CN106169378A - 一种Co3O4@浒苔多孔碳纤维超容电极材料的制备方法 - Google Patents

一种Co3O4@浒苔多孔碳纤维超容电极材料的制备方法 Download PDF

Info

Publication number
CN106169378A
CN106169378A CN201610803690.3A CN201610803690A CN106169378A CN 106169378 A CN106169378 A CN 106169378A CN 201610803690 A CN201610803690 A CN 201610803690A CN 106169378 A CN106169378 A CN 106169378A
Authority
CN
China
Prior art keywords
entermorpha
carbon fiber
porous carbon
preparation
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610803690.3A
Other languages
English (en)
Inventor
杨东江
李建江
朱小奕
赵小亮
孙瑾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201610803690.3A priority Critical patent/CN106169378A/zh
Publication of CN106169378A publication Critical patent/CN106169378A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

本发明公开了一种Co3O4@浒苔多孔碳纤维超容电极材料的制备方法,该方法以浒苔多孔碳为基底复合Co3O4,主要制备步骤如下:将制备好的浒苔多孔碳纤维通过水热方式与Co纳米线复合,并通过高温氧化制得Co3O4@浒苔多孔碳纤维。该制备方法所用浒苔为海洋污染物,是绿色可再生材料,来源丰富,成本低,通过水热过程复合金属氧化物与碳材料,其制备工艺简单,且浒苔多孔碳纤维具有的高导电性以及Co3O4高的理论容量,使得该复合材料具有高的单位质量比电容和非常好的循环稳定性能。可广泛应用于电子产品,电动汽车等领域。

Description

一种Co3O4@浒苔多孔碳纤维超容电极材料的制备方法
技术领域
本发明属于超级电容器电极材料领域,具体涉及一种水热法合成生物多孔碳与金属氧化物复合材料的制备方法。
背景技术
超级电容器由于具有高的能量密度及功率密度,良好的循环稳定性等优点,成为近年来能量储存领域的研究热点。其中,电极材料性能的高低直接决定了超级电容器的性能,因此寻找一种具有高理论容量,高导电性能好的电极材料对于提高超级电容器的电化学性能至关重要。传统的超级电容器电极材料主要为活性碳材料,其理论容量较低,体积能量密度较低,不能满足高性能超级电容器电极材料的需要。虽然新型碳材料,如碳纳米球、碳纳米片、碳纳米管及石墨烯材料等也得到了研究,但是其制备成本较高,工艺复杂,目前不适合大规模商业化推广。
金属氧化物却因为赝电容的能量储存能量方式往往具有非常高的理论容量,在超级电容器电极材料方面得到广泛关注,如二氧化钌理论容量高达1470F g-1,但是价格昂贵,不能大量应用,其他金属氧化物,如四氧化三钴也就有较高的理论比电容,但是由于导电性差的缺点限制了其应用。目前,碳纳米管,碳纤维,石墨烯等与金属氧化物的复合取得了一定的研究成果,但是由于高昂的成本限制了其大规模推广,因此,需要一种廉价的碳源作为导电基底,与氧化物进行复合制备电极材料,既可以利用碳的高导电性,又可以利用氧化物的高理论比电容,发挥协同作用,互补不足,可制备得到导电性能佳,比电容大的超级电容器电极材料。
考虑到以上等问题,本发明利用海洋污染物--浒苔为碳源,制备了一种多级孔结构的碳材料。近年来浒苔泛滥,造成绿潮频发,严重危害了海洋生态环境及沿海地区的渔业、旅游业的健康发展,另外,浒苔本身的单层细胞管状结构提供了一种天然的管状结构,通过冷冻干燥工艺,制备得到浒苔纤维碳气凝胶,保留了其天然的管状结构,然后通过碳化活化过程,在浒苔管壁上造成大量的微孔、介孔,制备浒苔纤维气凝胶多孔碳,该类产物具有极高的比表面积及孔隙率,其多孔的微管结构不仅提供了更有效的电极电解液接触面积,而且为电解液离子的传输提供了更短的路径,同时由于大孔、介孔、微孔的协同作用,提供了更多的离子传输的通道和缩短了离子传输路径,这些特点有助于提高材料的比容量和倍率性。同时,将其与金属氧化物Co3O4复合,既提高了比容量,又保证了其良好的导电性。同时纤维壁上的多孔结构也有利于离子的传输。因此,Co3O4@浒苔多孔碳纤维超级电容器电极材料将有效的提高超级电容器电极材料比容量、导电性和循环稳定性能。
发明内容
本发明的目的在于制备一种廉价且高性能的碳与金属氧化物复合材料用于超级电容器电极领域,其具有高比容量,高倍率性和高稳定性的特点,具体以廉价、可再生的浒苔作为碳源,通过水热及氧化工艺与Co3O4进行复合,改善现有超级电容器电极材料存在的比容量相对较低,倍率性能较差,稳定性较差等缺点。
本发明提出的Co3O4@浒苔多孔碳纤维超级电容器电极材料的制备方法,包括以下步骤:1、将一定量的浒苔纤维用蒸馏水反复清洗干净,后冷冻干燥24h,将干燥完成的样品置于氮气气氛管式炉中,595℃碳化4h,得到浒苔多孔碳纤维,再将所得浒苔多孔碳纤维与KOH混合(重量比1∶8)高温活化20min,活化后的样品用1mol L-1HCl搅拌清洗6h,后用蒸馏水洗至中性,烘干备用。
2、将1g C19H42BrN溶于30mL甲醇与6ml水的混合液中,加入2g Co(NO3)2·6H2O,0.2g浒苔多孔碳纤维,混匀后,倒入50ml反应釜中,反应温度为180℃,反应时间为24小时,水热处理,制备Co与浒苔多孔碳纤维的复合材料;
3、将步骤2所得的复合材料前驱体用水,乙醇充分洗涤,烘干;
4、将步骤3的复合材料前驱体置于马弗炉中250℃氧化4h制备Co3O4@浒苔多孔碳纤维超级电容器电极材料
5、利用电化学工作站对所得电极材料进行超容电化学性能测试。
其中,步骤2所述水热反应时间为5-24h,其中24h性能最佳;
步骤2所述C19H42BrN与Co(NO3)2·6H2O的重量比例为1∶2-1∶1;
步骤4所述氧化温度为250℃,时间2-8h。
与现有技术相比,本发明的有益效果是使用一种绿色环保可再生的海洋污染物作为碳前驱体,复合金属氧化物Co3O4,所得电极材料碳基底的多孔管状结构不仅有助于提高材料整体的电子导电率,其离子导电率也大有提高,可大大提高材料的导电性,有助于提高材料的比容量及能量密度,显著提高现有超容电极材料的电化学性能,由于碳源浒苔纤维来源丰富,仅青岛海域每年的打捞量就在30万吨以上,成本极低,以上特征均有利于该项发明的推广应用。
附图说明
图1实施例一所得Co3O4@浒苔多孔碳纤维复合材料的电镜图片
图2实施例一所得Co3O4@浒苔多孔碳纤维复合材料的XRD曲线
图3实施例一所得Co3O4@浒苔多孔碳纤维复合材料的(a)超级电容器循环伏安曲线曲线,(b)超级电容器恒流重放电曲线
图4实施例一所得Co3O4@浒苔多孔碳纤维复合材料的(a)超级电容器倍率性能曲线,(b)超级电容器稳定性曲线
具体实施方式
实施例一:将浒苔纤维按照技术方案步骤1的处理得到浒苔多孔碳纤纤维,然后将1g C19H42BrN溶于30mL甲醇与6ml水的混合液中,加入2g Co(NO3)2·6H2O搅拌均匀,加入0.2g浒苔多孔碳纤维,混匀后,倒入50ml反应釜中,反应温度为180℃,反应时间为24小时。冷却后用水,乙醇反复洗涤数次,烘干。将样品置于马弗炉中250℃氧化4h得到Co3O4@浒苔多孔碳纤维超级电容器电极材料。
实施例二:将浒苔纤维按照技术方案步骤1的处理得到浒苔多孔碳纤纤维,然后将0.5g C19H42BrN溶于30mL甲醇与6ml水的混合液中,加入1g Co(NO3)2·6H2O搅拌均匀,加入0.2g浒苔多孔碳纤维,混匀后,倒入50ml反应釜中,反应温度为180℃,反应时间为24小时。冷却后用水,乙醇反复洗涤数次,烘干。将样品置于马弗炉中250℃氧化4h得到Co3O4@浒苔多孔碳纤维超级电容器电极材料。
实施例三:将浒苔纤维按照技术方案步骤1的处理得到浒苔多孔碳纤纤维,然后将1.5g C19H42BrN溶于30mL甲醇与6ml水的混合液中,加入3g Co(NO3)2·6H2O搅拌均匀,加入0.2g浒苔多孔碳纤维,混匀后,倒入50ml反应釜中,反应温度为180℃,反应时间为24小时。冷却后用水,乙醇反复洗涤数次,烘干。将样品置于马弗炉中250℃氧化4h得到Co3O4@浒苔多孔碳纤维超级电容器电极材料。
实施例四:将浒苔纤维按照技术方案步骤1的处理得到浒苔多孔碳纤纤维,然后将1g C19H42BrN溶于30mL甲醇与6ml水的混合液中,加入2g Co(NO3)2·6H2O搅拌均匀,加入0.2g浒苔多孔碳纤维,混匀后,倒入50ml反应釜中,反应温度为180℃,反应时间为5小时。冷却后用水,乙醇反复洗涤数次,烘干。将样品置于马弗炉中250℃氧化4h得到Co3O4@浒苔多孔碳纤维超级电容器电极材料。
实施例五:将浒苔纤维按照技术方案步骤1的处理得到浒苔多孔碳纤纤维,然后将1g C19H42BrN溶于30mL甲醇与6ml水的混合液中,加入2g Co(NO3)2·6H2O搅拌均匀,加入0.2g浒苔多孔碳纤维,混匀后,倒入50ml反应釜中,反应温度为180℃,反应时间为10小时。冷却后用水,乙醇反复洗涤数次,烘干。将样品置于马弗炉中250℃氧化4h得到Co3O4@浒苔多孔碳纤维超级电容器电极材料。

Claims (6)

1.一种Co3O4@浒苔多孔碳纤维超容电极材料的制备方法,其特征在于:利用可再生的浒苔碳化得到的纤维为碳源,与Co3O4水热复合,制备Co3O4@浒苔多孔碳纤维超级电容器电极材料。
2.根据权利要求1所述Co3O4@浒苔多孔碳纤维碳纤维超容电极材料的制备方法,其特征在于1g C19H42BrN溶于30mL甲醇与6ml水的混合液中,2g Co(NO3)2·6H2O以及0.2g浒苔多孔碳纤维三者混匀后,倒入50ml反应釜中,反应温度为180℃,反应时间为24小时,所得产物冷却后用水,乙醇反复洗涤数次,烘干,后将烘干样品置于马弗炉中250℃氧化4h制备Co3O4@浒苔多孔碳纤维超级电容器电极材料。
3.根据权利要求2所述的制备方法,其特征在于Co(NO3)2·6H2O的加入量为1-3g。
4.根据权利要求3所述的制备方法,其特征在于C19H42BrN与Co(NO3)2·6H2O的重量比例为1∶2-1∶1。
5.根据权利要求2所述的制备方法,其特征在于水热反应时间为5-24h。
6.根据权利要求2所述的制备方法,其特征在于氧化温度为250℃,时间2-8h。
CN201610803690.3A 2016-08-30 2016-08-30 一种Co3O4@浒苔多孔碳纤维超容电极材料的制备方法 Pending CN106169378A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610803690.3A CN106169378A (zh) 2016-08-30 2016-08-30 一种Co3O4@浒苔多孔碳纤维超容电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610803690.3A CN106169378A (zh) 2016-08-30 2016-08-30 一种Co3O4@浒苔多孔碳纤维超容电极材料的制备方法

Publications (1)

Publication Number Publication Date
CN106169378A true CN106169378A (zh) 2016-11-30

Family

ID=57377030

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610803690.3A Pending CN106169378A (zh) 2016-08-30 2016-08-30 一种Co3O4@浒苔多孔碳纤维超容电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN106169378A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400018A (zh) * 2018-01-10 2018-08-14 青岛大学 一种浒苔活性炭复合二氧化锰超级电容器电极材料的制备方法
CN108975306A (zh) * 2018-09-20 2018-12-11 河南中烟工业有限责任公司 氧化铁掺杂生物质多孔碳材料及其制备方法和作为磁性材料的应用
CN109610062A (zh) * 2018-12-07 2019-04-12 青岛万源生物科技有限公司 一种抗菌防辐射浒苔纤维复合面料的制备工艺
CN114566395A (zh) * 2021-10-29 2022-05-31 哈尔滨工业大学 基于生物质衍生的氮硫双掺杂的金属氧化物/碳基复合材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103255662A (zh) * 2013-05-06 2013-08-21 青岛大学 一种纳米纤丝化浒苔纤维素的制备方法
CN103508496A (zh) * 2013-10-17 2014-01-15 中国工程物理研究院化工材料研究所 在玻璃基底上制备四氧化三钴纳米薄膜的方法
CN104167301A (zh) * 2014-06-04 2014-11-26 烟台大学 一种碳化浒苔制备超级电容器电极材料的方法
CN105084426A (zh) * 2014-05-19 2015-11-25 中国科学院过程工程研究所 一类原位生长三维多级结构四氧化三钴/碳复合微纳米材料及其可控制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103255662A (zh) * 2013-05-06 2013-08-21 青岛大学 一种纳米纤丝化浒苔纤维素的制备方法
CN103508496A (zh) * 2013-10-17 2014-01-15 中国工程物理研究院化工材料研究所 在玻璃基底上制备四氧化三钴纳米薄膜的方法
CN105084426A (zh) * 2014-05-19 2015-11-25 中国科学院过程工程研究所 一类原位生长三维多级结构四氧化三钴/碳复合微纳米材料及其可控制备方法
CN104167301A (zh) * 2014-06-04 2014-11-26 烟台大学 一种碳化浒苔制备超级电容器电极材料的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
王小红: ""金属氧化物/碳复合物纳米材料的制备及其在锂离子电池负极材料中的应用研究"", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *
赵卫等: ""海藻纤维素气凝胶:从绿潮到新材料"", 《科技导报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108400018A (zh) * 2018-01-10 2018-08-14 青岛大学 一种浒苔活性炭复合二氧化锰超级电容器电极材料的制备方法
CN108975306A (zh) * 2018-09-20 2018-12-11 河南中烟工业有限责任公司 氧化铁掺杂生物质多孔碳材料及其制备方法和作为磁性材料的应用
CN109610062A (zh) * 2018-12-07 2019-04-12 青岛万源生物科技有限公司 一种抗菌防辐射浒苔纤维复合面料的制备工艺
CN114566395A (zh) * 2021-10-29 2022-05-31 哈尔滨工业大学 基于生物质衍生的氮硫双掺杂的金属氧化物/碳基复合材料的制备方法

Similar Documents

Publication Publication Date Title
CN105788875B (zh) 四氧化三钴纳米线/还原氧化石墨烯水凝胶复合材料及其制备和应用
CN103594254B (zh) 一种二氧化锰/介孔碳纳米分级复合电极材料的制备方法
CN102664103B (zh) 钴酸锌纳米棒/泡沫镍复合电极、制备方法及其应用
CN106276893A (zh) 一种氮掺杂葛根基介孔活性炭的制备方法及其应用
CN104362001B (zh) 二氧化锰/石墨烯/多孔碳复合材料的制备及其作为超级电容器电极材料的应用
CN110015660A (zh) 一种银掺杂木质素多孔碳纳米片及其制备方法和在超级电容器电极材料中的应用
CN105140042B (zh) 一种细菌纤维素/活性碳纤维/碳纳米管膜材料的制备方法及其应用
CN104495788A (zh) 一种多孔碳的制备方法
CN106169378A (zh) 一种Co3O4@浒苔多孔碳纤维超容电极材料的制备方法
CN106910647B (zh) 石墨烯气凝胶复合钴酸镍纳米线阵列材料及其制备方法
CN106449132B (zh) 一种介孔Co3O4纳米线@NiCo2O4纳米片分级核壳阵列材料、制备方法及应用
Yao et al. Mesoporous MnO2 nanosphere/graphene sheets as electrodes for supercapacitor synthesized by a simple and inexpensive reflux reaction
CN103325579B (zh) 一种还原碳量子点/RuO2复合材料及其制备和应用方法
CN108892138A (zh) 一种基于生物质衍生氮/氧共掺杂多级孔结构碳材料及其制备方法
CN108922790A (zh) 一种钠离子嵌入的二氧化锰/氮掺杂多孔碳复合材料的制备方法和应用
CN105321726B (zh) 高倍率活性炭/活性石墨烯复合电极材料及其制备方法
CN104071768A (zh) 孔径分级分布的部分石墨化多孔碳电极材料及其制备方法
CN105489397A (zh) 一种化学改性碳材料/石墨烯/RuO2三元复合材料的制备方法及应用
CN108878167A (zh) 一种超级电容器用CoNi2S4/石墨烯复合材料及其制备方法
CN104167298A (zh) 一类石墨烯-蛋白质衍生碳超级电容器材料及其制备方法
Deng et al. Superior performance of flexible solid-state supercapacitors enabled by ultrafine graphene quantum dot-decorated porous carbon spheres
CN108910880A (zh) 用于超级电容器的多孔层状活性炭材料及其制备方法
CN103482606B (zh) 一种中间相炭负极材料的生产方法
CN109830376B (zh) 外加电磁场辅助制备金属氧化物和生物质炭复合电极材料的方法
CN105036130A (zh) 一种以榆钱为原料制备超级电容器用活性炭材料的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20161130

RJ01 Rejection of invention patent application after publication