CN106147755A - 抗体修饰的荧光纳米粒子及在癌细胞靶向成像中的应用 - Google Patents

抗体修饰的荧光纳米粒子及在癌细胞靶向成像中的应用 Download PDF

Info

Publication number
CN106147755A
CN106147755A CN201610489481.6A CN201610489481A CN106147755A CN 106147755 A CN106147755 A CN 106147755A CN 201610489481 A CN201610489481 A CN 201610489481A CN 106147755 A CN106147755 A CN 106147755A
Authority
CN
China
Prior art keywords
nano particles
fluorescent nano
fluorescent
antibody
antibody modification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610489481.6A
Other languages
English (en)
Other versions
CN106147755B (zh
Inventor
唐本忠
高蒙
赵祖金
秦安军
林耿伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201610489481.6A priority Critical patent/CN106147755B/zh
Publication of CN106147755A publication Critical patent/CN106147755A/zh
Application granted granted Critical
Publication of CN106147755B publication Critical patent/CN106147755B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1051Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明公开了一种抗体修饰的荧光纳米粒子及其在癌细胞靶向成像中的应用,所述的荧光纳米粒子由以下步骤制得:将两亲性聚合物与式I所示的荧光化合物溶解在水溶性的有机溶剂中,超声作用下加入到水中;往液面吹氮通过挥发除去有机溶剂,形成负载了荧光化合物的纳米粒子;在纳米粒子水溶液中加入抗体、1‑(3‑二甲氨基丙基)‑3‑乙基碳二亚胺盐酸盐和N‑羟基硫代琥珀酰亚胺,反应后形成酰胺键,制得具有靶向成像能力的荧光纳米粒子。传统的荧光成像试剂具有聚集诱导猝灭、光稳定性差、细胞毒性高等缺陷,而本发明所述的荧光纳米粒子具有更好的检测效果、高发光效率、特异性的识别能力、低细胞毒性、良好的生物相容性和高光稳定性等优点。

Description

抗体修饰的荧光纳米粒子及在癌细胞靶向成像中的应用
技术领域
本发明属于医用材料领域,具体涉及一种抗体修饰的荧光纳米粒子及在癌细胞靶向成像中的应用。
背景技术
在癌症治疗中,传统的化疗通常具有很大的副作用,这是由于传统的癌症诊断方法难以在分子水平上对不同的癌症类型进行区分,导致了具有不同癌细胞类型的病人接受低效率的化疗方法。
为了提高治疗效率,降低治疗过程的副作用,需要在分子水平上对癌细胞进行诊断。通过识别癌细胞表面的特异性抗原,可有效区分不同的癌细胞。而单克隆抗体可特异性识别并结合到抗原上,例如西妥昔单克隆抗体可有效结合到高表达表皮生长因子受体的多种癌细胞上,包括头颈癌、结肠癌和肺癌等。
已有的癌细胞识别技术,如计算机断层扫描成像(CT)、核磁共振成像(MRI)和正电子发射断层成像(PET)等,这些技术具有低分辨率、低放射性危害和高成本等缺陷,而荧光成像具有高分辨率、高灵敏度、低成本、易于操作、可实时监测、无放射性危害等优点。
基于荧光纳米粒子具有高亮度和易于修饰等优点,多种荧光材料包括有机小分子染料、量子点、共轭聚合物等,都被制备为荧光纳米粒子成像试剂。然而,这些荧光材料具有聚集诱导猝灭的缺陷,在通过聚集制备纳米粒子时,其荧光会发生明显的自我猝灭。例如,罗丹明类、花菁类和尼罗红等荧光化合物,当其在纳米粒子中的含量超过1%的质量比时,即发生明显的自我猝灭。为了克服聚集诱导猝灭的缺陷,迫切需要发展新型的高亮度荧光纳米粒子,并实现在癌细胞特异性成像和检测中的应用。
近年来,聚集诱导发光材料作为新一代荧光材料,在生物医学领域日益获得广泛应用。聚集诱导发光材料具有强抗光漂白能力、高发光效率、大的斯托克位移和低毒性等优点。由于分子内运动受限,聚集诱导发光材料在聚集态具有高发光效率,因此很容易直接制备为高效发光的纳米粒子。由于荧光纳米粒子可以通过修饰抗体,实现对癌细胞表面抗原的高效率识别和染色标记,且具有光稳定性好等优点,因此荧光纳米粒子在癌细胞的荧光成像和检测中具有明显优势。
发明内容
为了克服现有技术的缺陷,本发明的首要目的在于提供一种抗体修饰的荧光纳米粒子的制备方法。
本发明的另一目的在于提供由上述方法制得的荧光纳米粒子。
本发明的再一目的在于提供上述的荧光纳米粒子在癌细胞靶向成像中的应用。
本发明的目的通过下述技术方案实现:
一种抗体修饰的荧光纳米粒子的制备方法,包括以下步骤:
(1)将两亲性聚合物与式I所示的荧光化合物溶解在水溶性的有机溶剂中,然后在超声作用下加入到水中;往液面吹氮通过挥发除去有机溶剂,形成负载了荧光化合物的纳米粒子;
(2)在纳米粒子水溶液中加入抗体、1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和N-羟基硫代琥珀酰亚胺,反应后形成酰胺键,制得具有靶向成像能力的荧光纳米粒子。
所述的两亲性聚合物为二硬脂酰基磷脂酰乙醇胺-聚乙二醇、二硬脂酰基磷脂酰乙醇胺-聚乙二醇-马来酸酐、二硬脂酰基磷脂酰乙醇胺-聚乙二醇-羧基、二硬脂酰基磷脂酰乙醇胺-聚乙二醇-氨基、二硬脂酰基磷脂酰乙醇胺-聚乙二醇-炔基或二硬脂酰基磷脂酰乙醇胺-聚乙二醇-叠氮中的一种以上,优选二硬脂酰基磷脂酰乙醇胺-聚乙二醇-2000和二硬脂酰基磷脂酰乙醇胺-聚乙二醇-2000-羧基的混合物。
所述的荧光化合物,其结构通式如式I所示:
其中,R1、R2、R3、R4、R5、R6、R7、R8、R9可以全部相同或者部分相同,为氢或烷基;
所述的烷基为1-15个碳原子的直链或支链烷基,优选叔丁基;
所述的荧光化合物优选t-BuPITBT-TPE,其结构如下式所示:
所述的水溶性的有机溶剂优选四氢呋喃。
所述的水优选蒸馏水。
所述的抗体是指能够识别特定受体的抗体。本发明的目的之一是要实现对高表达表皮生长因子受体的多种癌细胞的成像检测,因此,所述的抗体是能够识别表皮生长因子受体的抗体,优选西妥昔单抗(商品名:爱必妥)或尼妥珠单抗。
步骤(1)中,两亲性聚合物与式I所示的荧光化合物质量比优选1:1~2:1,
由上述方法制得的抗体修饰的荧光纳米粒子可用于癌细胞靶向成像和检测;
所述的癌细胞是高表达表皮生长因子受体的癌细胞,优选非小细胞肺癌细胞;
非小细胞肺癌细胞约占所有肺癌的80%,与小细胞型肺癌相比,其癌细胞生长分裂较慢,扩散转移相对较晚。
本发明中,式I化合物含有聚集诱导发光性质的四苯基乙烯片段,进而在两亲性聚合物的包裹下形成高亮度荧光纳米粒子,随后通过修饰特异性识别表皮生长因子受体的特异单抗,实现对高表达表皮生长因子受体癌细胞的特异性荧光成像和检测。
在本发明的上下文中,术语“两亲性聚合物”是指在一个大分子中同时对两相都具有亲和性的聚合物,一般指分子结构中同时含有亲水基团和疏水基团的聚合物。术语“聚集诱导发光”或“聚集诱导发光”是指荧光化合物在稀溶液中几乎不发光,但在聚集态或固态发出强荧光的现象。所述表皮生长因子受体(简称为EGFR)是一种跨膜糖蛋白,具有配体诱导的酪氨酸蛋白激酶活性。
本发明相对于现有技术具有如下的优点及效果:
传统的荧光成像试剂具有聚集诱导猝灭、光稳定性差、细胞毒性高等缺陷,而本发明所述的荧光纳米粒子具有更好的检测效果、高发光效率、特异性的识别能力、低细胞毒性、良好的生物相容性和高光稳定性等优点。
附图说明
图1是t-BuPITBT-TPE-C225纳米粒子的吸收发射光谱;(A)t-BuPITBT-TPE-C225纳米粒子在水溶液中的归一化紫外吸收;(B)t-BuPITBT-TPE-C225纳米粒子的荧光发射光谱。
图2是t-BuPITBT-TPE-C225纳米粒子的荧光衰变图。
图3是t-BuPITBT-TPE纳米粒子的粒径分布图。
图4是t-BuPITBT-TPE纳米粒子的透射电镜图。
图5是t-BuPITBT-TPE-C225纳米粒子的粒径分布图。
图6是t-BuPITBT-TPE-C225纳米粒子的透射电镜图。
图7是免疫印迹分析不同非小细胞肺癌细胞的EGFR的表达水平,GAPDH(甘油醛-3-磷酸脱氢酶的英文缩写)表达作为内标。
图8是t-BuPITBT-TPE-C225纳米粒子对HCC827和H23细胞的荧光染色图;其中,(A)为HCC827细胞的明场图像,(B)为HCC827细胞的荧光图像,(C)为HCC827细胞的叠加图像,(D)为H23细胞的明场图像,(E)为H23细胞的荧光图像,(F)为H23细胞的叠加图像。
图9是t-BuPITBT-TPE-C225纳米粒子在不同孵育时间下的流式细胞检测结果;(A)HCC827细胞;(B)H23细胞。
图10是不同浓度的t-BuPITBT-TPE-C225纳米粒子对(A)HCC827细胞和(B)H23细胞的毒性测试结果图。
图11是t-BuPITBT-TPE-C225纳米粒子在HCC827细胞内的光稳定性实验。
图12是针对HCC827细胞在不同温度和时间孵育下的t-BuPITBT-TPE-C225纳米粒子与CellMask Green,LysoTracker Green和Hoechst 33342的共染实验。
图13是针对HCC827细胞预先加入C225并孵育1.5小时,随后加入t-BuPITBT-TPE-C225纳米粒子孵育8小时,HCC827细胞内无荧光信号。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
一种抗体修饰的荧光纳米粒子的制备方法,包括以下步骤:
将二硬脂酰基磷脂酰乙醇胺-聚乙二醇-2000(1mg)、二硬脂酰基磷脂酰乙醇胺-聚乙二醇-2000-羧基(1mg)、荧光团t-BuPITBT-TPE(1mg)溶解在1mL四氢呋喃中,在超声下(80%输出,SCIENTZ-II D超声仪)加入9mL蒸馏水中,通过纳米沉淀法直接制备表面修饰有马来酸酐的荧光纳米粒子。室温下往液面吹氮气2小时通过挥发除去四氢呋喃,进一步通过0.2μm的过滤头过滤,除去沉淀及大颗粒物质。向滤液中加入西妥昔单克隆抗体(80μL,5mg/mL)、N-羟基硫代琥珀酰亚胺(17.4μg)和1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(15.3μg),在室温下反应4小时后,通过高速离心除去过量的小分子偶联试剂和游离的单抗,残余物分散于PBS溶液后,再通过离心进一步纯化,制得抗体修饰的荧光纳米粒子(t-BuPITBT-TPE-C225纳米粒子)。
实施例2
实施例1制得的荧光纳米粒子浓度的测量
将不同浓度的t-BuPITBT-TPE溶于THF溶液中,通过检测其不同浓度下的紫外-可见光吸收,获得其在475nm的吸收强度和浓度对应的标准曲线。
将1mL t-BuPITBT-TPE-C225纳米粒子溶液冻干后,溶于3mL THF中,测得其在475nm的吸收数值后,计算得到包裹进t-BuPITBT-TPE-C225纳米粒子的t-BuPITBT-TPE浓度为18.73μg/mL,将其用于以下的细胞实验。
实施例3
实施例1制得的荧光纳米粒子的粒径和光物理性质
该纳米粒子t-BuPITBT-TPE-C225在水溶液中的最大吸收在475nm,最大发射在625nm(图1)。量子产率为35.1%,荧光寿命为4.63ns(图2)。t-BuPITBT-TPE纳米粒子的水合粒径为97nm,分散度(PDI)为0.19(图3,通过动态光散射测得);修饰有西妥昔单克隆抗体的t-BuPITBT-TPE-C225纳米粒子的水合粒径为116nm,分散度(PDI)为0.33(图4)。通过TEM进一步证实了制备的荧光纳米粒子在水溶液中具有很好的分散性(图5和图6,图5是通过动态光散射测得)。
实施例4
针对高表达表皮生长因子受体的癌细胞的荧光成像和检测:
通过免疫印迹法,考察不同非小细胞肺癌细胞的EGFR表达水平,包括:HCC827,H228,PC9,H23,H322,H441,A549,H460(图7)。
由于HCC827和H23细胞分别表达最高含量和最低含量的EGFR,发明人基于HCC827和H23非小细胞肺癌细胞,对T-BuPITBT-TPE-C225纳米粒子靶向EGFR的荧光检测能力进行了评估。
对荧光纳米粒子染色后的HCC827和H23非小细胞肺癌细胞,通过荧光显微镜和流式细胞仪对荧光信号进行分析。当细胞与t-BuPITBT-TPE-C225荧光纳米粒子(含有2μg/mLt-BuPITBT-TPE)在37℃下孵育8小时后,t-BuPITBT-TPE-C225纳米粒子在HCC827细胞内呈现出很强的红色荧光信号。相对而言,H23细胞内未观察到荧光信号(图8)。
该结果表明t-BuPITBT-TPE-C225对高表达表皮生长因子受体的癌细胞具有特异性识别能力。该结论得到了流式细胞实验的进一步证实。例如,针对HCC827细胞,在37℃下孵育1,2,4,6小时后,细胞的染色效率分别为44%,62.7%,92.6%,和98%。而H23始终未被染色(图9)。
实施例5
细胞存活率检测:
HCC827和H23细胞分别在不同浓度的t-BuPITBT-TPE-C225纳米粒子(0,2,4,6,8和10μg/mL of t-BuPITBT-TPE)条件下孵育48小时后,细胞存活率通过CCK8试剂盒(购自Japan)进行检测。
t-BuPITBT-TPE-C225纳米粒子对HCC827细胞显示了较低的细胞毒性,对H23细胞无毒性作用(图10)。这是由于t-BuPITBT-TPE-C225纳米粒子表面的C225抗体对高表达表皮生长因子受体的HCC827细胞的强结合和抑制作用实现的。
实施例6
光稳定性检测:
针对进入HCC827细胞的t-BuPITBT-TPE-C225纳米粒子,在488纳米波长的激发下(4%激光功率),连续扫描40次,t-BuPITBT-TPE-C225纳米粒子的荧光未发生减弱(图11)。
该实验结果表明该纳米粒子具有很好的光稳定性。
实施例7
荧光纳米粒子进入HCC827细胞过程的监测:
细胞表面受体介导的胞吞是纳米粒子进入细胞的重要方式,而且其胞吞效率与温度密切相关。
当降低细胞的孵育温度至4℃时,与t-BuPITBT-TPE-C225纳米粒子孵育2小时后,t-BuPITBT-TPE-C225纳米粒子仅结合在细胞膜上,通过与细胞膜染色试剂CellMask Green共染,得到了证实(图12A–E)。
当细胞在37℃下孵育2小时后,部分t-BuPITBT-TPE-C225纳米粒子进入了细胞,且与LysoTracker Green的信号重叠,证明其可以进入细胞的溶酶体中(图12F–J)。
当细胞在37℃下孵育8小时后,绝大部分t-BuPITBT-TPE-C225纳米粒子进入了细胞中的溶酶体,证实了t-BuPITBT-TPE-C225纳米粒子进入细胞时通过受体介导的胞吞作用实现的(图12K–O)。
通过Hoechst 33342(购自Sigma)对细胞核的染色,进一步证实了t-BuPITBT-TPE-C225纳米粒子仅分散在细胞质中。
实施例8
表皮生长因子受体介导的胞吞的抑制试验:
当HCC827细胞与C225在37℃下先行孵育1.5小时后,C225可以有效结合到细胞表面的表皮生长因子受体,再与t-BuPITBT-TPE-C225纳米粒子在37℃下孵育8小时,细胞内无t-BuPITBT-TPE-C225纳米粒子的荧光信号(图13),表明t-BuPITBT-TPE-C225纳米粒子不能进入细胞,进一步证实了t-BuPITBT-TPE-C225纳米粒子进入细胞是通过受体介导的胞吞作用实现的。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种抗体修饰的荧光纳米粒子的制备方法,其特征在于包括以下步骤:
(1)将两亲性聚合物与式I所示的荧光化合物溶解在水溶性的有机溶剂中,然后在超声作用下加入到水中;往液面吹氮通过挥发除去有机溶剂,形成负载了荧光化合物的纳米粒子;
(2)在纳米粒子水溶液中加入抗体、1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和N-羟基硫代琥珀酰亚胺,反应后形成酰胺键,制得具有靶向成像能力的荧光纳米粒子;
所述的两亲性聚合物为二硬脂酰基磷脂酰乙醇胺-聚乙二醇、二硬脂酰基磷脂酰乙醇胺-聚乙二醇-马来酸酐、二硬脂酰基磷脂酰乙醇胺-聚乙二醇-羧基、二硬脂酰基磷脂酰乙醇胺-聚乙二醇-氨基、二硬脂酰基磷脂酰乙醇胺-聚乙二醇-炔基或二硬脂酰基磷脂酰乙醇胺-聚乙二醇-叠氮中的一种以上;
所述的荧光化合物,其结构通式如式I所示:
其中,R1、R2、R3、R4、R5、R6、R7、R8、R9全部相同或者部分相同,为氢或烷基;
所述的抗体是能够识别表皮生长因子受体的抗体。
2.根据权利要求1所述的抗体修饰的荧光纳米粒子的制备方法,其特征在于:所述的两亲性聚合物为二硬脂酰基磷脂酰乙醇胺-聚乙二醇-2000和二硬脂酰基磷脂酰乙醇胺-聚乙二醇-2000-羧基的混合物。
3.根据权利要求1所述的抗体修饰的荧光纳米粒子的制备方法,其特征在于:所述的荧光化合物中,所述的烷基为1-15个碳原子的直链或支链烷基。
4.根据权利要求1所述的抗体修饰的荧光纳米粒子的制备方法,其特征在于:所述的荧光化合物中,所述的烷基为叔丁基。
5.根据权利要求1所述的抗体修饰的荧光纳米粒子的制备方法,其特征在于:所述的荧光化合物是t-BuPITBT-TPE,其结构如下式所示:
6.根据权利要求1所述的抗体修饰的荧光纳米粒子的制备方法,其特征在于:所述的抗体是西妥昔单抗或尼妥珠单抗。
7.根据权利要求1所述的抗体修饰的荧光纳米粒子的制备方法,其特征在于:所述的水溶性的有机溶剂为四氢呋喃。
8.一种抗体修饰的荧光纳米粒子,其特征在于:是由权利要求1-7任一项所述的方法制得。
9.权利要求8所述的抗体修饰的荧光纳米粒子在癌细胞靶向成像检测中的应用,其特征在于:所述的癌细胞是高表达表皮生长因子受体的癌细胞。
10.根据权利要求9所述的抗体修饰的荧光纳米粒子在癌细胞靶向成像检测中的应用,其特征在于:所述的癌细胞是非小细胞肺癌细胞。
CN201610489481.6A 2016-06-24 2016-06-24 抗体修饰的荧光纳米粒子及在癌细胞靶向成像中的应用 Active CN106147755B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610489481.6A CN106147755B (zh) 2016-06-24 2016-06-24 抗体修饰的荧光纳米粒子及在癌细胞靶向成像中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610489481.6A CN106147755B (zh) 2016-06-24 2016-06-24 抗体修饰的荧光纳米粒子及在癌细胞靶向成像中的应用

Publications (2)

Publication Number Publication Date
CN106147755A true CN106147755A (zh) 2016-11-23
CN106147755B CN106147755B (zh) 2018-10-09

Family

ID=57350218

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610489481.6A Active CN106147755B (zh) 2016-06-24 2016-06-24 抗体修饰的荧光纳米粒子及在癌细胞靶向成像中的应用

Country Status (1)

Country Link
CN (1) CN106147755B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107064513A (zh) * 2017-01-22 2017-08-18 中国科学院自动化研究所 一种肿瘤诊断试剂盒
CN107880875A (zh) * 2017-12-11 2018-04-06 东南大学 基于全无机钙钛矿量子点的细胞成像探针及其制备方法
CN108610411A (zh) * 2018-04-28 2018-10-02 武汉大学 一种肿瘤靶向性近红外荧光探针及其制备方法
WO2018210206A1 (en) * 2017-05-17 2018-11-22 The Hong Kong University Of Science And Technology Theranostic agents
WO2019010787A1 (zh) * 2017-07-12 2019-01-17 华讯方舟科技有限公司 一种血液细胞捕获芯片及方法
CN109529034A (zh) * 2018-12-13 2019-03-29 浙江大学 近红外二区共轭纳米粒子及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130089889A1 (en) * 2011-10-11 2013-04-11 The Hong Kong University Of Science And Technology Aggregation Induced Emission Active Cytophilic Fluorescent Bioprobes for Long-Term Cell Tracking
CN105524441A (zh) * 2016-01-28 2016-04-27 华南理工大学 一种含有聚集诱导发光分子的高分子囊泡及其制法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130089889A1 (en) * 2011-10-11 2013-04-11 The Hong Kong University Of Science And Technology Aggregation Induced Emission Active Cytophilic Fluorescent Bioprobes for Long-Term Cell Tracking
CN105524441A (zh) * 2016-01-28 2016-04-27 华南理工大学 一种含有聚集诱导发光分子的高分子囊泡及其制法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIAYUN XIANG等: "Biocompatible Green and Red Fluorescent Organic Dots with Remarkably Large Two-Photon Action Cross Sections for Targeted Cellular Imaging and Real-Time Intravital Blood Vascular Visualization", 《ACS APPL. MATER. INTERFACES》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107064513A (zh) * 2017-01-22 2017-08-18 中国科学院自动化研究所 一种肿瘤诊断试剂盒
WO2018210206A1 (en) * 2017-05-17 2018-11-22 The Hong Kong University Of Science And Technology Theranostic agents
CN110461327A (zh) * 2017-05-17 2019-11-15 香港科技大学 诊断治疗试剂
US11389446B2 (en) 2017-05-17 2022-07-19 The Hong Kong University Of Science And Technology Theranostic agents
CN110461327B (zh) * 2017-05-17 2022-12-23 香港科技大学 诊断治疗试剂
WO2019010787A1 (zh) * 2017-07-12 2019-01-17 华讯方舟科技有限公司 一种血液细胞捕获芯片及方法
CN107880875A (zh) * 2017-12-11 2018-04-06 东南大学 基于全无机钙钛矿量子点的细胞成像探针及其制备方法
CN107880875B (zh) * 2017-12-11 2020-01-07 东南大学 基于全无机钙钛矿量子点的细胞成像探针及其制备方法
CN108610411A (zh) * 2018-04-28 2018-10-02 武汉大学 一种肿瘤靶向性近红外荧光探针及其制备方法
CN109529034A (zh) * 2018-12-13 2019-03-29 浙江大学 近红外二区共轭纳米粒子及其制备方法和应用
CN109529034B (zh) * 2018-12-13 2021-04-20 浙江大学 近红外二区共轭纳米粒子及其制备方法和应用

Also Published As

Publication number Publication date
CN106147755B (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
CN106147755A (zh) 抗体修饰的荧光纳米粒子及在癌细胞靶向成像中的应用
Gao et al. Mitochondria-targetable carbon quantum dots for differentiating cancerous cells from normal cells
JP5313249B2 (ja) ナノ粒子を用いた蛍光共鳴エネルギ移動検出
Urano et al. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes
Bai et al. A sensitive lateral flow test strip based on silica nanoparticle/CdTe quantum dot composite reporter probes
US6252664B1 (en) Fluorescence filter cube for fluorescence detection and imaging
Liu et al. Upconversion luminescence nanoparticles-based lateral flow immunochromatographic assay for cephalexin detection
US8389223B2 (en) Probes for anionic cell surface detection
Tao et al. Anti-epithelial cell adhesion molecule monoclonal antibody conjugated fluorescent nanoparticle biosensor for sensitive detection of colon cancer cells
CN103239737B (zh) 荧光造影剂及其制备方法
CN109054807B (zh) 一种双细胞器靶向的纳米探针及其制备及应用
Huang et al. Optical imaging of head and neck squamous cell carcinoma in vivo using arginine-glycine-aspartic acid peptide conjugated near-infrared quantum dots
JP6141186B2 (ja) 非常に効率的なエネルギー移動及び調整可能なストークシフトを特徴とする複数の色素がドープされたシリカナノ粒子
WO2013043902A1 (en) Targeted nanoparticles joined to reporter molecules through multiple mechanisms
Xu et al. A far-red-emissive AIE active fluorescent probe with large stokes shift for detection of inflammatory bowel disease in vivo
Duan et al. Role of near-infrared heptamethine cyanine dye IR-783 in diagnosis of cervical cancer and its mechanism
CN109529059A (zh) 一种荧光-磁共振双模态量子点及其制备和应用方法
Wu et al. Affibody-modified Gd@ C-dots with efficient renal clearance for enhanced MRI of EGFR expression in non-small-cell lung cancer
Aswathy et al. Mn-doped Zinc Sulphide nanocrystals for immunofluorescent labeling of epidermal growth factor receptors on cells and clinical tumor tissues
CN112899231A (zh) 一种可视化肿瘤细胞检测试剂、试剂盒及其制备方法与应用
Guerrero et al. Virus-resembling nano-structures for near infrared fluorescence imaging of ovarian cancer HER2 receptors
Kosaka et al. Multi-targeted multi-color in vivo optical imaging in a model of disseminated peritoneal ovarian cancer
CN114225044B (zh) 一种修饰细胞外囊泡的试剂及制备方法
Dumych et al. Visualization of melanoma tumor with lectin-conjugated rare-earth doped fluoride nanocrystals
Perera et al. Imaging, identification and inhibition of microorganisms using AIEgens

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant