CN106179213A - 一种纳米α‑Fe2O3改性的活性炭的制备方法及其应用 - Google Patents

一种纳米α‑Fe2O3改性的活性炭的制备方法及其应用 Download PDF

Info

Publication number
CN106179213A
CN106179213A CN201610596129.2A CN201610596129A CN106179213A CN 106179213 A CN106179213 A CN 106179213A CN 201610596129 A CN201610596129 A CN 201610596129A CN 106179213 A CN106179213 A CN 106179213A
Authority
CN
China
Prior art keywords
activated carbon
nanometer
modified activated
preparation
filter element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610596129.2A
Other languages
English (en)
Inventor
叶秀友
彭开勤
屠锦军
黄苗权
陈磊
张仲其
陈连杰
苏锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Qinyuan Water Treatment Technology Co Ltd
Original Assignee
Zhejiang Qinyuan Water Treatment Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Qinyuan Water Treatment Technology Co Ltd filed Critical Zhejiang Qinyuan Water Treatment Technology Co Ltd
Priority to CN201610596129.2A priority Critical patent/CN106179213A/zh
Publication of CN106179213A publication Critical patent/CN106179213A/zh
Priority to CN201780045738.1A priority patent/CN109689203A/zh
Priority to PCT/EP2017/068022 priority patent/WO2018019636A1/en
Priority to PH12018502631A priority patent/PH12018502631A1/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • B01J20/28007Sorbent size or size distribution, e.g. particle size with size in the range 1-100 nanometers, e.g. nanosized particles, nanofibers, nanotubes, nanowires or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2805Sorbents inside a permeable or porous casing, e.g. inside a container, bag or membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/103Arsenic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

本发明涉及一种活性炭,公开了一种纳米α‑Fe2O3改性的活性炭的制备方法及其应用,其通过将活性炭浸泡于稀硝酸中,然后用水和无水乙醇交替清洗,然后晒干、晾干或烘干备用;然后以FeCl3·6H2O为前驱体,以无水乙醇为溶剂配成FeCl3溶液,再加入尿素,搅拌混合均匀后转移至高压釜中并加入备用的活性炭,充分搅拌去除溶液中的气泡,然后进行水热处理,最后将处理后的活性炭用无水乙醇洗涤,晒干、晾干或烘干。本发明制得的纳米α‑Fe2O3改性的活性炭不仅可以保持纳米材料的固有特性而且可以增强其稳定性,能够高效吸附饮用水中的重金属铬和砷,并适用于反应器操作,具有反应易于控制、易操作、维护方便等特点,因而其具有非常广阔的市场应用开发前景。

Description

一种纳米α-Fe2O3改性的活性炭的制备方法及其应用
技术领域
本发明涉及一种活性炭,尤其涉及了一种改性活性炭的制备方法及其应用。
背景技术
目前冶炼、电解、医药、油漆、合金和电镀制造等行业每年排放大量含有铬、砷离子的工业废水。这些废水中的铬、砷及其化合物能在鱼类及其他水生生物体内富集,通过饮水和食物链对人类和周围生态环境造成严重危害。因此,如何减少铬、砷的污染危害,已成为当下一个急需解决的环境问题。
活性炭作为一种多孔性的非极性吸附剂,因其特殊的孔隙结构具有巨大的比表面积,且来源丰富,价格低廉,是目前水处理中应用最广的吸附剂之一。它具有良好的吸附性能和稳定的化学性质,可以耐强酸、强碱,能经受水浸、高温和高压作用,同时还可以活化再生。
含铁吸附剂具有良好的吸附阴阳离子的能力,以铁元素为主要吸附成分的吸附剂的开发研制和应用已经得到了国内外的广泛关注。其中纳米铁(包括零价铁、氧化铁和磁铁矿颗粒等)因其尺度小、表面效应大、吸附能力强等优点而在含铬、砷废水处理中受到广泛重视。然而粉末状的纳米铁颗粒细微,在水中易失活和团聚,难以回收和重复利用。
发明内容
本发明针对现有技术中含铁吸附剂在水中易失活和团聚,难以回收和重复利用的问题,提供了一种纳米α-Fe2O3改性的活性炭的制备方法及其应用。
为了解决上述技术问题,本发明通过下述技术方案得以解决:
一种纳米α-Fe2O3改性的活性炭的制备方法,其包括以下步骤:
步骤a:将活性炭浸泡于稀硝酸中,然后用水和无水乙醇交替清洗,除去表面附着物,晒干、晾干或在60~80℃下烘干备用;
步骤b:以FeCl3·6H2O为前驱体,以无水乙醇为溶剂配成溶液浓度为167~835mol/L的FeCl3溶液,而后加入250~1250mol/L尿素,搅拌混合均匀;
步骤c:将步骤b处理后的溶液转移至高压釜中,而后加入步骤a处理后的活性炭,充分搅拌去除溶液中的气泡;
步骤d:将步骤c中的高压釜放入鼓风干燥箱中进行水热处理;
步骤e:将步骤d处理后的活性炭用无水乙醇洗涤,晒干、晾干或在60~80℃下烘干,得到纳米α-Fe2O3改性的活性炭,通过该方法得到的α-Fe2O3改性的活性炭能大大改进普通活性炭对重金属的吸附能力。
作为优选,步骤a中乙醇和水的体积比为1:3~1:1,清洗时间均为0.5-2h。
作为优选,步骤a中活性炭颗粒大小为10~20目。
作为优选,稀硝酸的浓度为0.1M,浸泡时间为0.5~2h,且每100g活性炭采用1L稀硝酸进行清洗。通过稀硝酸的浸泡可以有效去除活性炭表面的杂质,以防止负载纳米α-Fe2O3改性的活性炭时不均匀。
作为优选,步骤b中高压釜内设有聚四氟乙烯内衬。聚四氟乙烯不会与溶液发生反应,因而不会引入杂质,通过设置聚四氟乙烯内衬可以有效防止溶液不与高压釜的不锈钢内壁接触,从而使得高压釜能够起到封闭的作用,保持高压釜内部高温高压。
作为优选,高压釜的体积为70~200mL。
作为优选,步骤d中水热处理即为通过鼓风干燥箱外部加热3.5~6.5h,使高压釜内部保持温度为150~180℃,压力为1.0~2.0MPa。通过该种外部加热的方式使高压釜内部空间保持高温高压状态,这种状态下能使纳米材料具备不同形貌,这些特殊形貌可以增加材料的比表面积,以此提高材料的吸附能力。
一种滤芯,包括滤芯本体,滤芯本体内填充纳米α-Fe2O3改性的活性炭。
作为优选,滤芯本体为熔喷聚丙烯纤维制成。
作为优选,滤芯本体呈圆筒形,内径为25~35mm,外径为60~65mm。
本发明由于采用了以上技术方案,具有显著的技术效果:
本发明通过水热合成法将α-Fe2O3负载于活性炭表面或孔隙,得到纳米α-Fe2O3改性的活性炭,其不仅可以保持纳米材料的固有特性而且可以增强其稳定性,能够高效吸附饮用水中的重金属铬和砷。一般活性炭几乎对重金属铬和砷没有吸附能力,而本发明300g纳米α-Fe2O3改性的活性炭,在Cr或As超标10倍的水中,可以保证半个月内出水达到国家饮用水安全标准。此外该材料适用于反应器操作,具有反应易于控制、易操作、维护方便等特点,因而其具有非常广阔的市场应用开发前景。
附图说明
图1是本发明实施例4的结构示意图。
图2是本发明实施例4中第一种测定方法的折线图。
图3是本发明实施例4中第二种测定方法的折线图。
图4是本发明实施例4中第三种测定方法的折线图。
图5是本发明实施例4中第四种测定方法的折线图。
图6是本发明实施例4中第五种测定方法的折线图。
附图中各数字标号所指代的部位名称如下:1—滤芯本体、2—纳米α-Fe2O3改性的活性炭。
具体实施方式
下面结合附图与实施例对本发明作进一步详细描述。
实施例1
一种纳米α-Fe2O3改性的活性炭的制备方法,其包括以下步骤:
步骤a:取10g且目数为10目的活性炭颗粒浸泡于浓度为0.1M容量为100mL稀硝酸中,浸泡时间为2h,然后用水和无水乙醇交替清洗,乙醇和水的体积比为1:3~1:1,清洗时间均为0.5h。除去表面附着物,在80℃下烘干备用;
步骤b:以FeCl3·6H2O为前驱体,以无水乙醇为溶剂配成溶液浓度为167mol/L的FeCl3溶液,而后加入250mol/L尿素,搅拌混合均匀;
步骤c:将步骤b处理后的溶液转移至高压釜中,本实施例中高压釜体积为70mL且其内设有聚四氟乙烯内衬,而后加入步骤a处理后的活性炭,充分搅拌去除溶液中的气泡;
步骤d:将步骤c中的高压釜放入鼓风干燥箱中进行水热处理,通过鼓风干燥箱外部加热3.5~6.5h,使高压釜内部保持温度为150~180℃,压力为1.0MPa。通过该种外部加热的方式使高压釜内部空间保持高温高压状态,这种状态下能使纳米材料具备不同形貌。。
步骤e:将步骤d处理后的活性炭用无水乙醇洗涤,在60℃下烘干,即可得到纳米α-Fe2O3改性的活性炭。
实施例2
一种纳米α-Fe2O3改性的活性炭的制备方法,其包括以下步骤:
步骤a:取10g且目数为10目的活性炭颗粒浸泡于浓度为0.1M、容量为100mL稀硝酸中,浸泡时间为0.5h,然后用水和无水乙醇交替清洗,乙醇和水的体积比为1:3~1:1,清洗时间均为2h,然后除去表面附着物,晒干备用;
步骤b:以FeCl3·6H2O为前驱体,以无水乙醇为溶剂配成溶液浓度为500mol/L的FeCl3溶液,而后加入800mol/L尿素,搅拌混合均匀;
步骤c:将步骤b处理后的溶液转移至高压釜中,本实施例中高压釜体积为135mL且其内设有聚四氟乙烯内衬,而后加入步骤a处理后的活性炭,充分搅拌去除溶液中的气泡;
步骤d:将步骤c中的高压釜放入鼓风干燥箱中进行水热处理,通过鼓风干燥箱外部加热3.5~6.5h,使高压釜内部保持温度为150~180℃,压力为2.0MPa。通过该种外部加热的方式使高压釜内部空间保持高温高压状态,这种状态下能使纳米材料具备不同形貌。
步骤e:将步骤d处理后的活性炭用无水乙醇洗涤,在80℃下烘干,即可得到纳米α-Fe2O3改性的活性炭。
实施例3
同实施例1或2,所不同的是步骤b中以FeCl3·6H2O为前驱体,以无水乙醇为溶剂配成溶液浓度为835mol/L的FeCl3溶液,而后加入1250mol/L尿素,搅拌混合均匀;步骤c中高压釜体积为200mL。
实施例4
一种滤芯,如图1所示,包括滤芯本体1,滤芯本体1内填充有由实施例1或实施例2或实施例3所制得的纳米α-Fe2O3改性的活性炭2,其滤芯本体1呈圆筒形,采用熔喷聚丙烯纤维制成。
本实施例中采用纳米α-Fe2O3改性的活性炭2吸附处理饮用水中重金属,将含重金属的水进过填充有纳米α-Fe2O3改性的活性炭2的滤芯内,然后分别取原水和出水检测其前后重金属浓度的变化情况,具体测定方法分为如下几种:
第一种:分别配制含重金属铬和砷且浓度均为10mg/L的原水,调节初始pH为7,并经电磁流量计调节流速,使得进水流速为100mL/min,从滤芯本体1的外部压入,经过纳米α-Fe2O3改性的活性炭后出水,分别取原水和出水检测其前后重金属浓度的变化情况,结果见附图2
第二种:配制含重金属铬浓度为10mg/L的原水,分别调节pH值为4和10,并经电磁流量计调节流速,使得进水流速为100mL/min,从滤芯本体1的外部压入,经过纳米α-Fe2O3改性的活性炭后出水,分别取原水和出水检测其前后重金属浓度的变化情况,结果见图3。
第三种:配置含重金属砷浓度为10mg/L的原水,分别调节pH值为4和10,并经电磁流量计调节流速,使得进水流速为100mL/min,从滤芯本体1的外部压入,经过纳米α-Fe2O3改性的活性炭后出水,分别取原水和出水检测其前后重金属浓度的变化情况,结果见图4。
第四种:配制含重金属铬浓度为10mg/L的原水,调节初始pH为7,并经电磁流量计调节流速,调节进水流速分别为1000mL/min和2000mL/min,从滤芯本体(1)的外部压入,经过纳米α-Fe2O3改性的活性炭后出水,分别取原水和出水检测其前后重金属浓度的变化情况,结果见图5。
第五种:配制含重金属砷浓度为10mg/L的原水,调节初始pH为7,并经电磁流量计调节流速,调节进水流速分别为1000mL/min和2000mL/min,从滤芯本体(1)的外部压入,经过纳米α-Fe2O3改性的活性炭后出水,分别取原水和出水检测其前后重金属浓度的变化情况,结果见图6。
在实际应用过程中,流速往往是限制材料应用的一个重要因素,而综上可知,纳米α-Fe2O3改性的活性炭对重金属铬、砷的吸附能力不会随流速变化而发生显著变化,因此在设计净水装置时是不需要考虑流速,此材料有极强的实际应用空间。另外,此材料制备及应用操作简单,极易工业化,所以在饮用水去除重金属领域具有广阔的应用前景。
总之,以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所作的均等变化与修饰,皆应属本发明专利的涵盖范围。

Claims (10)

1.一种纳米α-Fe2O3改性的活性炭的制备方法,其特征在于其包括以下步骤:
步骤a:将活性炭浸泡于稀硝酸中,然后用水和无水乙醇交替清洗,除去表面附着物,晒干、晾干或在60~80℃下烘干备用;
步骤b:以FeCl3·6H2O为前驱体,以无水乙醇为溶剂配成溶液浓度为167~835mol/L的FeCl3溶液,而后加入250~1250mol/L尿素,搅拌混合均匀;
步骤c:将步骤b处理后的溶液转移至高压釜中,而后加入步骤a处理后的活性炭,充分搅拌去除溶液中的气泡;
步骤d:将步骤c中的高压釜放入鼓风干燥箱中进行水热处理;
步骤e:将步骤d处理后的活性炭用无水乙醇洗涤,晒干、晾干或在60~80℃下烘干,得到纳米α-Fe2O3改性的活性炭。
2.根据权利要求1所述的一种纳米α-Fe2O3改性的活性炭的制备方法,其特征在于:步骤a中乙醇和水的体积比为1:3~1:1,清洗时间均为0.5-2h。
3.根据权利要求1所述的一种纳米α-Fe2O3改性的活性炭的制备方法,其特征在于:步骤a中活性炭颗粒大小为10~20目。
4.根据权利要求1所述的一种纳米α-Fe2O3改性的活性炭的制备方法,其特征在于:稀硝酸的浓度为0.1M,浸泡时间为0.5~2h,且每100g活性炭采用1L稀硝酸进行清洗。
5.根据权利要求1所述的一种纳米α-Fe2O3改性的活性炭的制备方法,其特征在于:步骤b中高压釜内设有聚四氟乙烯内衬。
6.根据权利要求1或5所述的一种纳米α-Fe2O3改性的活性炭的制备方法,其特征在于:高压釜的体积为70~200mL。
7.根据权利要求1所述的一种纳米α-Fe2O3改性的活性炭的制备方法,其特征在于:步骤d中水热处理即为通过鼓风干燥箱外部加热3.5~6.5h,使高压釜内部保持温度为150~180℃,压力为1.0~2.0MPa。
8.一种滤芯,包括滤芯本体(1),其特征在于:滤芯本体(1)内填充有根据权利要求1-5任意一项所述的纳米α-Fe2O3改性的活性炭的制备方法制备的纳米α-Fe2O3改性的活性炭(2)。
9.根据权利要求8所述的一种滤芯,其特征在于:滤芯本体(1)为熔喷聚丙烯纤维制成。
10.根据权利要求8或9所述的一种滤芯,其特征在于:滤芯本体(1)呈圆筒形,内径为25~35mm,外径为60~65mm。
CN201610596129.2A 2016-07-25 2016-07-25 一种纳米α‑Fe2O3改性的活性炭的制备方法及其应用 Pending CN106179213A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201610596129.2A CN106179213A (zh) 2016-07-25 2016-07-25 一种纳米α‑Fe2O3改性的活性炭的制备方法及其应用
CN201780045738.1A CN109689203A (zh) 2016-07-25 2017-07-17 制备纳米α-Fe2O3改性活性炭的方法及其用途
PCT/EP2017/068022 WO2018019636A1 (en) 2016-07-25 2017-07-17 Method for preparing nano alpha-fe2o3 modified activated carbon and use thereof
PH12018502631A PH12018502631A1 (en) 2016-07-25 2018-12-13 Method for preparing nano alpha-fe203 modified activated carbon and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610596129.2A CN106179213A (zh) 2016-07-25 2016-07-25 一种纳米α‑Fe2O3改性的活性炭的制备方法及其应用

Publications (1)

Publication Number Publication Date
CN106179213A true CN106179213A (zh) 2016-12-07

Family

ID=57495268

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201610596129.2A Pending CN106179213A (zh) 2016-07-25 2016-07-25 一种纳米α‑Fe2O3改性的活性炭的制备方法及其应用
CN201780045738.1A Pending CN109689203A (zh) 2016-07-25 2017-07-17 制备纳米α-Fe2O3改性活性炭的方法及其用途

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201780045738.1A Pending CN109689203A (zh) 2016-07-25 2017-07-17 制备纳米α-Fe2O3改性活性炭的方法及其用途

Country Status (3)

Country Link
CN (2) CN106179213A (zh)
PH (1) PH12018502631A1 (zh)
WO (1) WO2018019636A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106865522A (zh) * 2017-01-19 2017-06-20 中国科学院合肥物质科学研究院 一种三维泡沫炭/三氧化二铁纳米棒阵列复合材料及应用
CN107136263A (zh) * 2017-05-27 2017-09-08 安徽金满盈农业科技有限公司 一种完整美观的杭白菊花茶制备方法
CN107173493A (zh) * 2017-05-27 2017-09-19 安徽金满盈农业科技有限公司 一种低农残观赏效果好的杭白菊花茶制备方法
CN107778535A (zh) * 2017-10-25 2018-03-09 铜陵市三盛电子有限公司 一种高散热电容器复合橡胶外壳的制备方法
CN107983306A (zh) * 2017-11-30 2018-05-04 华南理工大学 一种活性炭载纳米氧化铁吸附剂及其制备方法
CN108258254A (zh) * 2018-01-29 2018-07-06 青岛科技大学 一种表面改性石墨电极及其制备方法和应用
CN109012589A (zh) * 2018-08-23 2018-12-18 中山大学 一种选择性吸附Cr(VI)的尿素改性生物炭及其制备方法和应用方法
CN109689203A (zh) * 2016-07-25 2019-04-26 浙江沁园水处理科技有限公司 制备纳米α-Fe2O3改性活性炭的方法及其用途
CN113083261A (zh) * 2021-05-24 2021-07-09 南昌师范学院 一种活性炭纤维材料的改性方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113735234A (zh) * 2021-09-24 2021-12-03 华北电力大学(保定) 一种处理含铬废水的粉煤灰基磁混凝剂及制备方法、应用和再生方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10047997A1 (de) * 2000-09-26 2002-04-11 Bayer Ag Kontakt- und Absorber-Granulate
US7572380B2 (en) * 2001-06-08 2009-08-11 The Penn State Research Foundation Method for oxyanion removal from ground water
US20050093189A1 (en) * 2001-08-27 2005-05-05 Vo Toan P. Adsorbents for removing heavy metals and methods for producing and using the same
DE10210786A1 (de) * 2002-03-12 2003-10-02 Bayer Ag Mischungen aus Adsorbermaterialien
US9296626B2 (en) * 2011-01-21 2016-03-29 Kyungpook National University Industry-Academic Cooperation Foundation Method for producing an organic-inorganic hybrid sorbent by impregnating an oxide into nanopores of activated carbon and use thereof in water treatment
CN102616861A (zh) * 2011-01-28 2012-08-01 中国科学院合肥物质科学研究院 三氧化二铁微纳米多孔球及其制备方法和用途
EP2885076B1 (en) * 2012-08-17 2020-11-11 Biokol Lilliestråle & Co Kb Methods for preparing magnetic activated carbon
CN106179213A (zh) * 2016-07-25 2016-12-07 浙江沁园水处理科技有限公司 一种纳米α‑Fe2O3改性的活性炭的制备方法及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
刘玉荣: "《碳材料在超级电容器中的应用》", 31 January 2013, 国防工业出版社 *
李影: "溶剂热法制备金属氧化物与活性炭的复合材料及其电化学性能的研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *
王吉坤等: "《铅锌冶炼生产技术手册》", 31 January 2012, 冶金工业出版社 *
郝涛: "纳米氧化铁及其复合物的制备与水处理性能研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109689203A (zh) * 2016-07-25 2019-04-26 浙江沁园水处理科技有限公司 制备纳米α-Fe2O3改性活性炭的方法及其用途
CN106865522A (zh) * 2017-01-19 2017-06-20 中国科学院合肥物质科学研究院 一种三维泡沫炭/三氧化二铁纳米棒阵列复合材料及应用
CN106865522B (zh) * 2017-01-19 2019-03-12 中国科学院合肥物质科学研究院 一种三维泡沫炭/三氧化二铁纳米棒阵列复合材料及应用
CN107136263A (zh) * 2017-05-27 2017-09-08 安徽金满盈农业科技有限公司 一种完整美观的杭白菊花茶制备方法
CN107173493A (zh) * 2017-05-27 2017-09-19 安徽金满盈农业科技有限公司 一种低农残观赏效果好的杭白菊花茶制备方法
CN107778535A (zh) * 2017-10-25 2018-03-09 铜陵市三盛电子有限公司 一种高散热电容器复合橡胶外壳的制备方法
CN107983306A (zh) * 2017-11-30 2018-05-04 华南理工大学 一种活性炭载纳米氧化铁吸附剂及其制备方法
CN108258254B (zh) * 2018-01-29 2023-08-11 青岛科技大学 一种表面改性石墨电极及其制备方法和应用
CN108258254A (zh) * 2018-01-29 2018-07-06 青岛科技大学 一种表面改性石墨电极及其制备方法和应用
CN109012589A (zh) * 2018-08-23 2018-12-18 中山大学 一种选择性吸附Cr(VI)的尿素改性生物炭及其制备方法和应用方法
CN109012589B (zh) * 2018-08-23 2019-07-02 中山大学 一种选择性吸附Cr(VI)的尿素改性生物炭及其制备方法和应用方法
CN113083261A (zh) * 2021-05-24 2021-07-09 南昌师范学院 一种活性炭纤维材料的改性方法
CN113083261B (zh) * 2021-05-24 2023-02-07 南昌师范学院 一种活性炭纤维材料的改性方法

Also Published As

Publication number Publication date
CN109689203A (zh) 2019-04-26
PH12018502631A1 (en) 2019-10-21
WO2018019636A1 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
CN106179213A (zh) 一种纳米α‑Fe2O3改性的活性炭的制备方法及其应用
Kalaruban et al. Removing nitrate from water using iron-modified Dowex 21K XLT ion exchange resin: Batch and fluidised-bed adsorption studies
Zeng et al. Magnetic biochar synthesized with waterworks sludge and sewage sludge and its potential for methylene blue removal
Luo et al. Nanocomposites of graphene oxide-hydrated zirconium oxide for simultaneous removal of As (III) and As (V) from water
Thirunavukkarasu et al. Arsenic removal from drinking water using iron oxide-coated sand
Du et al. La-doped activated carbon as high-efficiency phosphorus adsorbent: DFT exploration of the adsorption mechanism
CN103212364B (zh) 一种铁锰复合氧化物及其制备方法和水体除砷的应用
CN101348297B (zh) 一种含重金属离子废水的处理方法
Yang et al. Efficient phosphate capture of Fe3O4/UiO-66-NH2/CeO2 in wide pH spectrum
CN103301809A (zh) 磁性载铁有序介孔碳及其制备方法和应用
CN107999033A (zh) 一种吸附砷的聚多巴胺/氨基化碳纳米管/海藻酸钠微球
CN108262002B (zh) 一种去除锑的Fe-Ti二元氧化物吸附剂的制备方法及应用
Liu et al. Efficient adsorption of arsenic in groundwater by hydrated iron oxide and ferromanganese oxide chitosan gel beads
CN104014314B (zh) 一种生物吸附剂、制备方法和用途
CN105148835B (zh) 颗粒型13x分子筛/凹凸棒土负载纳米铁‑镍材料及其制备方法
CN107262071A (zh) 一种氧化铁树脂复合吸附剂的工业制备方法
CN109967041B (zh) 一种双金属改性磁性生物质活性炭吸附剂及其制备方法与在废水处理上应用
Jabasingh et al. Magnetic hetero-structures as prospective sorbents to aid arsenic elimination from life water streams
CN106423272A (zh) 一种负载型二氧化钛/氧化石墨烯小球及其制备方法与应用
Aslam et al. Recent trends of carbon nanotubes and chitosan composites for hexavalent chromium removal from aqueous samples
Ijaz et al. Functionalization of chitosan biopolymer using two dimensional metal-organic frameworks and MXene for rapid, efficient, and selective removal of lead (II) and methyl blue from wastewater
CN107185537A (zh) 一种铃铛型Fe3O4纳米反应器及其制备与应用
Bukhari et al. Simultaneous removal of Norfloxacin, Ciprofloxacin, and copper from aqueous solution by chitosan and MXene functionalized graphene oxide ternary composite based on anion-synergistic interaction
Liao et al. Adsorption of Ag (Ⅰ) on chelate resins containing N and S: Comparison and computational study with anionic resin
CN108793371A (zh) 一种Na2EDTA耦合Fe0/Fe3O4复合材料去除水体中Cr(VI)的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination