CN107185537A - 一种铃铛型Fe3O4纳米反应器及其制备与应用 - Google Patents

一种铃铛型Fe3O4纳米反应器及其制备与应用 Download PDF

Info

Publication number
CN107185537A
CN107185537A CN201710344171.XA CN201710344171A CN107185537A CN 107185537 A CN107185537 A CN 107185537A CN 201710344171 A CN201710344171 A CN 201710344171A CN 107185537 A CN107185537 A CN 107185537A
Authority
CN
China
Prior art keywords
sio
reactor
nano
calculated
bell type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710344171.XA
Other languages
English (en)
Inventor
曾滔
俞明东
张海燕
何志桥
宋爽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201710344171.XA priority Critical patent/CN107185537A/zh
Publication of CN107185537A publication Critical patent/CN107185537A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/02Specific form of oxidant
    • C02F2305/026Fenton's reagent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种铃铛型Fe3O4纳米反应器及其制备与应用,所述反应器以Fe3O4颗粒为核心,在核心表面通过Stober法包覆硅胶层,形成Fe3O4@SiO2复合物;再在Fe3O4@SiO2复合物表面,通过二茂铁和H2O2在丙酮中反应形成Fe3O4/C壳层,获得Fe3O4@SiO2@Fe3O4/C复合物;最后利用氨水将硅胶层除去,获得所述铃铛型Fe3O4纳米反应器。与传统非均相芬顿催化剂相比,铃铛型结构有效避免了催化剂的团聚,增强了芬顿催化剂的稳定性。

Description

一种铃铛型Fe3O4纳米反应器及其制备与应用
(一)技术领域
本发明涉及材料制备及环境技术领域,特别涉及一种核、壳部分均由Fe3O4组成的铃铛型纳米反应器的制备方法及应用。
(二)背景技术
高级氧化技术是去除环境中难降解有毒有害有机物的有效方法。其中应用较为广泛的芬顿反应利用二价铁离子(Fe2+)与H2O2作用产生具有强氧化性的羟基自由基(·OH),几乎无选择性地氧化降解有机污染物。由于具有氧化效率高、操作简便、成本低廉等优点,芬顿氧化技术在各种废水如染料废水、制药废水、造纸废水、农药废水等处理过程中发挥着重要作用。近年来,采用含铁基固体作为催化剂的非均相类芬顿反应逐步取代了传统的均相芬顿反应。此方法不但能实现高效降解有机物,还克服了均相芬顿反应中存在的所需试剂量较大、产生铁污泥、铁盐无法回收利用等缺点,是一种具有广阔应用前景的废水处理技术。
四氧化三铁(Fe3O4)是一种重要的反式尖晶石铁氧体,生物兼容性好、廉价易得,是应用最为广泛的软磁性材料之一。由于其既具有纳米材料的小尺寸效应、量子尺寸效应、表面小样和宏观量子轨道效应,又具有磁性特性,Fe3O4在环境技术、生物技术和医学领域吸引着人们极大的兴趣。以Fe3O4/H2O2体系处理废水,所产生的·OH几乎能消除所以的有机污染物,具有较高的催化活性。另外,在反应结束后可通过简单的磁分离方式进行回收,不仅设备投入少、处理周期短,还能避免催化剂的流失,实现降解过程连续化操作。而现有的基于Fe3O4非均相芬顿反应研究中,催化剂在使用过程中的团聚现象会引起催化活性位点的减少,进而导致催化活性的降低;另一方面,活性位点直接暴露在极端反应环境中不但容易受到环境中大分子的干扰,还会增加催化剂表面元素流失的风险。
随着纳米技术的不断发展,纳米反应器的概念逐渐被提出并迅速成为能源储备、化学合成和生物医药领域的研究热点。受此启发,如若将铁氧化物组装在一定的纳米空间内部,形成一个特殊的纳米芬顿反应器,就可以在保证类芬顿反应正常进行的同时还能完美地解决上述提及的催化剂稳定性的问题。铃铛型材料是一种特殊纳米结构,其介孔外壳除了能确保目标分子自由进出内部空间外,还能阻止内核之间的团聚;同时其核壳之间的空腔部分能够为反应的发生提供理想的“场所”。因此将芬顿纳米反应器设计成铃铛型结构不失为一良策。虽然文献报道了多种多样的铃铛型材料,但设计一种铃铛型Fe3O4材料并将它们应用到芬顿催化领域鲜有报道。
(三)发明内容
本发明目的是为了解决现有非均相芬顿催化剂催化活性较低、稳定性较差的难题,提供一种能将类芬顿反应限定在特定的纳米空间中进行,从而高效催化氧化去除氯酚类有机污染物的铃铛型Fe3O4纳米反应器及其制备与应用。
本发明采用的技术方案是:
本发明提供一种铃铛型Fe3O4纳米反应器,所述反应器以Fe3O4颗粒为核心,在核心表面通过Stober法包覆硅胶层,形成Fe3O4@SiO2复合物;再在Fe3O4@SiO2复合物表面,通过二茂铁和H2O2在丙酮中反应形成Fe3O4/C壳层,获得Fe3O4@SiO2@Fe3O4/C复合物;最后利用氨水将硅胶层除去,获得所述铃铛型Fe3O4纳米反应器。
进一步,所述Fe3O4@SiO2复合物按如下方法制备:将Fe3O4颗粒用水悬浮制成0.02g/mL的悬液,加入质量浓度25~28%氨水,搅拌混匀,接着缓慢滴加四乙氧基硅烷,室温下搅拌10小时,反应液磁分离后用乙醇清洗,60℃干燥6小时,即得Fe3O4@SiO2复合物;所述氨水体积用量以Fe3O4颗粒重量计为4~6ml/g(优选4.3ml/g),所述乙醇体积用量以Fe3O4颗粒重量计为150~400ml/g(优选200ml/g);所述四乙氧基硅烷体积用量以Fe3O4颗粒重量计为2~5ml/g(优选2.9ml/g)。
进一步,所述Fe3O4@SiO2@Fe3O4/C复合物按如下方法制备:将Fe3O4@SiO2复合物溶于丙酮中,加入二茂铁,搅拌混合半小时,接着缓慢滴加H2O2(优选质量浓度30%),继续搅拌2小时,加热至210℃密闭反应48小时,反应液磁分离后依次用丙酮和乙醇清洗数次,得到Fe3O4@SiO2@Fe3O4/C复合物;所述丙酮体积用量以Fe3O4@SiO2复合物重量计为600~800ml/g(优选650ml/g);所述二茂铁与Fe3O4@SiO2复合物重量比为1~3:1(优选2:1);所述H2O2体积用量以Fe3O4@SiO2复合物重量计为15~25ml/g(优选20ml/g)。
进一步,除去硅胶层的方法为:将Fe3O4@SiO2@Fe3O4/C复合物用去离子水悬浮,再加入质量浓度25~28%氨水,在150℃密闭反应6小时,反应结束后,磁性分离样品,用去离子水洗涤3~4次,置于真空干燥箱中干燥样品,得到含有空腔结构的且核壳均含Fe3O4组分的铃铛型Fe3O4纳米反应器;所述氨水体积用量以Fe3O4@SiO2@Fe3O4/C复合物重量计为18~25ml/g(优选20ml/g),所述悬浮用去离子水体积用量以Fe3O4@SiO2@Fe3O4/C复合物重量计为300~500ml/g(优选400ml/g)。
本发明所述Fe3O4颗粒按如下方法制备:将FeCl3·6H2O、柠檬酸钠、乙酸钠溶于乙二醇中,室温下磁性搅拌半小时,得到的黄色混合液立即转入密闭的聚四氟乙烯内衬的不锈钢高温高压反应釜中,在马弗炉中加热至200℃反应10小时,反应结束后,反应液磁分离依次并分别用乙醇和去离子水清洗3遍,真空干燥12小时即得Fe3O4磁性颗粒;所述FeCl3·6H2O与柠檬酸钠和乙酸钠重量比为1:0.52:1.8,所述乙二醇体积用量以FeCl3·6H2O重量计为30.1ml/g。
本发明还提供一种所述铃铛型Fe3O4纳米反应器的制备方法,所述方法为:(1)将Fe3O4颗粒用水悬浮制成0.02g/mL的悬液,加入质量浓度25~28%氨水,搅拌混匀,接着缓慢滴加四乙氧基硅烷,室温下搅拌10小时,反应液磁分离后用乙醇清洗,60℃干燥6小时,即得Fe3O4@SiO2复合物;所述氨水体积用量以Fe3O4颗粒重量计为4~6ml/g,所述乙醇体积用量以Fe3O4颗粒重量计为150~400ml/g;所述四乙氧基硅烷体积用量以Fe3O4颗粒重量计为2~5ml/g;(2)将Fe3O4@SiO2复合物溶于丙酮中,加入二茂铁,搅拌混合半小时,接着缓慢滴加H2O2(优选质量浓度30%),继续搅拌2小时,加热至210℃密闭反应48小时,反应液磁分离后依次用丙酮和乙醇清洗数次,得到Fe3O4@SiO2@Fe3O4/C复合物;所述丙酮体积用量以Fe3O4@SiO2复合物重量计为600~800ml/g;所述二茂铁与Fe3O4@SiO2复合物重量比为1~3:1;所述H2O2体积用量以Fe3O4@SiO2复合物重量计为15~25ml/g;(3)将Fe3O4@SiO2@Fe3O4/C复合物用去离子水悬浮再加入质量浓度25~28%氨水,在150℃密闭反应6小时,反应结束后,磁性分离样品,用去离子水洗涤3~4次,置于真空干燥箱中干燥样品,得到含有空腔结构的且核壳均含Fe3O4组分的铃铛型Fe3O4纳米反应器;所述氨水体积用量以Fe3O4@SiO2@Fe3O4/C复合物重量计为18~25ml/g。
本发明还涉及一种所述铃铛型Fe3O4纳米反应器在处理氯酚类废水中的应用。
进一步,所述氯酚类废水中含0.8~3.0mM 4-氯酚。
进一步,所述应用为:以铃铛型Fe3O4纳米反应器为催化剂,与氯酚类污染物混合,加入质量浓度30%H2O2,在20~40℃、250~350rpm,pH为3.0~7.0条件下(优选23℃、300rpm、pH3.0)进行反应,实现对氯酚类污染物的降解;反应完成后,可利用外加磁场将催化剂从混合液中磁性分离,分离后的Fe3O4铃铛型纳米反应器经回收后可重复利用多次。所述铃铛型Fe3O4纳米反应器重量以氯酚类污染物体积计为0.1-1.0g·L-1;所述H2O2体积用量以氯酚类污染物体积计为1.2-50mM。
Fe3O4@Fe3O4/C铃铛型纳米反应器处理氯酚类废水的主要过程为:最外层介孔碳材料先通过π-π作用将溶液中的氯酚化合物富集到催化剂周围,氯酚类小分子再通过外壳中的介孔快速扩散到反应器内部。与此同时,H2O2也进入反应器内部与Fe3O4位点接触产生大量羟基自由基,由于Fe3O4/C外壳的限域作用,羟基自由基不会像在溶液中那样马上扩散开,由此形成反应器空腔内羟基自由基的局部瞬时浓度很高。在此充满高浓度、强氧化性物质的微环境内,氯酚类物质便能被快速降解,反应产物再经过介孔外壳扩散到溶液中。在Fe3O4@Fe3O4/C体系中,空腔部分为氯酚化合物的降解提供了良好的反应场所,围成空腔的Fe3O4内外壁则极大地丰富了类芬顿反应活性位点。
与现有技术相比,本发明所提供的铃铛型Fe3O4纳米反应器优点在于:(1)与传统非均相芬顿催化剂相比,铃铛型结构有效避免了催化剂的团聚,增强了芬顿催化剂的稳定性;(2)由Fe3O4内核和Fe3O4外壳围成的空腔部分可为类芬顿反应的发生提供理想的微环境,同时极大地丰富了类芬顿反应在此空间的催化位点;(3)整个体系中的Fe3O4部分使反应器具有超大的磁饱和强度,能够在重复利用环节轻易地实现磁分离回收;(4)反应器最外层的碳层不仅可以保护内部活性位点免受外部极端条件的破坏,还能通过π-π作用对反应混合液中的氯酚类污染物分子进行富集,增大催化剂附近的局部反应物浓度。
(四)附图说明
图1为实施例1铃铛型Fe3O4纳米反应器的合成示意图。
图2为实施例1各步骤产物的TEM照片,a为Fe3O4颗粒,b为Fe3O4@SiO2,c为Fe3O4@SiO2@Fe3O4/C,d为Fe3O4@Fe3O4/C。
图3为实施例1各步骤产物的XRD谱图。
图4为实施例1中Fe3O4@SiO2@Fe3O4/C(a)和Fe3O4@Fe3O4/C(b)的N2吸附-脱附曲线。
图5为实施例1各步骤产物的磁滞回线。
(五)具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
实施例1:本发明铃铛型Fe3O4纳米反应器的制备方法
本发明所提供的核壳均为Fe3O4组分的铃铛型纳米反应器Fe3O4@Fe3O4/C,合成示意图如图1所示,其具体的制备方法可分为以下四步:
(1)制备Fe3O4磁性颗粒:将2.60g FeCl3·6H2O、1.35g柠檬酸钠、4.80g乙酸钠溶于80mL乙二醇中,室温下磁性搅拌半小时。得到的黄色混合液立即转入密闭的聚四氟乙烯内衬的不锈钢高温高压反应釜中,在马弗炉中加热至200℃反应10小时。反应结束后磁分离黑色产物并分别用乙醇和去离子水清洗3遍,真空干燥12小时,获得Fe3O4磁性颗粒0.8g,粒径180~300nm。
(2)制备核壳结构Fe3O4@SiO2复合物:取0.02g·mL-1的Fe3O4磁性颗粒水悬液35mL与140mL乙醇、3mL质量浓度25~28%氨水混合。搅拌15分钟后,缓慢滴加2.0mL四乙基原硅酸盐(TEOS),室温下继续搅拌10小时。得到的黑色产物磁分离后用乙醇清洗4次,再置入真空干燥箱内60℃干燥6小时,即得Fe3O4@SiO2纳米球0.9g,粒径220~340nm。
(3)制备Fe3O4@SiO2@Fe3O4/C复合物:称取0.1g Fe3O4@SiO2纳米球、0.2g二茂铁溶于65mL丙酮中,混合半小时。缓慢滴加2mL质量浓度30%H2O2后继续搅拌2小时,再转移至聚四氟乙烯内衬的不锈钢高温高压反应釜中加热至210℃反应48小时,磁分离并用丙酮和乙醇清洗数次后,得到Fe3O4@SiO2@Fe3O4/C复合物0.15g,可平行做多批。
(4)将所得Fe3O4@SiO2@Fe3O4/C复合物0.15g分散于60ml去离子水中,加入3mL质量浓度25~28%氨水,转移至聚四氟乙烯内衬的不锈钢高温高压反应釜中在150℃条件下密闭反应6小时,反应结束后,磁性分离样品,用去离子水清洗3~4次,60℃下中空干燥即可得到铃铛型Fe3O4@Fe3O4/C纳米反应器0.1g,简称Fe3O4纳米反应器。
实施例2:本发明铃铛型Fe3O4纳米反应器的结构表征
对实施例1制备的Fe3O4纳米反应器进行结构表征,具体如下:
(1)形貌表征
采用投射电子显微镜(TEM)观察制备的Fe3O4、Fe3O4@SiO2、Fe3O4@SiO2@Fe3O4/C和铃铛型Fe3O4@Fe3O4/C纳米反应器的形貌,其结果如图2所示。Fe3O4颗粒大小均匀,边缘略显粗糙,平均粒径大约为200nm。在包覆上一层厚度为40nm左右的硅胶之后呈现出明显的核壳结构,且边缘变得更为平滑。在H2O2和二茂铁的作用下,硅胶壳层表面生长出了一层特殊的双层壳结构,它由内圈的Fe3O4层和外圈的碳层所组成。由此得到的多重复合纳米材料Fe3O4@SiO2@Fe3O4/C层次分明,结构清晰,主要包括了一个Fe3O4核心、一圈SiO2过渡层以及最表面的Fe3O4/C双层壳三部分,粒径大约为280nm。当用氨水溶液选择性地去除SiO2过渡层后,复合材料的中间部位便会形成一个空腔,成为具有铃铛型核壳结构的Fe3O4@Fe3O4/C纳米反应器。
(2)晶型表征
利用粉末X射线衍射仪(XRD)表征Fe3O4、Fe3O4@SiO2、Fe3O4@SiO2@Fe3O4/C和铃铛型Fe3O4@Fe3O4/C纳米反应器的晶型,结果如图3所示。从图中可以看出,所有材料的XRD谱图非常相似,均在30.1°,35.4°,43.1°,53.4°,57.5°和62.9°位置处表现出特征峰。这些峰分别对应着Fe3O4尖晶石结构的220,311,400,422,511和440晶面,说明所有材料均含有Fe3O4组分。Fe3O4@SiO2和Fe3O4@SiO2@Fe3O4/C谱图在22°处出现的宽化峰可以判定为非晶型SiO2特征峰,它在氨水侵蚀过的Fe3O4@Fe3O4/C的谱图中消失。
(3)孔结构表征
利用氮气吸附脱附实验对铃铛型反应器形成前后的Fe3O4@SiO2@Fe3O4/C(图4中a)和Fe3O4@Fe3O4/C(图4中b)两种材料的孔结构进行了测定。如图4所示,两组样品的吸附脱附等温线都呈现明显的LangmuirⅣ型特征,说明有介孔结构存在。去除硅胶后,Fe3O4@Fe3O4/C的等温线(图4中b)在相对压强大于0.45后出现H3型滞后环线,且在相对压强接近1.0的时候,吸附线急剧上升接近于垂直,很好地证明了此样品结构中有大空腔存在。另外,相较于Fe3O4@SiO2@Fe3O4/C样品的孔体积(0.18cm3·g-1),Fe3O4@Fe3O4/C样品有了大幅的提升(0.31cm3·g-1),更加证实了硅胶溶解后腔体结构的产生。(4)磁性表征
采用美国LDJ9600振动磁强计表征Fe3O4、Fe3O4@SiO2、Fe3O4@SiO2@Fe3O4/C和铃铛型Fe3O4@Fe3O4/C纳米反应器的磁性。从图5中各样品的磁滞回线可以看出,所有样品均表现出典型的超顺磁性,其磁化曲线的剩磁和矫顽力几乎为零。纯Fe3O4的磁饱和强度(63.7emu·g-1)在包覆上硅胶层之后有所下降(41.8emu·g-1),但是对于最终的Fe3O4@Fe3O4/C反应器来讲,其磁饱和强度则可以回升至53.1emu·g-1。因此,Fe3O4@Fe3O4/C反应器中的Fe3O4组分不仅提供了类Fenton反应所需的催化位点,还保证了材料在反应结束后可以通过外加磁场来方便地进行回收。
实施例3:采用非均相芬顿处理法去除水溶液中4-氯酚
Fe3O4磁性颗粒、Fe3O4@Fe3O4/C反应器的制备过程同实例1。本实例以4-氯酚为代表性有机污染物,考察Fe3O4@Fe3O4/C反应器催化分解H2O2氧化4-氯酚的能力。
降解实验在50mL锥形瓶中进行,在15mL含1.56mM 4-氯酚的废水样品(理论TOC~120mg/L)中加入Fe3O4@Fe3O4/C催化剂(最终浓度以废水体积计为0.5g/L,同样条件下以Fe3O4磁性颗粒为对照),再加入质量浓度30%H2O2(最终浓度以废水体积计为20mM)来激活催化降解反应,每隔一定时间取出部分反应液测定4-氯酚的浓度。反应瓶放在摇床里以300rpm转速进行,pH为4.0,温度为23℃,处理结果见表1和表2。去除率(%)=(初始浓度-取样浓度)/初始浓度
检测方法:4-氯酚采用美国戴安公司的Ultimate 3000高效液相色谱(HPLC)系统进行定量分析;氯离子采用戴安ICS-2000离子色谱系统进行测定;TOC采用德国Elementar公司的TOC/TN分析仪进行测定。
表1Fe3O4磁性颗粒非均相类芬顿处理4-氯酚废水
处理时间(min) 4-氯酚去除率(%)
10 11.8
20 14.9
30 20.3
45 23.0
60 28.4
90 33.1
120 58.2
150 82.1
180 99.2
表2Fe3O4@Fe3O4/C反应器非均相类芬顿处理4-氯酚废水
处理时间(min) 4-氯酚去除率(%) TOC去除率(%) 脱氯率(%)
10 37.1 29.6 26.4
20 77.4 33.6 55.0
30 86.0 38.3 69.3
45 92.4 43.3 77.0
60 96.0 43.9 78.9
90 97.3 45.2 81.0
120 98.3 46.9 86.2
150 98.5 48.2 86.6
180 99.2 49.1 86.4
表2结果表明,利用Fe3O4@Fe3O4/C纳米反应器非均相类芬顿处理4-氯酚废水的效果很好,反应90min后,4-氯酚的转化率97%以上,脱氯效率和TOC去除率也很高。
实施例4:
Fe3O4@Fe3O4/C反应器的制备过程同实例1。
以4-氯酚为代表性有机污染物,考察Fe3O4@Fe3O4/C反应器催化分解H2O2氧化4-氯酚的能力。
降解实验在50mL锥形瓶中进行,在15mL含1.56mM 4-氯酚的废水样品中加入Fe3O4@Fe3O4/C催化剂(最终浓度以废水体积计为0.5g/L),再加入质量浓度30%H2O2(最终浓度以废水体积计分别为1.2、5、20和50mM)来激活催化降解反应,每隔一定时间取出部分反应液测定4-氯酚的浓度。反应瓶放在摇床里以300rpm转速进行,pH为4.0,温度为23℃,处理结果见表3。
表3不同H2O2用量下4-氯酚的去除率(%)
检测方法:同实施例3。
表3结果表明,反应30min后,H2O2的用量分别为1.2、5、20和50mM时,4-氯酚的去除率分别为22.8%,58.6%,86.0%和80.8%,说明H2O2的最佳用量为20mM。
实施例5:
Fe3O4@Fe3O4/C反应器的制备过程同实例1。
本实例以4-氯酚为代表性有机污染物,考察Fe3O4@Fe3O4/C反应器催化分解H2O2氧化4-氯酚的能力。
降解实验在50mL锥形瓶中进行,在15mL含1.56mM 4-氯酚的废水样品中加入Fe3O4@Fe3O4/C催化剂(最终浓度以废水体积计分别为0.1、0.5和1.0g/L),再加入质量浓度30%H2O2(最终浓度以废水体积计为20mM)来激活催化降解反应,每隔一定时间取出部分反应液测定4-氯酚的浓度。反应瓶放在摇床里以300rpm转速进行,pH为4.0,温度为23℃,处理结果见表4。
表4不同催化剂用量下4-氯酚的去除率
检测方法:同实施例3。
表4结果表明,反应30min后,Fe3O4@Fe3O4/C催化剂的用量分别为0.1、0.5和1.0g·L-1时,4-氯酚的去除率分别为28.7%,86%和94.0%,说明随着Fe3O4@Fe3O4/C催化剂用量的增加,4-氯酚的去除效果增强。反应60min后,0.5和1.0g·L-1催化剂投加量均能去除96%以上的4-氯酚,本着节约催化剂的原则,确定最佳催化剂用量为0.5g·L-1
实施例6:
Fe3O4@Fe3O4/C反应器的制备过程同实例1。
本实例以4-氯酚为代表性有机污染物,考察Fe3O4@Fe3O4/C反应器催化分解H2O2氧化4-氯酚的重复利用能力。
降解实验在50mL锥形瓶中进行,在15mL含1.56mM 4-氯酚的废水样品中加入Fe3O4@Fe3O4/C催化剂(最终浓度以废水体积计为0.5g/L),再加入质量浓度30%H2O2(最终浓度以废水体积计为20mM)来激活催化降解反应,每隔一定时间取出部分反应液测定4-氯酚的浓度。反应瓶放在摇床里以300rpm转速进行,pH为4.0,温度为23℃。将纳米反应器磁性回收后重复使用4次,反应处理结果见表5。
表5Fe3O4@Fe3O4/C催化剂的重复使用效果
检测方法:同实施例3。
表5结果表明,Fe3O4@Fe3O4/C纳米反应器用于重复使用处理4-氯酚废水4次后,仍取得了很高的降解效率,说明该材料催化性能很好,且可重复利用。
实施例7:
Fe3O4@Fe3O4/C反应器的制备过程同实例1。
本实例以4-氯酚为代表性有机污染物,考察Fe3O4@Fe3O4/C反应器催化分解H2O2氧化4-氯酚的能力。
降解实验在50mL锥形瓶中进行,在15mL含1.56mM 4-氯酚的废水样品中加入Fe3O4@Fe3O4/C催化剂(最终浓度以废水体积计为0.5g/L),再加入质量浓度30%H2O2(最终浓度以废水体积计为20mM)来激活催化降解反应,每隔一定时间取出部分反应液测定4-氯酚的浓度。反应瓶放在摇床里以300rpm转速进行,温度为23℃,pH分别为3.0、4.0、5.1和6.5,处理结果见表6。
表6不同pH下4-氯酚的去除率
检测方法:同实施例3。
表6结果表明,反应60min后,pH分别为3.0、4.0、5.1和6.5时,4-氯酚的去除率分别为95.8%,96.0%,39.9%和16.8%,考虑到太强的酸性会对催化剂的稳定性有影响,选择pH最佳值为4.0。

Claims (8)

1.一种铃铛型Fe3O4纳米反应器,其特征在于所述反应器以Fe3O4颗粒为核心,在核心表面通过Stober法包覆硅胶层,形成Fe3O4@SiO2复合物;再在Fe3O4@SiO2复合物表面,通过二茂铁和H2O2在丙酮中反应形成Fe3O4/C壳层,获得Fe3O4@SiO2@Fe3O4/C复合物;最后利用氨水将硅胶层除去,获得所述铃铛型Fe3O4纳米反应器。
2.如权利要求1所述铃铛型Fe3O4纳米反应器,其特征在于所述Fe3O4@SiO2复合物按如下方法制备:将Fe3O4颗粒用水悬浮制成0.02g/mL的悬液,加入质量浓度25~28%氨水,搅拌混匀,接着缓慢滴加四乙氧基硅烷,室温下搅拌10小时,反应液磁分离后用乙醇清洗,60℃干燥6小时,即得Fe3O4@SiO2复合物;所述氨水体积用量以Fe3O4颗粒重量计为4~6ml/g,所述乙醇体积用量以Fe3O4颗粒重量计为150~400ml/g;所述四乙氧基硅烷体积用量以Fe3O4颗粒重量计为2~5ml/g。
3.如权利要求1所述铃铛型Fe3O4纳米反应器,其特征在于所述Fe3O4@SiO2@Fe3O4/C复合物按如下方法制备:将Fe3O4@SiO2复合物溶于丙酮中,加入二茂铁,搅拌混合半小时,接着缓慢滴加H2O2,继续搅拌2小时,加热至210℃密闭反应48小时,反应液磁分离后依次用丙酮和乙醇清洗数次,得到Fe3O4@SiO2@Fe3O4/C复合物;所述丙酮体积用量以Fe3O4@SiO2复合物重量计为600~800ml/g;所述二茂铁与Fe3O4@SiO2复合物重量比为1~3:1;所述H2O2体积用量以Fe3O4@SiO2复合物重量计为15~25ml/g。
4.如权利要求1所述铃铛型Fe3O4纳米反应器,其特征在于除去硅胶层的方法为:将Fe3O4@SiO2@Fe3O4/C复合物用去离子水悬浮再加入质量浓度25~28%氨水,在150℃密闭反应6小时,反应结束后,反应液磁性分离后用去离子水洗涤3~4次,干燥,得到含有空腔结构且核壳均含Fe3O4组分的铃铛型Fe3O4纳米反应器;所述氨水体积用量以Fe3O4@SiO2@Fe3O4/C复合物重量计为18~25ml/g。
5.一种权利要求1所述铃铛型Fe3O4纳米反应器的制备方法,其特征在于所述方法为:(1)将Fe3O4颗粒用水悬浮制成0.02g/mL的悬液,加入质量浓度25~28%氨水,搅拌混匀,接着缓慢滴加四乙氧基硅烷,室温下搅拌10小时,反应液磁分离后用乙醇清洗,60℃干燥6小时,即得Fe3O4@SiO2复合物;所述氨水体积用量以Fe3O4颗粒重量计为4~6ml/g;所述四乙氧基硅烷体积用量以Fe3O4颗粒重量计为2~5ml/g;(2)将Fe3O4@SiO2复合物溶于丙酮中,加入二茂铁,搅拌混合半小时,接着缓慢滴加H2O2,继续搅拌2小时,加热至210℃密闭反应48小时,反应液磁分离后依次用丙酮和乙醇清洗数次,得到Fe3O4@SiO2@Fe3O4/C复合物;所述丙酮体积用量以Fe3O4@SiO2复合物重量计为600~800ml/g;所述二茂铁与Fe3O4@SiO2复合物重量比为1~3:1;所述H2O2体积用量以Fe3O4@SiO2复合物重量计为15~25ml/g;(3)将Fe3O4@SiO2@Fe3O4/C复合物用去离子水悬浮再加入质量浓度25~28%氨水,在150℃密闭反应6小时,反应结束后,反应液磁性分离后用去离子水洗涤3~4次,干燥,得到含有空腔结构且核壳均含Fe3O4组分的铃铛型Fe3O4纳米反应器;所述氨水体积用量以Fe3O4@SiO2@Fe3O4/C复合物重量计为18~25ml/g。
6.一种权利要求1所述铃铛型Fe3O4纳米反应器在处理氯酚类废水中的应用。
7.如权利要求6所述的应用,其特征在于所述氯酚类废水中含0.8-3.0mM 4-氯酚。
8.如权利要求6所述的应用,其特征在于所述应用为:以铃铛型Fe3O4纳米反应器为催化剂,与氯酚类污染物混合,加入H2O2,在20~40℃、250~350rpm,pH为3.0~7.0条件下进行反应,实现对氯酚类污染物的降解;所述铃铛型Fe3O4纳米反应器重量以氯酚类污染物体积计为0.1-1.0g·L-1;所述H2O2体积用量以氯酚类污染物体积计为1.2-50mM。
CN201710344171.XA 2017-05-16 2017-05-16 一种铃铛型Fe3O4纳米反应器及其制备与应用 Pending CN107185537A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710344171.XA CN107185537A (zh) 2017-05-16 2017-05-16 一种铃铛型Fe3O4纳米反应器及其制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710344171.XA CN107185537A (zh) 2017-05-16 2017-05-16 一种铃铛型Fe3O4纳米反应器及其制备与应用

Publications (1)

Publication Number Publication Date
CN107185537A true CN107185537A (zh) 2017-09-22

Family

ID=59873601

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710344171.XA Pending CN107185537A (zh) 2017-05-16 2017-05-16 一种铃铛型Fe3O4纳米反应器及其制备与应用

Country Status (1)

Country Link
CN (1) CN107185537A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108525673A (zh) * 2018-04-26 2018-09-14 杭州诚洁环保有限公司 一种类芬顿固体催化剂及其制备方法和应用
CN109317162A (zh) * 2018-11-14 2019-02-12 扬州大学 一种高效非均相类芬顿催化剂MnFe2O4/SiO2的制备方法
CN110385128A (zh) * 2019-06-28 2019-10-29 浙江工业大学 铁掺杂TiO2-SiO2复合气凝胶及其制备方法与应用
CN115634691A (zh) * 2022-10-31 2023-01-24 宁夏大学 酚类有机污染物分解用空心纳米催化剂的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAO ZENG ET AL.: "Assembly of a Nanoreactor System with Confined Magnetite Core and Shell for Enhanced Fenton-Like Catalysis", 《CHEMISTRY》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108525673A (zh) * 2018-04-26 2018-09-14 杭州诚洁环保有限公司 一种类芬顿固体催化剂及其制备方法和应用
CN108525673B (zh) * 2018-04-26 2020-09-29 杭州诚洁环保有限公司 一种类芬顿固体催化剂及其制备方法和应用
CN109317162A (zh) * 2018-11-14 2019-02-12 扬州大学 一种高效非均相类芬顿催化剂MnFe2O4/SiO2的制备方法
CN110385128A (zh) * 2019-06-28 2019-10-29 浙江工业大学 铁掺杂TiO2-SiO2复合气凝胶及其制备方法与应用
CN110385128B (zh) * 2019-06-28 2022-03-18 浙江工业大学 铁掺杂TiO2-SiO2复合气凝胶及其制备方法与应用
CN115634691A (zh) * 2022-10-31 2023-01-24 宁夏大学 酚类有机污染物分解用空心纳米催化剂的制备方法及其应用
CN115634691B (zh) * 2022-10-31 2023-11-10 宁夏大学 酚类有机污染物分解用空心纳米催化剂的制备方法及其应用

Similar Documents

Publication Publication Date Title
Gao et al. Solar photocatalytic abatement of tetracycline over phosphate oxoanion decorated Bi2WO6/polyimide composites
Lu et al. Facile microwave synthesis of a Z-scheme imprinted ZnFe2O4/Ag/PEDOT with the specific recognition ability towards improving photocatalytic activity and selectivity for tetracycline
Liu et al. Peroxymonosulfate activation through 2D/2D Z-scheme CoAl-LDH/BiOBr photocatalyst under visible light for ciprofloxacin degradation
Sun et al. Fe (III) photocatalytic reduction of Cr (VI) by low-molecular-weight organic acids with α-OH
Chen et al. Rapid removal of phenol/antibiotics in water by Fe-(8-hydroxyquinoline-7-carboxylic)/TiO2 flower composite: Adsorption combined with photocatalysis
CN107185537A (zh) 一种铃铛型Fe3O4纳米反应器及其制备与应用
Kumar et al. Acceleration of photo-reduction and oxidation capabilities of Bi4O5I2/SPION@ calcium alginate by metallic Ag: Wide spectral removal of nitrate and azithromycin
Torki et al. Photocatalytic activity of NiS, NiO and coupled NiS–NiO for degradation of pharmaceutical pollutant cephalexin under visible light
Ammar et al. Synthesis, characterization and environmental remediation applications of polyoxometalates-based magnetic zinc oxide nanocomposites (Fe3O4@ ZnO/PMOs)
Li et al. Activation of peroxymonosulfate by a waste red mud-supported Co3O4 quantum dots under visible light for the degradation of levofloxacin
CN105498697B (zh) 一种用于处理染料废水的吸附剂、制备方法及其应用
Luo et al. Synergistic adsorption-photocatalytic activity using Z-scheme based magnetic ZnFe2O4/CuWO4 heterojunction for tetracycline removal
CN106179213A (zh) 一种纳米α‑Fe2O3改性的活性炭的制备方法及其应用
Zhou et al. Stable self-assembly Cu2O/ZIF-8 heterojunction as efficient visible light responsive photocatalyst for tetracycline degradation and mechanism insight
Rasheed et al. Highly efficient photocatalytic degradation of the Tetracycline hydrochloride on the α-Fe2O3@ CN composite under the visible light
CN110280308A (zh) 一种酒石酸钠改性铜钴铁类水滑石负载碳量子点纳米复合材料及其制备方法和应用
CN106268819B (zh) 活性炭-铁酸钴复合材料、其制备方法及光催化脱氮用途
CN106186272B (zh) 活性炭-铁酸锌复合材料、其制备方法及光催化脱氮用途
CN105148835B (zh) 颗粒型13x分子筛/凹凸棒土负载纳米铁‑镍材料及其制备方法
CN108786810A (zh) 一种磁性硅酸铜及其在催化降解亚甲基蓝废水中的应用
Jiang et al. Hydrogen-bond based charge bridge in a heterojunction system for the synergistic degradation and detoxification of two PPCPs
CN104211126A (zh) 一种载铁介孔硅复合材料及其制备方法和应用
Xie et al. Nitrogen-doped Fe-MOFs derived carbon as PMS activator for efficient degradation of tetracycline
Boruah et al. Magnetic mixed metal oxide nanomaterials derived from industrial waste and its photocatalytic applications in environmental remediation
CN106362783B (zh) 石墨烯/氮杂石墨烯-铁酸锌智能光催化剂的光催化脱氮用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170922