制备方法,包括以下步骤:采用氧化锆、氧化钇以及添加料制备陶瓷坯体;在制备的陶瓷坯体表面生成铬酸镧涂层。采用上述陶瓷制备方法制备的陶瓷,孔隙度可控制在20%以内。该陶瓷质地均匀,不易开裂,且具有较好的耐高温性能和导电性能;另一方面,该陶瓷具有较高的强度以及很好的抗折弯和抗断裂性能,能够承受一定的载荷。鉴于此,采用该种陶瓷制备工艺可用于制作特殊工艺设备,例如用来制作玄武岩拉丝漏板的底板,来替代传统的铂铑合金制成的底板,在保证良好使用性能的同时,大大降低了生产成本。

Description

陶瓷制备方法、陶瓷及玄武岩拉丝漏板
技术领域
本发明涉及材料制造技术领域,更具体地,涉及一种陶瓷制备方法、陶瓷及玄武岩拉丝漏板。
背景技术
在先进制造技术领域,例如玄武岩纤维制造技术领域,往往对生产设备的耐高温性能、导电性能以及强度有着极高的要求。
在对玄武岩高温溶液进行拉丝的过程中,拉丝漏板需要在很高的温度下,甚至高达1200-1300℃的条件下进行作业,这就要求拉丝漏板在工作过程中具有良好的耐高温性能。
另一方面,由于玄武岩的融化温度高、粘度大且容易析晶,拉丝温度较难控制,需要对拉丝漏板的底板同时进行电加热,来保证玄武岩熔融液在拉丝过程中的温度,这就要求拉丝漏板的底板具有良好的导电性能。
再者,玄武岩熔融液通过所述拉丝漏板的底板上的漏嘴流出,在所述底板的下方通过拉丝机将熔融液拉制成玄武岩连续纤维,由于玄武岩熔融液具有较高的粘度,使得所述底板需要承受极大的拉力,这就要求所述底板具有较高的强度以及很好的抗折弯和抗断裂性能。
鉴于此,现有技术中的玄武岩拉丝楼板的底板往往通过铂铑合金来制作,以满足玄武岩纤维制造过程对拉丝漏板的底板的极高性能要求。但是,这种拉丝漏板的制作成本极高。同时,采用现有工艺制作的陶瓷漏板,又不能满足拉丝漏板的底板对耐高温性能、导电性能以及强度的极高要求。
发明内容
有鉴于此,本发明的目的在于提供一种能够生产具有极高的耐高温性能、导电性能以及强度等优异性能的陶瓷的陶瓷制备方法。
本发明的另一目的在于提供一种能够具有极高的耐高温性能、导电性能以及强度的陶瓷。
本发明的另一目的在于提供一种能够能够有效降低制作成本的玄武岩拉丝漏板。
根据本发明的第一方面,提供一种陶瓷制备方法,包括以下步骤:
采用氧化锆、氧化钇以及添加料制备陶瓷坯体;
在制备的陶瓷坯体表面生成铬酸镧涂层。
优选地,所述陶瓷坯体的制备包括以下步骤:
分别制备氧化锆、氧化钇以及添加料的粉末;
将制备的氧化锆、氧化钇以及添加料的粉末按照一定比例混合均匀;
将混合均匀后的粉末进行烘干;
将烘干后的粉末进行热压烧结成型。
优选地,所述添加料包括多种金属元素。
优选地,所述金属元素包括锶、钡、钛、钇、铈和钪中的至少其中两种。
优选地,所述多种金属元素以各自氧化物的形式存在。
优选地,分别制备氧化锆、氧化钇以及添加料的粉末的步骤包括:
分别将氧化锆、氧化钇以及添加料的各种组份放入球磨机中,进行连续粉碎,制成超细粉。
优选地,所述超细粉的颗粒直径为1-3μm。
优选地,将制备的氧化锆、氧化钇以及添加料的粉末按照一定比例混合均匀的步骤包括:
按照氧化锆粉末84-86份、氧化钇粉末15-16份、添加料0.5-1份的重量份数进行掺杂并混合均匀。
优选地,将混合均匀后的粉末进行烘干的步骤包括:
保持在230℃-270℃的温度下,对混合均匀后的粉末连续进行8-12小时的烘干。
优选地,将烘干后的粉末进行热压烧结的步骤包括:
将烘干后的粉末放入成型模具中,边加压,边烧结,其中所述加压的过程分为多个阶段进行,加压一段时间后解除加压压力,使得待加工件释放应力后,再行加压。
优选地,所述粉末的烧结温度为1100-1400℃。
优选地,在将烘干后的粉末进行热压烧结成型的步骤还包括:在将烘干后的粉末进行热压烧结之前,首先将烘干后的粉末进行造粒。
优选地,在制备的陶瓷坯体表面生成铬酸镧涂层的步骤包括:
采用阴极磁控溅射技术在制备的陶瓷坯体表面生成铬酸镧涂层。
优选地,所述氧化锆、氧化钇以及添加料的纯度为99.80-99.99%。
根据本发明的第二方面,提供一种陶瓷,所述陶瓷采用所述的陶瓷制备方法制成。
根据本发明的第三方面,提供一种玄武岩拉丝漏板,所述玄武岩拉丝漏板的底板采用所述的陶瓷制备方法制成。
采用上述陶瓷制备方法制备的陶瓷,孔隙度可控制在20%以内。该陶瓷质地均匀,不易开裂,且具有较好的耐高温性能和导电性能,甚至能够在高达1400摄氏度的条件下使用;另一方面,采用该陶瓷制备方法制备的陶瓷具有较高的强度以及很好的抗折弯和抗断裂性能,能够承受一定的载荷。鉴于此,采用该种陶瓷制备工艺可用于制作特殊工艺设备,例如用来制作玄武岩拉丝漏板的底板,来替代传统的铂铑合金制成的底板,在保证良好使用性能的同时,大大降低了生产成本。
附图说明
通过以下参照附图对本发明实施例的描述,本发明的上述以及其他目的、特征和优点将更为清楚。
图1为根据本发明实施例的陶瓷制备方法的步骤流程图;
图2为根据本发明实施例的采用氧化锆、氧化钇以及添加料制备陶瓷坯体的步骤流程图。
具体实施方式
以下将参照附图更详细地描述本发明的各种实施例。在各个附图中,相同的元件采用相同或类似的附图标记来表示。为了清楚起见,附图中的各个部分没有按比例绘制。
图1示出了根据本发明实施例的陶瓷制备方法的步骤。下面结合几个实施例详细的说明所述的陶瓷制备方法。
实施例一:
S1)、采用氧化锆、氧化钇以及添加料制备陶瓷坯体。
参考图2,在该步骤中,具体包括以下步骤:
a)、分别制备氧化锆、氧化钇以及添加料的粉末。
在该步骤中,首先选取高纯度的各种原料,包括氧化锆、氧化钇以及添加料,要求各种原料的纯度≥98%,优选为99.80-99.99%,以便严格控制成分配比;
然后,分别将氧化锆、氧化钇以及添加料的各种组份放入球磨机中,进行连续粉碎,制成超细粉。优选的,所述超细粉的颗粒直径为5-25μm,更加优选为1-3μm,这样可使得制成的陶瓷质地更加均匀。
b)、将步骤S1中制备的氧化锆、氧化钇以及添加料按照氧化锆粉末84份、氧化钇粉末9份、添加料0.5份的重量份数进行掺杂并混合均匀。
在该步骤中,所述添加料的各组分之间的配比关系按照实际需要进行添加。
c)、保持在230℃的温度下,对混合均匀后的粉末连续进行8小时的烘干。
d)、将烘干后的粉末在1100℃的高温下,进行热压烧结成型。
在该步骤中,将烘干后的粉末放入成型模具中,并整体放置在烧结炉中,例如放置在密闭式中频感应热压烧结炉中,边加压,边烧结,其中所述加压的过程分为多个阶段进行,例如,可根据需要分成七次或者八次加压;加压一段时间后解除加压压力,使得待加工件释放应力后,再行加压,以免由于持续的加压而使得待加工件的应力来不及释放而造成待加工件开裂。
在一个实施方案中,在将烘干后的粉末进行热压烧结之前,可首先将烘干后的粉末进行造粒,然后再将造好的颗粒放入成型模具中进行热压烧结成型。
S2)、在制备陶瓷坯体表面生成铬酸镧涂层。
在该步骤中,采用物理气相沉积的方法,例如阴极磁控溅射技术,在步骤S1)中制备的陶瓷坯体表面溅射铬酸镧材料,在陶瓷坯体表面生成铬酸镧涂层,从而制得本发明中的陶瓷。由于铬酸镧涂层的存在,本发明中制备的陶瓷可作为具有较高表面辐射率和热效应的发热体,同时可以进一步对陶瓷材料的内部结构进行防护,提高了陶瓷材料在高温下的稳定性。
实施例二:
S1)、采用氧化锆、氧化钇以及添加料制备陶瓷坯体。
参考图2,在该步骤中,具体包括以下步骤:
a)、分别制备氧化锆、氧化钇以及添加料的粉末。
在该步骤中,首先选取高纯度的各种原料,包括氧化锆、氧化钇以及添加料,要求各种原料的纯度≥98%,优选为99.80-99.99%,以便严格控制成分配比;
然后,分别将氧化锆、氧化钇以及添加料的各种成分放入球磨机中,进行连续粉碎,制成超细粉。优选的,所述超细粉的颗粒直径为5-25μm,更加优选为1-3μm,这样可使得制成的陶瓷质地更加均匀。
b)、将步骤S1中制备的氧化锆、氧化钇以及添加料按照氧化锆粉末85份、氧化钇粉末10份、添加料0.75份的重量份数进行掺杂并混合均匀。
在该步骤中,所述添加料的各组分之间的配比关系按照实际需要进行添加。
c)、保持在240℃的温度下,对混合均匀后的粉末连续进行10小时的烘干。
d)、将烘干后的粉末在1200℃的高温下,进行热压烧结成型。
在该步骤中,将烘干后的粉末放入成型模具中,并整体放置在烧结炉中,例如放置在密闭式中频感应热压烧结炉中,边加压,边烧结,其中所述加压的过程分为多个阶段进行,例如,可根据需要分成七次或者八次加压;加压一段时间后解除加压压力,使得待加工件释放应力后,再行加压,以免由于持续的加压而使得待加工件的应力来不及释放而造成待加工件开裂。
在一个实施方案中,在将烘干后的粉末进行热压烧结之前,可首先将烘干后的粉末进行造粒,然后再将造好的颗粒放入成型模具中进行热压烧结成型。
S2)、在制备陶瓷坯体表面生成铬酸镧涂层。
在该步骤中,采用物理气相沉积的方法,例如阴极磁控溅射技术,在步骤S1)中制备的陶瓷坯体表面溅射铬酸镧材料,在陶瓷坯体表面生成铬酸镧涂层,从而制得本发明中的陶瓷。由于铬酸镧涂层的存在,本发明中制备的陶瓷可作为具有较高表面辐射率和热效应的发热体,同时可以进一步对陶瓷材料的内部结构进行防护,提高了陶瓷材料在高温下的稳定性。
实施例三:
S1)、采用氧化锆、氧化钇以及添加料制备陶瓷坯体。
参考图2,在该步骤中,具体包括以下步骤:
a)、分别制备氧化锆、氧化钇以及添加料的粉末。
在该步骤中,首先选取高纯度的各种原料,包括氧化锆、氧化钇以及添加料,要求各种原料的纯度≥98%,优选为99.80-99.99%,以便严格控制成分配比;
然后,分别将氧化锆、氧化钇以及添加料的各种成分放入球磨机中,进行连续粉碎,制成超细粉。优选的,所述超细粉的颗粒直径为5-25μm,更加优选为1-3μm,这样可使得制成的陶瓷质地更加均匀。
b)、将步骤S1中制备的氧化锆、氧化钇以及添加料按照氧化锆粉末86份、氧化钇粉末11份、添加料0.75份的重量份数进行掺杂并混合均匀。
在该步骤中,所述添加料的各组分之间的配比关系按照实际需要进行添加。
c)、保持在250℃的温度下,对混合均匀后的粉末连续进行11小时的烘干。
d)、将烘干后的粉末进行在1300℃的高温下,进行热压烧结成型。
在该步骤中,将烘干后的粉末放入成型模具中,并整体放置在烧结炉中,例如放置在密闭式中频感应热压烧结炉中,边加压,边烧结,其中所述加压的过程分为多个阶段进行,例如,可根据需要分成七次或者八次加压;加压一段时间后解除加压压力,使得待加工件释放应力后,再行加压,以免由于持续的加压而使得待加工件的应力来不及释放而造成待加工件开裂。
在一个实施方案中,在将烘干后的粉末进行热压烧结之前,可首先将烘干后的粉末进行造粒,然后再将造好的颗粒放入成型模具中进行热压烧结成型。
S2)、在制备陶瓷坯体表面生成铬酸镧涂层。
在该步骤中,采用物理气相沉积的方法,例如阴极磁控溅射技术,在步骤S1)中制备的陶瓷坯体表面溅射铬酸镧材料,在陶瓷坯体表面生成铬酸镧涂层,从而制得本发明中的陶瓷。由于铬酸镧涂层的存在,本发明中制备的陶瓷可作为具有较高表面辐射率和热效应的发热体,同时可以进一步对陶瓷材料的内部结构进行防护,提高了陶瓷材料在高温下的稳定性。
实施例四:
S1)、采用氧化锆、氧化钇以及添加料制备陶瓷坯体。
参考图2,在该步骤中,具体包括以下步骤:
S1)、分别制备氧化锆、氧化钇以及添加料的粉末。
在该步骤中,首先选取高纯度的各种原料,包括氧化锆、氧化钇以及添加料,要求各种原料的纯度≥98%,优选为99.80-99.99%,以便严格控制成分配比;
然后,分别将氧化锆、氧化钇以及添加料的各种成分放入球磨机中,进行连续粉碎,制成超细粉。优选的,所述超细粉的颗粒直径为5-25μm,更加优选为1-3μm,这样可使得制成的陶瓷质地更加均匀。
S2)、将步骤S1中制备的氧化锆、氧化钇以及添加料按照氧化锆粉末87份、氧化钇粉末11份、添加料1份的重量份数进行掺杂并混合均匀。
在该步骤中,所述添加料的各组分之间的配比关系按照实际需要进行添加。
S3)、保持在270℃的温度下,对混合均匀后的粉末连续进行12小时的烘干。
S4)、将烘干后的粉末进行在1400℃的高温下,进行热压烧结成型。
在该步骤中,将烘干后的粉末放入成型模具中,并整体放置在烧结炉中,例如放置在密闭式中频感应热压烧结炉中,边加压,边烧结,其中所述加压的过程分为多个阶段进行,例如,可根据需要分成七次或者八次加压;加压一段时间后解除加压压力,使得待加工件释放应力后,再行加压,以免由于持续的加压而使得待加工件的应力来不及释放而造成待加工件开裂。
在一个实施方案中,在将烘干后的粉末进行热压烧结之前,可首先将烘干后的粉末进行造粒,然后再将造好的颗粒放入成型模具中进行热压烧结成型。
S2)、在制备陶瓷坯体表面生成铬酸镧涂层。
在该步骤中,采用物理气相沉积的方法,例如阴极磁控溅射技术,在步骤S1)中制备的陶瓷坯体表面溅射铬酸镧材料,在陶瓷坯体表面生成铬酸镧涂层,从而制得本发明中的陶瓷。由于铬酸镧涂层的存在,本发明中制备的陶瓷可作为具有较高表面辐射率和热效应的发热体,同时可以进一步对陶瓷材料的内部结构进行防护,提高了陶瓷材料在高温下的稳定性。
在上述的实施例一至实施例四中,所述添加料包括多种金属元素,例如锶、钡、钛、钇、铈和钪中的至少其中两种。所述多种金属元素以各自氧化物的形式存在,例如氧化锶、一氧化钡、二氧化钛、氧化钇、二氧化铈以及三氧化二钪。所述添加料能够起到增加陶瓷的高温热稳定性以及导电性,同时还能起到细化晶粒的作用。
采用上述陶瓷制备方法制备的陶瓷,孔隙度可控制在20%以内。该陶瓷质地均匀,不易开裂,且具有较好的耐高温性能和导电性能,甚至能够在高达1400摄氏度的条件下使用;另一方面,采用该陶瓷制备方法制备的陶瓷具有较高的强度以及很好的抗折弯和抗断裂性能,能够承受一定的载荷。鉴于此,采用该种陶瓷制备工艺可用于制作特殊工艺设备,例如用来制作玄武岩拉丝漏板的底板,来替代传统的铂铑合金制成的底板,在保证良好使用性能的同时,大大降低了生产成本。
应当说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
最后应说明的是:显然,上述实施例仅仅是为清楚地说明本发明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引申出的显而易见的变化或变动仍处于本发明的保护范围之中。

Claims (12)

1.一种陶瓷制备方法,其特征在于,包括以下步骤:
采用氧化锆、氧化钇以及添加料制备陶瓷坯体;
在制备的陶瓷坯体表面生成铬酸镧涂层,
其中,所述添加料包括多种金属元素的氧化物,所述金属元素包括锶、钡、钛、钇、铈和钪中的至少两种,
所述氧化锆的重量份数为84-86份、所述氧化钇的重量份数为15-16份、所述添加料的重量份数为0.5-1份,
所述铬酸镧涂层用于提高表面辐射率和热效应,以及对陶瓷坯体进行防护。
2.根据权利要求1所述的陶瓷制备方法,其特征在于,所述陶瓷坯体的制备包括以下步骤:
分别制备氧化锆、氧化钇以及添加料的粉末;
将制备的氧化锆、氧化钇以及添加料的粉末按照一定比例混合均匀;
将混合均匀后的粉末进行烘干;
将烘干后的粉末进行热压烧结成型。
3.根据权利要求2所述的陶瓷制备方法,其特征在于,分别制备氧化锆、氧化钇以及添加料的粉末的步骤包括:
分别将氧化锆、氧化钇以及添加料的各种组份放入球磨机中,进行连续粉碎,制成超细粉。
4.根据权利要求3所述的陶瓷制备方法,其特征在于,所述超细粉的颗粒直径为5-25μm。
5.根据权利要求2所述的陶瓷制备方法,其特征在于,将混合均匀后的粉末进行烘干的步骤包括:
保持在230℃-270℃的温度下,对混合均匀后的粉末连续进行8-12小时的烘干。
6.根据权利要求2所述的陶瓷制备方法,其特征在于,将烘干后的粉末进行热压烧结的步骤包括:
将烘干后的粉末放入成型模具中,边加压,边烧结,其中所述加压的过程分为多个阶段进行,加压一段时间后解除加压压力,使得待加工件释放应力后,再行加压。
7.根据权利要求6所述的陶瓷制备方法,其特征在于,所述粉末的烧结温度为1100-1400℃。
8.根据权利要求2所述的陶瓷制备方法,其特征在于,在将烘干后的粉末进行热压烧结成型的步骤还包括:在将烘干后的粉末进行热压烧结之前,首先将烘干后的粉末进行造粒。
9.根据权利要求1所述的陶瓷制备方法,其特征在于,在制备的陶瓷坯体表面生成铬酸镧涂层的步骤包括:
采用阴极磁控溅射技术在制备的陶瓷坯体表面生成铬酸镧涂层。
10.根据权利要求1所述的陶瓷制备方法,其特征在于,所述氧化锆、氧化钇以及添加料的纯度为99.80-99.99%。
11.一种陶瓷,其特征在于,所述陶瓷采用权利要求1-10任一项所述的陶瓷制备方法制成。
12.一种玄武岩拉丝漏板,其特征在于,所述玄武岩拉丝漏板的底板采用权利要求1-10任一项所述的陶瓷制备方法制成。
CN201610514467.7A 2016-06-30 2016-06-30 陶瓷制备方法、陶瓷及玄武岩拉丝漏板 Active CN106186666B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610514467.7A CN106186666B (zh) 2016-06-30 2016-06-30 陶瓷制备方法、陶瓷及玄武岩拉丝漏板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610514467.7A CN106186666B (zh) 2016-06-30 2016-06-30 陶瓷制备方法、陶瓷及玄武岩拉丝漏板

Publications (2)

Publication Number Publication Date
CN106186666A CN106186666A (zh) 2016-12-07
CN106186666B true CN106186666B (zh) 2021-10-15

Family

ID=57463072

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610514467.7A Active CN106186666B (zh) 2016-06-30 2016-06-30 陶瓷制备方法、陶瓷及玄武岩拉丝漏板

Country Status (1)

Country Link
CN (1) CN106186666B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2137065Y (zh) * 1992-09-26 1993-06-23 冶金工业部钢铁研究总院 一种氧化锆质发热元件
CN1690016A (zh) * 2004-04-30 2005-11-02 洛阳耐火材料研究院 以氧化铬为基的耐火复合材料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2137065Y (zh) * 1992-09-26 1993-06-23 冶金工业部钢铁研究总院 一种氧化锆质发热元件
CN1690016A (zh) * 2004-04-30 2005-11-02 洛阳耐火材料研究院 以氧化铬为基的耐火复合材料

Also Published As

Publication number Publication date
CN106186666A (zh) 2016-12-07

Similar Documents

Publication Publication Date Title
CN101786878B (zh) 防静电陶瓷材料及其制备方法及该材料制得的鞭炮引线编织针
CN111410518A (zh) 晶粒级配的氧化锆增韧氧化铝陶瓷基板及其制备工艺
CN111056825B (zh) 一种抗弯型高温复合承烧板及其制备方法
Maldhure et al. Mechanical properties of mullite–corundum composites prepared from bauxite
CN106116577B (zh) 陶瓷制备方法、陶瓷及玄武岩拉丝漏板
CN109020521B (zh) 致密型氧化铬砖及其制造方法
CN105236963A (zh) 氧化锆陶瓷插芯毛坯生产工艺
CN106186666B (zh) 陶瓷制备方法、陶瓷及玄武岩拉丝漏板
CN102875131B (zh) 一种火焰喷涂用Al2O3/TiO2陶瓷棒的制备方法
CN104261822B (zh) 一种氧化锆复合陶瓷及其制备方法
CN108298991A (zh) 常压烧结六方氮化硼陶瓷曲面玻璃热弯模具的制造方法
CN106145921B (zh) 玄武岩拉丝漏板的底板制备方法
CN106187187B (zh) 陶瓷制备方法、陶瓷及玄武岩拉丝漏板
KR20160027314A (ko) 전자세라믹 소성용 고강도 세라믹 기판의 제조방법 및 이에 의해 제조되는 전자세라믹 소성용 고강도 세라믹 기판
CN106699212A (zh) 一种复合陶瓷基片及其制备方法
CN104370554B (zh) 一种氮化硅复合陶瓷发热体材料及其制备方法
CN102964125A (zh) 一种超高温氧化环境下的电致热陶瓷发热体的制备方法
CN102765943B (zh) 一种火焰喷涂用氧化锆陶瓷棒的制备方法
CN106145920B (zh) 陶瓷制备方法、陶瓷及玄武岩拉丝漏板
CN109016078B (zh) 一种纤维陶瓷粉末压制成型工艺
CN204630389U (zh) 碳化硅承载体
CN107739953A (zh) 一种氧化铍基金属陶瓷材料及其制备方法
CN106116570A (zh) 陶瓷制备方法、陶瓷及玄武岩拉丝漏板
CN107937790A (zh) 一种氧化铝基金属陶瓷材料及其制备方法
CA2953035A1 (en) Batch for manufacturing a refractory ceramic product, method for applying a gunning mass or casting mass onto a surface, method for manufacturing a refractory ceramic product, a refractory ceramic product, and the use of a batch

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20171120

Address after: No. 618, three section of Jackie Chan Avenue, Chengdu economic and Technological Development Zone, Sichuan Province

Applicant after: Sichuan Aerospace Tuoxin Basalt Industrial Co., Ltd.

Address before: 518000 room 324, Nanshan District Science Park Comprehensive Service building, Shenzhen, Guangdong

Applicant before: Cao Baiqing

Applicant before: Yang Meng

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant