CN106158921B - 具resurf结构的横向扩散金属氧化物半导体场效应管 - Google Patents

具resurf结构的横向扩散金属氧化物半导体场效应管 Download PDF

Info

Publication number
CN106158921B
CN106158921B CN201510170810.6A CN201510170810A CN106158921B CN 106158921 B CN106158921 B CN 106158921B CN 201510170810 A CN201510170810 A CN 201510170810A CN 106158921 B CN106158921 B CN 106158921B
Authority
CN
China
Prior art keywords
trap
type
drain electrode
plug
well region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510170810.6A
Other languages
English (en)
Other versions
CN106158921A (zh
Inventor
祁树坤
张广胜
孙贵鹏
张森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CSMC Technologies Corp
Original Assignee
CSMC Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CSMC Technologies Corp filed Critical CSMC Technologies Corp
Priority to CN201510170810.6A priority Critical patent/CN106158921B/zh
Priority to PCT/CN2016/072846 priority patent/WO2016161841A1/zh
Priority to US15/564,172 priority patent/US10014392B2/en
Priority to JP2018503703A priority patent/JP6484754B2/ja
Publication of CN106158921A publication Critical patent/CN106158921A/zh
Application granted granted Critical
Publication of CN106158921B publication Critical patent/CN106158921B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66681Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • H01L29/7823Lateral DMOS transistors, i.e. LDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Abstract

本发明涉及一种具RESURF结构的横向扩散金属氧化物半导体场效应管,包括衬底、源极、漏极、体区、P型场限环及衬底上的阱区,阱区包括:插入式阱,掺杂类型为P型,设于漏极的下方并与漏极相接;N阱,设于插入式阱的两侧;P阱,设于N阱的旁边并与N阱连接;P型场限环设于N阱内,为封闭的环状结构,且位于漏极的下方外围,将漏极包围;插入式阱在其长度方向上延伸至与所述P型场限环相接触的位置,源极和体区设于所述P阱内。本发明能够确保交流高频开关状态下P型场限环与N阱之间保持稳定的结电容,有助于改善器件的动态特性,避免出现尖峰电流。

Description

具RESURF结构的横向扩散金属氧化物半导体场效应管
技术领域
本发明涉及半导体工艺,特别是涉及一种具RESURF结构的横向扩散金属氧化物半导体场效应管。
背景技术
采用RESURF(降低表面电场)原理的基本结构由低掺杂的P型衬底和低掺杂的N型外延层组成。在外延层上形成P阱并注入N+、P+,形成一个横向的P-well/N-epi结和一个纵向的P-sub/N-epi结。由于横向结两端有着更高的掺杂浓度,因此击穿电压比纵向结更低。RESURF的基本原理是利用横向结和纵向结的相互作用,使外延层在横向结达到临界雪崩击穿电场前完全耗尽,通过合理优化器件参数使得器件的击穿发生在纵向结,从而起到降低表面电场的作用。
一种改进型RESURF结构是在衬底或外延上形成很淡的N型深阱,形成与P型衬底间的第一次RESURF,之后在N型深阱内部、场氧下方注入形成P型浮空场限环(Floating P-layer,FP),形成与深阱间的第二次RESURF。
这种结构的RESURF满足一定的高压、低导通电阻的要求,但发明人发现,在几十KHz~几百KHz的交流开关应用中,该结构的器件会出现尖峰电流,从而影响了器件及产品的可靠性,同时导通电阻也不能继续降低。
发明内容
为了解决背景技术中提到的在几十KHz~几百KHz的交流开关应用中器件不稳定的问题,本发明提出一种具有良好的动态特性,即在很高的频率下仍能保证稳定性的具RESURF结构的横向扩散金属氧化物半导体场效应管。
一种具RESURF结构的横向扩散金属氧化物半导体场效应管,包括衬底、源极、漏极、体区及衬底上的阱区,所述阱区包括:插入式阱,掺杂类型为P型,设于所述漏极的下方并与漏极和衬底相接;N阱,设于所述插入式阱的外围,所述插入式阱的宽度小于漏极的宽度从而使漏极的两侧与所述N阱相接;P阱,设于所述N阱的外围并与N阱相接;所述横向扩散金属氧化物半导体场效应管还包括P型场限环,所述P型场限环设于所述N阱内,为封闭的环状结构,且位于所述漏极的下方外围,将所述漏极包围;所述插入式阱在其长度方向上延伸至与所述P型场限环相接触的位置,所述源极和体区设于所述P阱内。
在其中一个实施例中,所述阱区包括衬底上的第一阱区和第一阱区上的第二阱区,所述插入式阱包括第一阱区内的第一插入式阱和第二阱区内的第二插入式阱,所述N阱包括第一阱区内的第一N阱和第二阱区内的第二N阱,所述P阱包括第一阱区内的第一P阱和第二阱区内的第二P阱。
在其中一个实施例中,所述第一N阱的掺杂浓度低于所述第二N阱的掺杂浓度,所述第一P阱的掺杂浓度低于所述第二P阱的掺杂浓度,所述第一插入式阱的掺杂浓度低于所述第二插入式阱的掺杂浓度。
在其中一个实施例中,还包括场氧区和多晶硅结构,所述场氧区设于所述N阱表面,两块场氧区结构将所述漏极夹于中间,所述多晶硅结构从所述场氧区表面搭接至所述源极表面。
在其中一个实施例中,所述插入式阱的宽度不超过所述漏极的有源区宽度的40%。
在其中一个实施例中,所述阱区的掺杂浓度低于所述漏极的掺杂浓度。
在其中一个实施例中,所述衬底为P掺杂衬底,所述漏极为N掺杂漏极,所述源极为N掺杂源极,所述体区为P掺杂体区。
上述具RESURF结构的横向扩散金属氧化物半导体场效应管,P型的插入式阱在漏极下方向外渡过漏极和N阱,与漂移区中的P型场限环相连,使P型场限环接到衬底电位,从而使得P型场限环解除了悬空的状态,确保交流高频开关状态下P型场限环与N阱之间能保持稳定的结电容,有助于改善器件的动态特性,避免出现尖峰电流。且由于设置了插入式阱,形成了triple RESURF结构,有助于提高N阱的掺杂浓度,并降低器件的导通电阻,并且有助于改善器件的击穿特性。
附图说明
通过附图中所示的本发明的优选实施例的更具体说明,本发明的上述及其它目的、特征和优势将变得更加清晰。在全部附图中相同的附图标记指示相同的部分,且并未刻意按实际尺寸等比例缩放绘制附图,重点在于示出本发明的主旨。
图1是一实施例中具RESURF结构的横向扩散金属氧化物半导体场效应管的结构示意图;
图2是图1所示实施例中有源区的俯视图;
图3是沿图2中A-A’线的剖视图;
图4是沿图2中B-B’线的剖视图;
图5是另一实施例中具RESURF结构的横向扩散金属氧化物半导体场效应管的结构示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的首选实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
发明人经试验和研究认为,背景技术中所述设置了P型浮空场限环的RESURF结构LDMOS出现尖峰电流的原因是,由于FP悬空,无法保证每一个开关周期内P型浮空场限环和N型深阱之间形成稳定的结电容,以至于反向恢复的少子电流叠加到下一个周期的开态电流中而出现尖峰电流。
本发明提供一种具RESURF结构的横向扩散金属氧化物半导体场效应管,包括衬底、源极、漏极、体区、P型场限环及衬底上的阱区。阱区具体包括N阱、P阱及插入N阱中的插入式阱。其中插入式阱的掺杂类型为P型,设于漏极的下方并与漏极和衬底相接。N阱设于插入式阱的外围,为了使漏极的两侧与下方的N阱相接,插入式阱的宽度应小于漏极的宽度,由于插入式阱为长条形,其宽度指短边边长,长度指长边边长。P阱设于N阱的外围并与N阱相接,源极和体区设于所述P阱内。P型场限环设于N阱内,为封闭的环状结构。封闭的环状结构指首尾相连的封闭条状结构,包括椭圆环、圆环、跑道形环(即田径场的跑道形状,矩形的两端各连接一个半圆然后取其外圈得到的形状)、方形环等。且P型场限环位于漏极的下方外围,将漏极包围,也就是将P型场限环和N阱投影于漏极所在平面后,漏极、N阱、P型场限环三者在平面上的关系为:漏极的外围被N阱包覆,P型场限环形成的环将漏极包围并在有源区表面将N阱截断。由于器件结构决定了插入式阱在宽度方向上无法与P型场限环相接触,因此将插入式阱在长度方向上延伸至与P型场限环相接触的位置。
图1是一实施例中具RESURF结构的横向扩散金属氧化物半导体场效应管(LDMOS)的结构示意图,其为左右对称结构,包括衬底110,衬底上的阱区,漏极140,源极150,体区160,场氧区170、多晶硅结构180以及P型场限环135。其中,衬底为P型掺杂,漏极140为N型掺杂,源极150为N型掺杂,体区160为P型掺杂。阱区包括P型掺杂的插入式阱122、作为漂移区的N阱124以及作为沟道区的P阱126。场氧区170设于N阱124表面,两块场氧区170结构将漏极140夹于中间,多晶硅结构180由多晶硅栅和搭场部分组成,从场氧区170表面搭接至源极150表面。
请参照图2~图4,图2是图1所示实施例中有源区的俯视图,图3是沿图2中A-A’线的剖视图,图4是沿图2中B-B’线的剖视图。如图2所示,在该实施例中,P型场限135为跑道形环装结构,插入式阱122在X轴方向延伸至跑道的圆弧中部与其相接。P型场限环135在有源区表面将N阱124分隔成环内侧的指尖结构和环外侧的方形环结构。图2所示的漏极140为漏极引出的Boning Pad部分,在图2中其中间被有源区的结构所遮挡。
上述具RESURF结构的横向扩散金属氧化物半导体场效应管,P型的插入式阱122在漏极140下方向外(即X轴方向)渡过漏极140和N阱124,与漂移区中的P型场限环135相连,使P型场限环135接到衬底(Psub)电位(因为插入式阱122本身就接至衬底110所以与衬底110电位相同),从而使得P型场限环135解除了悬空的状态,确保交流高频开关状态下P型场限环135与N阱124之间能保持稳定的结电容,有助于改善器件的动态特性,避免出现尖峰电流。
如图1所示,在现有结构的漏端N+结下方,通过将N阱124裂开一定宽度,插入PW,形成triple RESURF结构,使得插入式阱122、N阱124、P阱126及衬底110之间相互耗尽,击穿点向器件体内转移,器件得以纵向击穿。
插入式阱122的宽度不能太宽,需要保证漏极140下方的两侧N阱124仍然与漏极140相接,这样漂移区的N阱124浓度相较现有技术得以提高,有助于导通电阻的降低。这是因为当耗尽区中加入额外的电荷后,相反类型的电荷密度也会相应提高,以达到电荷平衡的要求。
插入式阱122同样不能太窄。一定宽度的插入式阱122可以有效控制器件体内击穿发生的先后,如宽度过窄,插入式阱122对两侧N阱124的耗尽区影响较小,击穿位置仍与现有技术中漂移区N阱124不设置插入式阱122时的击穿位置接近,那么插入式阱122的插入就起不到对于击穿的调整作用了。
当漏极140外接较高电位,耗尽至漏极140时,插入式阱122与两侧漂移区的N阱124相互耗尽,直至两侧N阱124形成的耗尽层逐渐扩大至交叠于P阱126中,两侧电势线相接,之后由上而下向衬底110中耗尽,电场峰值被削弱,进而有效改善击穿电压。
在图1所示实施例中,漏极140为N+漏极,源极150为N+源极,体区160为P+体区。
图5是另一实施例中具RESURF结构的横向扩散金属氧化物半导体场效应管的结构示意图,其与图1所示实施例的区别在于阱区由一层用于与高压器件配合的高压阱、和一层用于与低压器件配合的低压阱组成。即LDMOS包括衬底210,衬底上的第一阱区和第一阱区上的第二阱区,漏极240,源极250,体区260,场氧区270、多晶硅结构280以及P型场限环235。第一阱区包括P型掺杂的第一插入式阱222、第一N阱224以及第一P阱226;第二阱区包括P型的第二插入式阱232、第二N阱234以及第三P阱236,第二插入式阱232、第二N阱234以及第三P阱236分别与第一插入式阱222、第一N阱224以及第一P阱226相接;第一N阱224和第二N阱234共同作为漂移区。其中源极250和体区260设于第二P阱236内。
为了确保漂移区耗尽至漏极240的有源区(DTO)时,仍有较高浓度的N型杂质,必须保证此时N阱(包括第一N阱224和第二N阱234)与插入式阱(包括第一插入式阱222和第二插入式阱232)间的N+的仍有一定的有效宽度,至少为漏极240的有源区的30%。因此,第一插入式阱222和第二插入式阱232的宽度不应超过漏极240的有源区宽度的40%。在有源区宽10微米的实施例中,前述有效宽度至少为3微米,即第一插入式阱222和第二插入式阱232的宽度不超过2微米。
在图2所示实施例中,漏极240为N+漏极,源极250为N+源极,体区260为P+体区。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (7)

1.一种具RESURF结构的横向扩散金属氧化物半导体场效应管,包括衬底、源极、漏极、体区及衬底上的阱区,其特征在于,所述阱区包括:
插入式阱,掺杂类型为P型,设于所述漏极的下方并与漏极和衬底相接;
N阱,设于所述插入式阱的外围,所述插入式阱插入所述N阱中,所述插入式阱的宽度小于漏极的宽度从而使漏极的两侧与所述N阱相接;
P阱,设于所述N阱的外围并与N阱相接;
所述横向扩散金属氧化物半导体场效应管还包括P型场限环,所述P型场限环设于所述N阱内,为封闭的环状结构,且位于所述漏极的下方外围,将所述漏极包围;所述插入式阱在其长度方向上延伸至与所述P型场限环相接触的位置,所述源极和体区设于所述P阱内。
2.根据权利要求1所述的具RESURF结构的横向扩散金属氧化物半导体场效应管,其特征在于,所述阱区包括衬底上的第一阱区和第一阱区上的第二阱区,所述插入式阱包括第一阱区内的第一插入式阱和第二阱区内的第二插入式阱,所述N阱包括第一阱区内的第一N阱和第二阱区内的第二N阱,所述P阱包括第一阱区内的第一P阱和第二阱区内的第二P阱。
3.根据权利要求2所述的具RESURF结构的横向扩散金属氧化物半导体场效应管,其特征在于,所述第一N阱的掺杂浓度低于所述第二N阱的掺杂浓度,所述第一P阱的掺杂浓度低于所述第二P阱的掺杂浓度,所述第一插入式阱的掺杂浓度低于所述第二插入式阱的掺杂浓度。
4.根据权利要求1所述的具RESURF结构的横向扩散金属氧化物半导体场效应管,其特征在于,具RESURF结构的横向扩散金属氧化物半导体场效应管还包括场氧区和多晶硅结构,所述场氧区设于所述N阱表面,两块场氧区将所述漏极夹于中间,所述多晶硅结构从所述场氧区表面搭接至所述源极表面。
5.根据权利要求1所述的具RESURF结构的横向扩散金属氧化物半导体场效应管,其特征在于,所述插入式阱的宽度不超过所述漏极的有源区宽度的40%。
6.根据权利要求1所述的具RESURF结构的横向扩散金属氧化物半导体场效应管,其特征在于,所述阱区的掺杂浓度低于所述漏极的掺杂浓度。
7.根据权利要求1-6中任意一项所述的具RESURF结构的横向扩散金属氧化物半导体场效应管,其特征在于,所述衬底为P掺杂衬底,所述漏极为N掺杂漏极,所述源极为N掺杂源极,所述体区为P掺杂体区。
CN201510170810.6A 2015-04-10 2015-04-10 具resurf结构的横向扩散金属氧化物半导体场效应管 Active CN106158921B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201510170810.6A CN106158921B (zh) 2015-04-10 2015-04-10 具resurf结构的横向扩散金属氧化物半导体场效应管
PCT/CN2016/072846 WO2016161841A1 (zh) 2015-04-10 2016-01-29 横向扩散金属氧化物半导体场效应管
US15/564,172 US10014392B2 (en) 2015-04-10 2016-01-29 Laterally diffused metal-oxide-semiconductor field-effect transistor
JP2018503703A JP6484754B2 (ja) 2015-04-10 2016-01-29 横方向拡散金属酸化物半導体電界効果トランジスタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510170810.6A CN106158921B (zh) 2015-04-10 2015-04-10 具resurf结构的横向扩散金属氧化物半导体场效应管

Publications (2)

Publication Number Publication Date
CN106158921A CN106158921A (zh) 2016-11-23
CN106158921B true CN106158921B (zh) 2019-07-23

Family

ID=57071646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510170810.6A Active CN106158921B (zh) 2015-04-10 2015-04-10 具resurf结构的横向扩散金属氧化物半导体场效应管

Country Status (4)

Country Link
US (1) US10014392B2 (zh)
JP (1) JP6484754B2 (zh)
CN (1) CN106158921B (zh)
WO (1) WO2016161841A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106158956B (zh) * 2015-04-08 2020-02-11 无锡华润上华科技有限公司 具有resurf结构的ldmosfet及其制造方法
CN106483758B (zh) 2015-09-02 2019-08-20 无锡华润上华科技有限公司 光学邻近效应修正方法和系统
CN106653842B (zh) 2015-10-28 2019-05-17 无锡华润上华科技有限公司 一种具有静电释放保护结构的半导体器件
CN106816468B (zh) 2015-11-30 2020-07-10 无锡华润上华科技有限公司 具有resurf结构的横向扩散金属氧化物半导体场效应管
CN107465983B (zh) 2016-06-03 2021-06-04 无锡华润上华科技有限公司 Mems麦克风及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6252279B1 (en) * 1998-08-18 2001-06-26 Samsung Electronics Co., Ltd. DMOS transistor having a high reliability and a method for fabricating the same
CN101931004A (zh) * 2009-06-22 2010-12-29 宏海微电子股份有限公司 横向扩散金属氧化物半导体场效应晶体管结构
CN103681855A (zh) * 2012-08-31 2014-03-26 爱思开海力士有限公司 半导体器件

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04107878A (ja) * 1990-08-27 1992-04-09 Matsushita Electron Corp 半導体装置およびそれを用いたイグナイタ装置
JP2599493B2 (ja) * 1990-08-27 1997-04-09 松下電子工業株式会社 半導体装置
US6168983B1 (en) * 1996-11-05 2001-01-02 Power Integrations, Inc. Method of making a high-voltage transistor with multiple lateral conduction layers
JP2000286417A (ja) * 1999-03-30 2000-10-13 Toshiba Corp 電力用半導体装置
JP4534303B2 (ja) * 2000-04-27 2010-09-01 富士電機システムズ株式会社 横型超接合半導体素子
JP4131647B2 (ja) * 2002-06-27 2008-08-13 三洋電機株式会社 半導体装置の製造方法
US7719054B2 (en) * 2006-05-31 2010-05-18 Advanced Analogic Technologies, Inc. High-voltage lateral DMOS device
EP1946378B1 (en) * 2005-11-02 2012-12-12 Nxp B.V. Method of manufacturing a semiconductor device
CN101577291B (zh) * 2008-05-06 2011-06-01 世界先进积体电路股份有限公司 高压半导体元件装置
CN102569382B (zh) * 2010-12-09 2014-04-23 旺宏电子股份有限公司 金属氧化半导体元件及其形成方法
US8541862B2 (en) * 2011-11-30 2013-09-24 Freescale Semiconductor, Inc. Semiconductor device with self-biased isolation
TWI523196B (zh) * 2012-02-24 2016-02-21 聯華電子股份有限公司 高壓金氧半導體電晶體元件及其佈局圖案
CN103745988B (zh) * 2014-01-07 2017-01-25 无锡芯朋微电子股份有限公司 一种高压驱动电路的隔离结构
CN104681621B (zh) * 2015-02-15 2017-10-24 上海华虹宏力半导体制造有限公司 一种源极抬高电压使用的高压ldmos及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6252279B1 (en) * 1998-08-18 2001-06-26 Samsung Electronics Co., Ltd. DMOS transistor having a high reliability and a method for fabricating the same
CN101931004A (zh) * 2009-06-22 2010-12-29 宏海微电子股份有限公司 横向扩散金属氧化物半导体场效应晶体管结构
CN103681855A (zh) * 2012-08-31 2014-03-26 爱思开海力士有限公司 半导体器件

Also Published As

Publication number Publication date
JP6484754B2 (ja) 2019-03-13
WO2016161841A1 (zh) 2016-10-13
US20180122921A1 (en) 2018-05-03
US10014392B2 (en) 2018-07-03
CN106158921A (zh) 2016-11-23
JP2018517306A (ja) 2018-06-28

Similar Documents

Publication Publication Date Title
CN106158921B (zh) 具resurf结构的横向扩散金属氧化物半导体场效应管
CN103165678B (zh) 一种超结ldmos器件
CN107431091A (zh) 碳化硅半导体装置及其制造方法
CN103928527B (zh) 一种横向高压功率半导体器件的结终端结构
JP6618615B2 (ja) 横方向拡散金属酸化物半導体電界効果トランジスタ
CN105448961A (zh) 超结器件的终端保护结构
KR20140124950A (ko) 반도체 전력소자
CN102263125B (zh) 一种横向扩散金属氧化物功率mos器件
CN103928528A (zh) 一种横向高压功率半导体器件的结终端结构
CN104599974B (zh) 半导体结构及其形成方法
CN107819026B (zh) Ldmos器件
CN105047693A (zh) 一种横向高压功率器件的结终端结构
CN105679831B (zh) 横向扩散场效应晶体管及其制造方法
CN103928500A (zh) 一种横向高压功率半导体器件的结终端结构
CN105140269B (zh) 一种横向高压功率器件的结终端结构
CN101777584B (zh) p沟道横向双扩散金属氧化物半导体器件
CN107359194B (zh) 一种消除高电场的器件
CN106158956A (zh) 具有resurf结构的ldmosfet及其制造方法
CN107359195B (zh) 一种高耐压横向超结器件
CN105206659A (zh) 一种横向高压功率器件的结终端结构
CN203707138U (zh) Mosfet功率器件的终端结构
CN106024762B (zh) 一种静电保护结构
CN105990438A (zh) 半导体装置
CN106298874B (zh) 横向高压功率器件的结终端结构
CN104617155A (zh) 一种改善esd防护能力的jfet

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20170926

Address after: 214028 Xinzhou Road, Wuxi national hi tech Industrial Development Zone, Jiangsu, China, No. 8

Applicant after: Wuxi Huarun Shanghua Technology Co., Ltd.

Address before: 214028 Xinzhou Road, Wuxi national hi tech Industrial Development Zone, Jiangsu, China, No. 8

Applicant before: Wuxi CSMC Semiconductor Co., Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant