CN106111204B - 一种高效降解四溴双酚a的复合材料及其制备方法和应用方法 - Google Patents

一种高效降解四溴双酚a的复合材料及其制备方法和应用方法 Download PDF

Info

Publication number
CN106111204B
CN106111204B CN201610439211.4A CN201610439211A CN106111204B CN 106111204 B CN106111204 B CN 106111204B CN 201610439211 A CN201610439211 A CN 201610439211A CN 106111204 B CN106111204 B CN 106111204B
Authority
CN
China
Prior art keywords
feb
ldh
tetrabromobisphenol
composite material
degradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610439211.4A
Other languages
English (en)
Other versions
CN106111204A (zh
Inventor
谷成
王超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201610439211.4A priority Critical patent/CN106111204B/zh
Publication of CN106111204A publication Critical patent/CN106111204A/zh
Application granted granted Critical
Publication of CN106111204B publication Critical patent/CN106111204B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种高效降解四溴双酚A的复合材料及其制备方法和应用方法,属于持久性有机污染物降解领域,解决了现有的降解方法存在能耗高,操作复杂以及容易形成二次污染等问题。本发明以镁铝层状双金属氢氧化物(LDH)为载体负载FeB*,通过离子交换实现FeB*的负载,与游离态FeB*相比较,通过离子交换作用得到的复合材料FeB*‑LDH除了提高TBBPA的去除、脱溴以及矿化速率之外,还实现了FeB*与水溶液的分离从而提高了FeB*的重复利用性。

Description

一种高效降解四溴双酚A的复合材料及其制备方法和应用 方法
技术领域
本发明属于持久性有机污染物降解领域,更具体地说,涉及一种高效降解四溴双酚A的复合材料及其制备方法和应用方法。
背景技术
过氧化氢催化剂四酰胺基六甲基苯基环铁(简称四酰胺环铁,FeB*)可以在数分钟之内将氯酚几乎完全矿化,因此它被称为绿色催化剂(S.S.Gupta,M.Stadler,et al.,Rapid Total Destruction of Chlorophenols by Activated Hydrogen Peroxide,Science 296(2002)326-328;K.Mierzwicki,S.Berski,et al.,AIM and ELF analysis ofthe H-,Me-,and F-substituted FeIII–TAML complexes,Chemical Physics Letters507(2011)29-36)。目前FeB*已经被用于降解有机磷农药(A.Chanda,S.K.Khetan,et al.,Total Degradation of Fenitrothion and Other Organophosphorus Pesticides byCatalytic Oxidation Employing Fe-TAML Peroxide Activators,Journal of theAmerican Chemical Society 128(2006)12058-12059),天然和合成的雌激素(N.W.Shappell,M.A.Vrabel,et al.,Destruction of Estrogens Using Fe-TAML/Peroxide Catalysis,Environmental Science&Technology 42(2008)1296-1300),偶氮燃料(N.Chahbane,D.L.Popescu,et al.,FeIII-TAML-catalyzed green oxidativedegradation of the azo dye Orange II by H2O2and organic peroxides:products,toxicity,kinetics,and mechanisms,Green Chemistry 9(2007)49-57),危险的细菌孢子(D.Banerjee,A.L.Markley,et al.,“Green”Oxidation Catalysis for RapidDeactivation of Bacterial Spores,Angewandte Chemie International Edition 45(2006)3974-3977),药物成分舍曲林(L.Q.Shen,E.S.Beach,et al.,Rapid,BiomimeticDegradation in Water of the Persistent Drug Sertraline by TAML Catalysts andHydrogen Peroxide,Environmental Science&Technology 45(2011)7882-7887)以及炸药TNT和TNB(S.Kundu,A.Chanda,et al.,TAMLActivator/Peroxide-Catalyzed FacileOxidative Degradation of the Persistent Explosives Trinitrotoluene andTrinitrobenzene in Micellar Solutions,Environmental Science&Technology 47(2013)5319-5326)。实际应用中,FeB*的用量很低,一般为0.01到10μM(J.Wang,H.Sun,etal.,Electrochemical catalysis and stability of tetraamido macrocyclicligands iron immobilized on modified pyrolytic graphite electrode,CatalysisToday 158(2010)263-268)。由于FeB*对pH敏感,在中性和酸性水体中容易发生脱金属现象而表现出低活性和不稳定性(V.Polshin,D.L.Popescu,et al.,Attaining Control byDesign over the Hydrolytic Stability of Fe-TAML Oxidation Catalysts,Journalof the American Chemical Society 130(2008)4497-4506;D.L.Popescu,A.Chanda,etal.,Mechanistically Inspired Design of FeIII-TAML Peroxide-ActivatingCatalysts,Journal of the American Chemical Society 130(2008)12260-12261)。最近水溶性金属卟啉分子的固定化已被证明可以保持甚至提高其催化活性。Guo et al利用π-π作用合成了石墨烯-高铁血红素复合材料,具备了石墨烯和高铁血红素的双重优点(Y.Guo,L.Deng,et al.,Hemin-Graphene Hybrid Nanosheets with Intrinsic Peroxidase-likeActivity for Label-freeColorimetric Detection of Single-NucleotidePolymorphism,ACS Nano 5(2011)1282-1290)。类似的,Zhang et al将高铁血红素组装在单壁碳纳米管上,得到高铁血红素-单壁碳纳米管复合材料,展现出高活性,稳定性和可重复利用性(Y.Zhang,C.Xu,B.Li,Self-assembly of hemin on carbon nanotube ashighly active peroxidase mimetic and its application for biosensing,RSCAdvances 3(2013)6044-6050)。有趣的是,广泛分布的粘土矿物作为载体抑制了高铁血红素的二聚并通过空间限域效应保持了高铁血红素的活性(J.Xiong,C.Hang,et al.,Anovel biomimetic catalyst templated by montmorillonite clay for degradationof 2,4,6-trichlorophenol,Chemical Engineering Journal 254(2014)276-282)。然而,对于FeB*固定化研究的很少。考虑到FeB*本身带有一个负电荷,因此我们提议将FeB*负载进入一种阴离子二维粘土矿物层状双金属氢氧化物从而保持其催化活性即使在不适宜的pH条件下。
层状双金属氢氧化物(LDH)由于同晶置换作用而带有正电荷,从而可以通过吸附阴离子来保持电中性(L.Pesic,S.Salipurovic,et al.,Thermal characteristics of asynthetic hydrotalcite-like material,Journal of Materials Chemistry 2(1992)1069-1073;A.I.Khan,D.O'Hare,Intercalation chemistry of layered doublehydroxides:recent developments and applications,Journal of MaterialsChemistry 12(2002)3191-3198)。LDH的基本公式可以表示为[M2+ 1-xM3+ x(OH)2]x+(An-)x/n·mH2O,M2+(M=e.g.Mg,Co,Cu,Ni,or Zn),M3+(M=e.g.Al,Cr,Ga,Mn or Fe)和An-分别是二价,三价和阴离子。x的值在0.2到0.33之间,等于M2+/(M2++M3+)的值。LDH功能多样,成本低以及容易购得,现在已经被广泛应用于催化、吸附、药物以及光化学和电化学。据报道,Mg-AlLDH负载的纳米钯催化剂要比其他材料负载的活性要高(B.M.Choudary,S.Madhi,et al.,Layered Double Hydroxide Supported Nanopalladium Catalyst for Heck-,Suzuki-,Sonogashira-,and Stille-Type Coupling Reactions of Chloroarenes,Journal ofthe American Chemical Society 124(2002)14127-14136)。考虑到LDH优越的阴离子交换能力(2-3mmol/g),LDH已经被广泛应用于环境无机和有机污染物的去除(N.N.Das,J.Konar,et al.,Adsorption of Cr(VI)and Se(IV)from their aqueous solutionsonto Zr4+-substituted ZnAl/MgAl-layered double hydroxides:effect of Zr4+substitution in the layer,Journal of Colloid and Interface Science 270(2004)1-8;K.H.Goh,T.T.Lim,et al.,Application of layered double hydroxides forremoval of oxyanions:A review,Water Research 42(2008)1343-1368;P.K.Dutta,D.S.Robins,Pyrene Sorption in Organic-Layered Double-Metal Hydroxides,Langmuir 10(1994)1851-1856;J.Das,B.S.Patra,et al.,Adsorption of phosphate bylayered double hydroxides in aqueous solutions,Applied Clay Science 32(2006)252-260)。
四溴双酚A(TBBPA)占所有溴代阻燃剂市场份额的百分之六十,分为反应型和添加型两种(A.Covaci,S.Voorspoels,et al.,Analytical and environmental aspects ofthe flame retardant tetrabromobisphenol-A and its derivatives,Journal ofChromatography A 1216(2009)346-363)。反应型的TBBPA主要用于印刷电路板的生产;添加型的TBBPA用于消费产品如纺织品和塑料。与反应型的TBBPA相比,添加型的TBBPA容易通过渗滤进入环境,从而引起污染(M.Alaee,P.Arias,et al.,An overview ofcommercially used brominated flame retardants,their applications,their usepatterns in different countries/regions and possible modes of release,Environment International 29(2003)683-689;L.S.Birnbaum,D.F.Staskal,BrominatedFlame Retardants:Cause for Concern?Environmental Health Perspectives 112(2004)9-17)。目前,TBBPA已经在各种环境介质中检测到了。Zweidinger et al报道称在生产基地周边的空气中检测到了1.8ug/m3的TBBPA。日本的有关研究称在土壤和底泥中TBBPA的含量分别为0.5-140μg/kg(干重)和2-150μg/kg(干重)。甚至在人体的血清,脂肪以及乳汁中也检测到了ng/kg的TBBPA。有关TBBPA对不同生物的毒性已经被广泛报道,其毒性主要表现中生殖毒性和生物标志的过度表达。另外,体外研究已经证实TBBPA具有生物活性,包括对甲状腺激素的干扰以及对小脑颗粒细胞高致死毒性(S.Decherf,I.Seugnet,et al.,Disruption of thyroid hormone-dependent hypothalamic set-points byenvironmental contaminants,Molecular and Cellular Endocrinology 323(2010)172-182;T.Reistad,E.Mariussen,et al.,In Vitro Toxicity of Tetrabromobisphenol-Aon Cerebellar Granule Cells:Cell Death,Free Radical Formation,Calcium Influxand Extracellular Glutamate,Toxicological Sciences 96(2007)268-278)。众所周知,TBBPA高温煅烧会生成高毒性的多溴代二苯并二恶英和二苯并呋喃(G.S.Marklund,PBCDD and PBCDF from Incineration of Waste-Containing BrominatedFlame Retardants,Environmental Science&Technology 36(2002)1959-1964)。考虑到,TBBPA的广泛使用,持久性以及潜在风险,提出了一些降解环境中TBBPA的方法。
目前TBBPA的降解分为生物降解和非生物降解。生物降解速率慢(Z.Ronen,A.Abeliovich,Anaerobic-Aerobic Process for Microbial Degradation ofTetrabromobisphenol A,Applied and Environmental Microbiology 66(2000)2372-2377)。非生物降解包括δ-MnO2氧化(K.Lin,W.Liu,J.Gan,Reaction ofTetrabromobisphenol A(TBBPA)with Manganese Dioxide:Kinetics,Products,andPathways,Environmental Science&Technology 43(2009)4480-4486),硫酸根自由基氧化(Y.Guo,J.Zhou,et al.,Enhanced degradation of Tetrabromobisphenol A in waterby a UV/base/persulfate system:Kinetics and intermediates,ChemicalEngineering Journal 254(2014)538-544),臭氧氧化,镍-铝合金还原,Zn还原(G.B.Liu,H.Y.Zhao,T.Thiemann,Zn dust mediated reductive debromination oftetrabromobisphenol A(TBBPA),Journal of Hazardous Materials 169(2009)1150-1153),二氧化钛光催化还原(Y.Ohko,I.Ando,et al.,Degradation of Bisphenol A inWater by TiO2Photocatalyst,Environmental Science&Technology 35(2001)2365-2368)以及用天然酶漆酶进行降解(Y.Feng,L.M.Colosi,et al.,Transformation andRemoval of Tetrabromobisphenol A from Water in the Presence of NaturalOrganic Matter via Laccase-Catalyzed Reactions:Reaction Rates,Products,andPathways.Environmental Science&Technology 47(2013)1001-1008)。但是这些方法存在各自的不足,比如能耗高,生成溴代苯酚,生成致癌离子溴酸根以及重金属离子引入环境等问题。
发明内容
1.要解决的问题
针对现有降解TBBPA的方法存在效率低,能耗高,生成溴代苯酚,生成致癌离子溴酸根以及重金属离子引入环境容易形成二次污染等问题,本发明提供了一种提高四酰胺基六甲基苯基环铁降解四溴双酚A效率和重复利用率的方法,本发明是一种高效且可以重复利用的降解TBBPA的方法,以层状双金属氢氧化物LDH为模板在LDH层间负载四酰胺基六甲基苯基环铁FeB*对TBBPA进行降解。通过LDH对电离态的带负电荷的TBBPA的吸附,提高了FeB*与TBBPA的碰撞几率从而提高了FeB*降解TBBPA的速率,并且由于LDH对带负电荷的FeB*的吸附作用提高了FeB*的重复利用性。
2.技术方案
为了解决上述问题,本发明所采用的技术方案如下:
一种高效降解四溴双酚A的复合材料,所述的复合材料包括镁铝层状双金属氢氧化物LDH和固定在LDH上的FeB*。
上述的高效降解四溴双酚A的复合材料的制备方法,其步骤为:
(a)合成镁铝层状双金属氢氧化物LDH;
(b)将步骤(a)中合成的LDH分散于FeB*溶液中,置于磁力搅拌器上搅拌24小时以上,得到复合材料FeB*-LDH。
优选地,步骤(a)中合成LDH的步骤为:
(1)制备含有Mg2+和Al3+的混合溶液,其中,Mg2+与Al3+的摩尔比为3:1;
(2)将步骤(1)中制得的混合溶液在5秒内加入到剧烈搅拌的NaOH溶液中,搅拌速度大于1000转/分钟;
(3)将步骤(2)中制得的反应液隔绝空气震荡30分钟后以上,然后反复离心清洗三次;
(4)将步骤(3)中离心后的LDH泥浆分散到去离子水中,置于灭菌锅中于100~150℃水热处理10小时以上,制得LDH均匀悬浮液;
(5)将LDH均匀悬浮液定量。
优选地,步骤(5)中定量LDH的具体方法为:
(m)称量20mL玻璃管的质量为m1
(n)吸取10mL LDH悬浮液于20mL玻璃管中,然后将其置于真空干燥箱中于50℃真空干燥48小时,保证LDH已经绝对干燥,称量玻璃管的质量为m2
(o)将m2减去m1即得LDH的干重(m2-m1),则LDH的浓度为[(m2-m1)/10]。
优选地,步骤(b)中合成复合材料FeB*-LDH的步骤为:
(I)移取步骤(a)中制得的LDH匀浆置于不同浓度的FeB*溶液中,LDH的质量为100mg,FeB*溶液的体积为10mL;
(II)将步骤(I)中含有LDH和FeB*溶液的容器用磁力搅拌器搅拌24小时;
(III)将步骤(II)中的溶液离心,测定LDH吸附FeB*的量,用分光光度法分别测定对照组中FeB*的浓度和离心后上清液中的FeB*浓度;通过差减法测得LDH吸附FeB*的量;
(IV)弃去步骤(III)中上清液,用超纯水反复清洗5-6次,制得负载不同量FeB*的FeB*-LDH复合材料。
上述的高效降解四溴双酚A的复合材料的应用方法,其步骤为:
(c)将步骤(b)中合成的复合材料加入含有四溴双酚A的溶液中,加入过氧化氢启动四溴双酚A的降解反应;
(d)将步骤(c)中降解四溴双酚A后的FeB*-LDH分离;
(e)重复步骤(c)~(d),得到FeB*-LDH的重复利用性。
优选地,步骤(c)中加入的过氧化氢的量是四溴双酚A的100倍,过氧化氢的浓度的2mM。
优选地,重复步骤(c)~(d)的具体方法为:步骤(d)中用滤膜抽滤分离步骤(c)中的反应液,然后将FeB*-LDH从滤膜上洗脱下来加入到和步骤(c)相同的四溴双酚A溶液中进行降解反应。
优选地,用超纯水清洗洗脱下来的FeB*-LDH 3~4次后再进行四溴双酚A的降解反应。
优选地,测定步骤(c)中测定复合材料降解四溴双酚A的降解动力学,脱溴动力学以及TOC的去除率的方法为:
(h)移取含有等量FeB*的FeB*溶液和FeB*-LDH悬浮液,分别加入到含有相同浓度相同体积的四溴双酚A溶液中;
(i)分别调节溶液pH为8,9和10,测定FeB*和FeB*-LDH在pH8,9和10条件下降解TBBPA的效率;用0.1M的NaOH和HClO4溶液调节反应液的pH;
(j)加入100倍于TBBPA摩尔浓度的H2O2启动四溴双酚A的降解反应;
(k)在预先设定的取样时间点(降解动力学和脱溴动力学取样时间点为0,2,4,6,8,10,20,30,60秒;TOC去除率取样点为反应60秒以后)加入浓高氯酸(2M)和/或过氧化氢酶和/或甲醇终止反应,分别用高效液相色谱,离子色谱和TOC分析仪测定FeB*和FeB*-LDH降解四溴双酚A的降解动力学,脱溴动力学以及TOC的去除率。
上述的高效降解四溴双酚A的复合材料在污水处理领域中的应用。
本发明中,镁铝层状双金属氢氧化物LDH是一种层状结构的人工合成的矿物材料,层间带有正电荷,在层中间吸附阴离子以中和电荷。当层间电荷被带负电荷的四酰胺基六甲基苯基环铁FeB*平衡,便得到四酰胺基六甲基苯基环铁-镁铝层状双金属氢氧化物复合材料FeB*-LDH。四溴双酚A在碱性条件下电离而带有负电荷,从而LDH可以吸附电离态的TBBPA使得TBBPA在LDH层间富集,从而提高FeB*与TBBPA的碰撞几率,进而提高FeB*降解TBBPA的反应速率。又由于LDH对FeB*的吸附作用,可以将FeB*从反应液中分离出来,实现可重复利用性,提高FeB*在实际应用中的效率降低其成本。FeB*/H2O2体系降解TBBPA相比于其他的方法具有操作简单,效率高,环境友好:不需要专门的设备如UV灯,复杂的反应装置或者昂贵的光催化剂;TBBPA的去除、脱溴以及矿化可以在数分钟内完成;有关FeB*的二次污染目前还没有文献报道。因此,本研究主要目的是将FeB*固定在LDH层间,使用游离的和负载的FeB*于不同pH条件下降解TBBPA,阐明降解路径,评估固定化的FeB*的可重复利用性。
3.有益效果
相比于现有技术,本发明的有益效果为:
(1)本发明利用四酰胺基六甲基苯基环铁在碱性条件下的高活性有效降解了一种被广泛使用的溴代阻燃剂四溴双酚A,并且可以同时实现脱溴和矿化;
(2)本发明中四酰胺基六甲基环铁用量很低,一般为0.1到10μmol/L,而且过氧化氢也是绿色氧化剂,所以不会产生二次污染的环境问题;
(3)本发明利用人工合成的层状双金属氢氧化物矿物材料,层间带有负电荷,通过离子交换得到负载有四酰胺基六甲基苯基环铁的层状双金属氢氧化物FeB*-LDH,利用LDH对电离态的四溴双酚A的吸附作用,提高了LDH层间FeB*与TBBPA的碰撞几率,从而提高了FeB*降解TBBPA的速率,与文献报道的降解TBBPA最短时间6分钟相比,本发明最多只需30秒就可以将TBBPA完全去除;
(4)本发明制备的FeB*-LDH复合材料在pH(8-10)条件下对TBBPA始终具备较高的降解效率,与现有技术相比,TBBPA的去除效率更高,副产物更少;
(5)本发明充分利用层状双金属氢氧化物对有机阴离子的吸附特性,使得四酰胺基六甲基苯基环铁能够被层状双金属氢氧化物固定,从而实现固液分离,实现可重复利用性从而降低FeB*降解污染物的成本,可以更加高效的应用于实际的污水处理。
附图说明
图1为本发明中FeB*对TBBPA的降解路径示意图;
图2为本发明中TBBPA在pH8(a),9(b)和10(c)条件下分别被FeB*和FeB*-LDH降解的动力学曲线;
图3为本发明中TBBPA在pH8(a),9(b)和10(c)条件下分别被FeB*和FeB*-LDH降解的脱溴动力学曲线;
图4为本发明中TBBPA在pH8,9和10条件下分别被FeB*和FeB*-LDH降解的TOC去除率柱状图;
图5为本发明中LDH对FeB*的吸附热力学曲线图;
图6为本发明中FeB*-LDH在pH8,9和10条件下对TBBPA的吸附热力学曲线图;
图7为本发明中FeB*,LDH和FeB*-LDH的红外光谱图,cal FeB*和exp FeB*分别代表理论计算的FeB*红外光谱和实验测定得到的FeB*红外光谱图;
图8为本发明中LDH负载不同量FeB*的XRD光谱图,(a)0.00mmol/kg,(b)2.86mmol/kg,(c)12.32mmol/kg,(d)22.38mmol/kg,(e)87.15mmol/kg和(f)176.82mmol/kg;
图9为本发明中FeB*-LDH的重复利用性曲线图;
图10为TBBPA在不同pH条件下的存在形态图。
注:FeB*为四酰胺基六甲基苯基环铁(购自美国GreenOx公司),FeB*-LDH为负载四酰胺基六甲基苯基环铁的层状双金属氢氧化物。
具体实施方式
下面结合具体实施例对本发明进一步进行描述。
实施例1
一种提高四酰胺基六甲基苯基环铁降解四溴双酚A效率和重复利用率的方法,其步骤为:
(1)制备含有3.0mmol的MgCl2和1.0mmol的AlCl3的混合溶液10毫升,将制得的混合溶液在5秒内加入到剧烈搅拌(搅拌速度为1000转/分钟)的40毫升0.15M的NaOH溶液中,然后隔绝空气震荡30分钟后,反复离心清洗三次。将离心后的LDH泥浆分散到40毫升去离子水中,置于灭菌锅中于100摄氏度水热处理16小时,制得LDH均匀悬浮液。将LDH均匀悬浮液定量,定量的方法为:称量20mL玻璃管的质量为m1;吸取10mL LDH悬浮液于20mL玻璃管中,然后将其置于真空干燥箱中于50℃真空干燥48小时,保证LDH已经绝对干燥,称量玻璃管的质量为m2;将m2减去m1即得LDH的干重(m2-m1),本实施例中LDH的浓度为30mg/mL。
(2)将100mg新鲜制备的LDH置于10mL不同浓度的FeB*溶液(10,25,50,103,251,504,1038,2512,5024,10541μmol/L)中搅拌24h,通过离子交换作用,使得FeB*阴离子将LDH层间的氯离子置换出来,得到层间吸附FeB*的FeB*-LDH复合材料;然后离心通过分光光度法测定上清液中FeB*的浓度,通过吸附前后FeB*浓度的变化计算出LDH吸附FeB*的量,LDH吸附FeB*热力学曲线见图5。然后弃去上清液,以超纯水洗净至上清液中检测不到FeB*。
(3)用0.1mol/L的NaOH和HClO4溶液分别调节含有10mg/L的TBBPA反应液pH至8,9和10,然后分别加入FeB*溶液和FeB*-LDH悬浮液,其中FeB*的用量相等为1μmol/L。加入20微升30%的H2O2开始降解TBBPA的动力学反应,反应路径如图1所示,H2O2的初始浓度为2mmol/L。在预先设定的时间点(0,2,4,6,8,10,20,30,60秒)加入5微升2mol/L浓HClO4和甲醇终止反应,然后用高效液相色谱(HPLC)以及液相色谱质谱(LC-MS)进行反应物与生成物分析,分析结果如图1所示。其中,加入浓HClO4的目的是将pH调节至3以下,使得FeB*失去活性;加入甲醇的目的包括萃取吸附在LDH上的TBBPA和产物以及淬灭在酸性条件下FeB*脱掉的Fe3+与H2O2发生的类芬顿反应所产生的羟基自由基。动力学反应以准一级反应描述,模型为Ct/C0=exp(-kobst),Ct指反应时间t的TBBPA的浓度,C0指TBBPA的起始浓度,kobs指实验得到的反应速率常数,具体曲线见图2,拟合得到的kobs见表1。
表1 不同pH条件下拟合得到的kobs
实施例2
一种提高四酰胺基六甲基苯基环铁降解四溴双酚A效率和重复利用率的方法,其步骤为:
(1)制备含有3.0mmol的MgCl2和1.0mmol的AlCl3的混合溶液10毫升,将制得的混合溶液在5秒内加入到剧烈搅拌(搅拌速度为1200转/分钟)的40毫升0.15M的NaOH溶液中,然后隔绝空气震荡35分钟后,反复离心清洗三次。将离心后的LDH泥浆分散到40毫升去离子水中,置于灭菌锅中于150摄氏度水热处理10小时,制得LDH均匀悬浮液。将LDH均匀悬浮液定量,定量方法同实施例1,定量得到的LDH的浓度为30mg/mL。
(2)将100mg新鲜制备的LDH置于10mL不同浓度的FeB*溶液(10,25,50,103,251,504,1038,2512,5024,10541μmol/L)中搅拌24h,通过离子交换作用,使得FeB*阴离子将LDH层间的氯离子置换出来,得到层间吸附FeB*的FeB*-LDH复合材料;然后离心通过分光光度法测定上清液中FeB*的浓度,通过吸附前后FeB*浓度的变化计算出LDH吸附FeB*的量,LDH吸附FeB*热力学曲线见图5。然后弃去上清液,以超纯水洗净至上清液中检测不到FeB*。
(3)用0.1mol/L的NaOH和HClO4溶液分别调节含有10mg/L的TBBPA反应液pH至8,9和10.然后分别加入FeB*溶液和FeB*-LDH悬浮液,其中FeB*的用量相等为1μmol/L。加入20微升30%的H2O2开始降解TBBPA的动力学反应,反应路径如图1所示,H2O2的初始浓度为2mmol/L。在预先设定的时间点(0,2,4,6,8,10,20,30,60秒)加入5微升2mol/L浓HClO4和过氧化氢酶终止反应,然后用离子色谱(IC)测定TBBPA的脱溴率。其中,加入浓HClO4的目的是将pH调节至3以下,使得FeB*失去活性终止反应;加入过氧化氢酶的目的包括终止反应以及去除H2O2以消除Fe3+引发的类芬顿反应。脱溴动力学曲线见图3。
实施例3
一种提高四酰胺基六甲基苯基环铁降解四溴双酚A效率和重复利用率的方法,其步骤为:
(1)制备含有3.0mmol的MgCl2和1.0mmol的AlCl3的混合溶液10毫升,将制得的混合溶液在5秒内加入到剧烈搅拌(搅拌速度为1500转/分钟)的40毫升0.15M的NaOH溶液中,然后隔绝空气震荡30分钟后,反复离心清洗三次。将离心后的LDH泥浆分散到40毫升去离子水中,置于灭菌锅中于130摄氏度水热处理12小时,制得LDH均匀悬浮液。将LDH均匀悬浮液定量,浓度为30mg/mL。
(2)将100mg新鲜制备的LDH置于10mL不同浓度的FeB*溶液(10,25,50,103,251,504,1038,2512,5024,10541μmol/L)中搅拌24h,通过离子交换作用,使得FeB*阴离子将LDH层间的氯离子置换出来,得到层间吸附FeB*的FeB*-LDH复合材料;然后离心通过分光光度法测定上清液中FeB*的浓度,通过吸附前后FeB*浓度的变化计算出LDH吸附FeB*的量,LDH吸附FeB*热力学曲线见图5。然后弃去上清液,以超纯水洗净至上清液中检测不到FeB*。
(3)用0.1mol/L的NaOH和HClO4溶液分别调节含有10mg/L的TBBPA反应液pH至8,9和10.然后分别加入FeB*溶液和FeB*-LDH悬浮液,其中FeB*的用量相等为1μmol/L。加入加入20微升30%的H2O2开始降解TBBPA的动力学反应,反应路径如图1所示,H2O2的初始浓度为2mmol/L。在反应60s后加入浓HClO4,然后用TOC分析仪(TOC)测定TBBPA的TOC去除率。其中,加入浓HClO4的目的是将pH调节至3以下,使得FeB*失去活性终止反应,TOC去除率情况见图4。
实施例4
一种提高四酰胺基六甲基苯基环铁降解四溴双酚A效率和重复利用率的方法,其步骤为:
(1)制备含有3.0mmol的MgCl2和1.0mmol的AlCl3的混合溶液10毫升,将制得的混合溶液在5秒内加入到剧烈搅拌(搅拌速度为1000转/分钟)的40毫升0.15M的NaOH溶液中,然后隔绝空气震荡30分钟后,反复离心清洗三次。将离心后的LDH泥浆分散到40毫升去离子水中,置于灭菌锅中于100摄氏度水热处理16小时,制得LDH均匀悬浮液。将LDH均匀悬浮液定量,浓度为30mg/mL。
(2)将100mg新鲜制备的LDH置于10mL不同浓度的FeB*溶液(10,25,50,103,251,504,1038,2512,5024,10541μmol/L)中搅拌24h,通过离子交换作用,使得FeB*阴离子将LDH层间的氯离子置换出来,得到层间吸附FeB*的FeB*-LDH复合材料;然后离心通过分光光度法测定上清液中FeB*的浓度,通过吸附前后FeB*浓度的变化计算出LDH吸附FeB*的量,LDH吸附FeB*热力学曲线见图5。然后弃去上清液,以超纯水洗净至上清液中检测不到FeB*。
(3)取2mg新鲜制备的FeB*-LDH于5mL的不同pH条件(pH8,9和10)下的不同浓度的TBBPA溶液(1.00~90.91mg/L)中,在恒温震荡箱中于25摄氏度震荡24h,然后离心用高效液相色谱测定上清液中的TBBPA浓度。对照组为不含有FeB*-LDH的TBBPA溶液。通过对照组与实验组中上清液中TBBPA的浓度差值计算FeB*-LDH吸附TBBPA的量,然后根据吸附量和平衡浓度绘制吸附热力学曲线,见图6。FeB*-LDH在不同pH条件下对TBBPA的吸附热力学符合Langmuir模型,在pH8,9和10条件下的最大吸附量分别为34012,35277和47500mg/kg。在pH8到10范围内,随着pH的升高吸附量增大,是由于电离态的TBBPA形态的比例随着pH升高而升高,pH 10条件下TBBPA几乎完全以负二价形式存在,所以吸附量最大。TBBPA形态随pH变化的趋势如图10。
实施例5
一种提高四酰胺基六甲基苯基环铁降解四溴双酚A效率和重复利用率的方法,其步骤为:
(1)制备含有3.0mmol的MgCl2和1.0mmol的AlCl3的混合溶液10毫升,将制得的混合溶液在5秒内加入到剧烈搅拌(搅拌速度为1000转/分钟)的40毫升0.15M的NaOH溶液中,然后隔绝空气震荡35分钟后,反复离心清洗三次。将离心后的LDH泥浆分散到40毫升去离子水中,置于灭菌锅中于100摄氏度水热处理16小时,制得LDH均匀悬浮液。将LDH均匀悬浮液定量,浓度为30mg/mL。
(2)将100mg新鲜制备的LDH置于10mL不同浓度的FeB*溶液(10,25,50,103,251,504,1038,2512,5024,10541μmol/L)中搅拌24h,通过离子交换作用,使得FeB*阴离子将LDH层间的氯离子置换出来,得到层间吸附FeB*的FeB*-LDH复合材料;然后离心通过分光光度法测定上清液中FeB*的浓度,通过吸附前后FeB*浓度的变化计算出LDH吸附FeB*的量,LDH吸附FeB*热力学曲线见图5。然后弃去上清液,以超纯水洗净至上清液中检测不到FeB*。
(3)将FeB*-LDH复合材料离心弃去上清液,然后置于真空干燥箱中于40摄氏度条件下干燥48h。使用傅里叶变换红外光谱仪(FTIR,Bruker tensor 27)表征FeB*-LDH复合材料,如图7。红外光谱的结果表明FeB*-LDH与LDH的红外光谱相比多出一些FeB*所有的红外吸收峰。
实施例6
一种提高四酰胺基六甲基苯基环铁降解四溴双酚A效率和重复利用率的方法,其步骤为:
(1)制备含有3.0mmol的MgCl2和1.0mmol的AlCl3的混合溶液10毫升,将制得的混合溶液在5秒内加入到剧烈搅拌(搅拌速度为1000转/分钟)的40毫升0.15M的NaOH溶液中,然后隔绝空气震荡30分钟后,反复离心清洗三次。将离心后的LDH泥浆分散到40毫升去离子水中,置于灭菌锅中于100摄氏度水热处理16小时,制得LDH均匀悬浮液。将LDH均匀悬浮液定量,浓度为30mg/mL。
(2)将100mg新鲜制备的LDH置于10mL不同浓度的FeB*溶液(10,25,50,103,251,504,1038,2512,5024,10541μmol/L)中搅拌24h,通过离子交换作用,使得FeB*阴离子将LDH层间的氯离子置换出来,得到层间吸附FeB*的FeB*-LDH复合材料;然后离心通过分光光度法测定上清液中FeB*的浓度,通过吸附前后FeB*浓度的变化计算出LDH吸附FeB*的量,LDH吸附FeB*热力学曲线见图5。然后弃去上清液,以超纯水洗净至上清液中检测不到FeB*。
(3)将FeB*-LDH复合材料离心弃去上清液,然后置于真空干燥箱中于40摄氏度条件下干燥48h。使用X-射线衍射仪(XRD,Phillips,Panalytical,Netherlands)表征FeB*-LDH复合材料,如图8。XRD光谱的结果表明随着FeB*负载量的增加,LDH所对应的003位置的峰向小角度方向偏移,说明FeB*可以进入LDH的层间并在层间发生反应。
实施例7
一种提高四酰胺基六甲基苯基环铁降解四溴双酚A效率和重复利用率的方法,其步骤为:
(1)制备含有3.0mmol的MgCl2和1.0mmol的AlCl3的混合溶液10毫升,将制得的混合溶液在5秒内加入到剧烈搅拌(搅拌速度为1000转/分钟)的40毫升0.15M的NaOH溶液中,然后隔绝空气震荡30分钟后,反复离心清洗三次。将离心后的LDH泥浆分散到40毫升去离子水中,置于灭菌锅中于100摄氏度水热处理16小时,制得LDH均匀悬浮液。将LDH均匀悬浮液定量,浓度为30mg/mL。
(2)将100mg新鲜制备的LDH置于10mL不同浓度的FeB*溶液(10,25,50,103,251,504,1038,2512,5024,10541μmol/L)中搅拌24h,通过离子交换作用,使得FeB*阴离子将LDH层间的氯离子置换出来,得到层间吸附FeB*的FeB*-LDH复合材料;然后离心通过分光光度法测定上清液中FeB*的浓度,通过吸附前后FeB*浓度的变化计算出LDH吸附FeB*的量,LDH吸附FeB*热力学曲线见图5。然后弃去上清液,以超纯水洗净至上清液中检测不到FeB*。
(3)用0.1mol/L的NaOH和HClO4溶液分别调节100mL含有10mg/L的TBBPA反应液pH至10。然后加入FeB*-LDH悬浮液,其中FeB*的用量1μmol/L。加入H2O2开始降解TBBPA的动力学反应,在预先设定的时间点取样与含有10μL HClO4(2M)的甲醇混合,反应周期为300s。然后将反应液用0.22μm的滤膜将FeB*-LDH分离出来,后将其洗脱下来置于100mL含有10mg/L的TBBPA反应液中,调节pH为10。加入H2O2开始降解TBBPA的第二周期反应。依次类推,重复四个周期。FeB*-LDH的重复利用性曲线如图9,FeB*-LDH复合材料在第三个周期依然具备降解TBBPA的活性。

Claims (10)

1.一种高效降解四溴双酚A的复合材料的制备方法,所述的复合材料包括镁铝层状双金属氢氧化物LDH和固定在LDH上的FeB*,其制备步骤为:
(a)合成镁铝层状双金属氢氧化物LDH;
(b)将步骤(a)中合成的LDH分散于FeB*溶液中,搅拌24小时以上,得到复合材料FeB*-LDH,所述的FeB*为四酰胺基六甲基苯基环铁的简称。
2.根据权利要求1所述的高效降解四溴双酚A的复合材料的制备方法,其特征在于:步骤(a)中合成LDH的步骤为:
(1)制备含有Mg2+和Al3+的混合溶液,其中,Mg2+与Al3+的摩尔比为3:1;
(2)将步骤(1)中制得的混合溶液在5秒内加入到剧烈搅拌的NaOH溶液中,搅拌速度大于1000转/分钟;
(3)将步骤(2)中制得的反应液隔绝空气震荡30分钟以上,然后反复离心清洗三次;
(4)将步骤(3)中离心后的LDH泥浆分散到去离子水中,置于灭菌锅中于100~150℃水热处理10小时以上,制得LDH均匀悬浮液;
(5)将LDH均匀悬浮液定量。
3.根据权利要求2所述的高效降解四溴双酚A的复合材料的制备方法,其特征在于:步骤(5)中定量LDH的具体方法为:
(m)称量20 mL玻璃管的质量为m1
(n)吸取10 mL LDH悬浮液于20 mL玻璃管中,然后将其置于真空干燥箱中于50℃真空干燥48小时,保证LDH已经绝对干燥,称量玻璃管的质量为m2
(o)将m2减去m1即得LDH的干重(m2-m1),则LDH的浓度为[(m2-m1)/10]。
4.一种高效降解四溴双酚A的复合材料,其特征在于:采用权利要求1-3中任意一种方法制备得到。
5.权利要求4中所述的高效降解四溴双酚A的复合材料的应用方法,其步骤为:
(c)将步骤(b)中合成的复合材料加入含有四溴双酚A的溶液中,加入过氧化氢启动四溴双酚A的降解反应;
(d)将步骤(c)中降解四溴双酚A后的FeB*-LDH分离;
(e)重复步骤(c)~(d),得到FeB*-LDH的重复利用性。
6.根据权利要求5所述的高效降解四溴双酚A的复合材料的应用方法,其特征在于:步骤(c)中加入的过氧化氢的量是四溴双酚A的100倍,过氧化氢的浓度为2 mM。
7.根据权利要求5所述的高效降解四溴双酚A的复合材料的应用方法,其特征在于:重复步骤(c)~(d)的具体方法为:步骤(d)中用滤膜抽滤分离步骤(c)中的反应液,然后将FeB*-LDH从滤膜上洗脱下来加入到和步骤(c)相同的四溴双酚A溶液中进行降解反应。
8.根据权利要求7所述的高效降解四溴双酚A的复合材料的应用方法,其特征在于:用超纯水清洗洗脱下来的FeB*-LDH 3~4次后再进行四溴双酚A的降解反应。
9.根据权利要求5所述的高效降解四溴双酚A的复合材料的应用方法,其特征在于:测定步骤(c)中测定复合材料降解四溴双酚A的降解动力学,脱溴动力学以及TOC的去除率的方法为:
(h)移取含有等量FeB*的FeB*溶液和FeB*-LDH悬浮液,分别加入到含有相同浓度相同体积的四溴双酚A溶液中;
(i)分别调节溶液pH为8,9和10;
(j)加入等量的过氧化氢H2O2启动四溴双酚A的降解反应;
(k)在预先设定的取样时间点加入浓高氯酸和/或过氧化氢酶和/或甲醇终止反应,分别用高效液相色谱,离子色谱和TOC分析仪测定FeB*和FeB*-LDH降解四溴双酚A的降解动力学,脱溴动力学以及TOC的去除率。
10.权利要求4中所述的高效降解四溴双酚A的复合材料在污水处理领域中的应用。
CN201610439211.4A 2016-06-17 2016-06-17 一种高效降解四溴双酚a的复合材料及其制备方法和应用方法 Active CN106111204B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610439211.4A CN106111204B (zh) 2016-06-17 2016-06-17 一种高效降解四溴双酚a的复合材料及其制备方法和应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610439211.4A CN106111204B (zh) 2016-06-17 2016-06-17 一种高效降解四溴双酚a的复合材料及其制备方法和应用方法

Publications (2)

Publication Number Publication Date
CN106111204A CN106111204A (zh) 2016-11-16
CN106111204B true CN106111204B (zh) 2018-06-01

Family

ID=57470108

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610439211.4A Active CN106111204B (zh) 2016-06-17 2016-06-17 一种高效降解四溴双酚a的复合材料及其制备方法和应用方法

Country Status (1)

Country Link
CN (1) CN106111204B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107029379A (zh) * 2017-04-18 2017-08-11 桂林理工大学 一种利用白腐真菌粗酶液降解双酚b的方法
CN107445218B (zh) * 2017-08-15 2019-10-25 南京大学 一种提高四酰胺基六甲基苯基环铁稳定性的复合材料及其制备方法和应用方法
CN107497487B (zh) * 2017-08-15 2019-10-25 南京大学 一种提高四酰胺基六甲基苯基环铁反应活性的复合材料及其制备方法和应用方法
CN108906091B (zh) * 2018-06-26 2021-04-06 浙江工业大学 钴铬水滑石负载碘氧化铋复合材料及其制备方法与应用
CN108786830B (zh) * 2018-06-29 2020-11-03 中国科学院海洋研究所 一种镍钒复合氧化物模拟酶材料及其制备方法和用途
CN110560173B (zh) * 2019-09-17 2022-03-04 哈尔滨工业大学 双吡啶酰胺铁负载纳米二氧化硅异相催化剂的制备方法和应用方法
CN112275142B (zh) * 2020-10-15 2021-12-14 中国科学技术大学 一种负载类酶配体的复合超滤膜、其制备方法及应用
CN113003854B (zh) * 2021-01-27 2022-07-01 中日友好环境保护中心(生态环境部环境发展中心) 一种含四溴双酚a工业废水的资源处理化装置及其方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583849A (zh) * 2012-02-28 2012-07-18 天津工业大学 一种四溴双酚a生产废水的治理工艺
CN103466894A (zh) * 2013-09-24 2013-12-25 天津长芦汉沽盐场有限责任公司 一种四溴双酚a生产废水的处理及回收利用方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102583849A (zh) * 2012-02-28 2012-07-18 天津工业大学 一种四溴双酚a生产废水的治理工艺
CN103466894A (zh) * 2013-09-24 2013-12-25 天津长芦汉沽盐场有限责任公司 一种四溴双酚a生产废水的处理及回收利用方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
An efficient approach for the photodegradation of organic pollutants by immobilized iron ions at neutral pHs;Wanhong Ma et al.;《CHEM.COMMUN.》;20030603;第1582-1583页 *
Fe-TAML encapsulated inside mesoporous silica nanoparticles as peroxide mimic:femtomolar protein detection;Sushma Kumari et al.;《ACS Applied Materials & Interfaces》;20140804;第6卷;第13866-13873页 *
Intercalation chemistry of layered double hydroxides:recent developments and applications;Aamir I.Khan et al.;《J.Mater.Chem.》;20021003;第12卷;第3191-3198页 *
Intercalation of Fe(III) complexes into layered double hydroxides:synthesis and structural preservation;Zhujian Huang et al.;《Applied Clay Science》;20120720;第65-66卷;第87-94页 *
Total degradation of fenitrothion and other organophosphorus pesticides by catalytic oxidation employing Fe-TAML peroxide activators;Arani Chanda et al.;《J.AM.CHEM.SOC.》;20060829;第128卷;第12058-12059页 *
四酰胺基大环铁配合物在水/有机混合溶液中的电化学性质;王敬花等;《科学技术与工程》;20100630;第10卷(第16期);第3827-3831页 *

Also Published As

Publication number Publication date
CN106111204A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
CN106111204B (zh) 一种高效降解四溴双酚a的复合材料及其制备方法和应用方法
Wang et al. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs
Fu et al. A novel solid digestate-derived biochar-Cu NP composite activating H2O2 system for simultaneous adsorption and degradation of tetracycline
Van Tran et al. MIL-53 (Fe) derived magnetic porous carbon as a robust adsorbent for the removal of phenolic compounds under the optimized conditions
Li et al. NiO/g-C3N4 2D/2D heterojunction catalyst as efficient peroxymonosulfate activators toward tetracycline degradation: characterization, performance and mechanism
Tizhoosh et al. Ultrasound-engineered synthesis of WS2@ CeO2 heterostructure for sonocatalytic degradation of tylosin
Tian et al. Removal of MC-LR using the stable and efficient MIL-100/MIL-53 (Fe) photocatalyst: the effect of coordinate immobilized layers
Du et al. Construction of Z-scheme g-C3N4/MnO2/GO ternary photocatalyst with enhanced photodegradation ability of tetracycline hydrochloride under visible light radiation
Chen et al. N, N′-di-caboxy methyl perylene diimide (PDI) functionalized CuO nanocomposites with enhanced peroxidase-like activity and their application in visual biosensing of H 2 O 2 and glucose
Zhang et al. Highly efficient adsorption and catalytic degradation of aflatoxin B1 by a novel porous carbon material derived from Fe-doped ZIF-8
Chien et al. Oxidative degradation and associated mineralization of catechol, hydroquinone and resorcinol catalyzed by birnessite
He et al. Enhanced photocatalytic disinfection of Escherichia coli K-12 by porous g-C3N4 nanosheets: Combined effect of photo-generated and intracellular ROSs
Asgari et al. The catalytic ozonation of diazinon using nano-MgO@ CNT@ Gr as a new heterogenous catalyst: the optimization of effective factors by response surface methodology
Deng et al. Magnetic EDTA functionalized CoFe 2 O 4 nanoparticles (EDTA-CoFe 2 O 4) as a novel catalyst for peroxymonosulfate activation and degradation of Orange G
Du et al. Efficient photocatalytic organic degradation and disinfection performance for Ag/AgFeO2/g-C3N4 nanocomposites under visible-light: Insights into the photocatalysis mechanism
Yang et al. Bioinspired 3D hierarchical BSA-NiCo2O4@ MnO2/C multifunctional micromotors for simultaneous spectrophotometric determination of enzyme activity and pollutant removal
Ashouri et al. A new strategy for the adsorption and removal of fenitrothion from real samples by active-extruded MOF (AE-MOF UiO-66) as an adsorbent
Guo et al. Synthesis of nZVI-BC composite for persulfate activation to degrade pyrene: Performance, correlative mechanisms and degradation pathways
FitzGerald et al. Towards solving the PFAS problem: the potential role of metal‐organic frameworks
Wang et al. Fast peroxydisulfate oxidation of the antibiotic norfloxacin catalyzed by cyanobacterial biochar
Zhao et al. Capability of Bacillus Subtilis to remove Pb2+ via producing lipopeptides
Rojas et al. Towards improving the capacity of UiO-66 for antibiotic elimination from contaminated water
CN106362754A (zh) 去除壬基酚的铋酸钠铁‑石墨烯可见光‑类芬顿复合催化剂及其制备方法
Liu et al. Emerging investigator series: 3D graphene anchored zerovalent Fe/Cu aerogel activating persulfate for efficiently 2, 4 dichlorophenol degradation over a broad pH range
Yuan et al. The synergistic effect of PMS activation by LaCoO 3/gC 3 N 4 for degradation of tetracycline hydrochloride: Performance, mechanism and phytotoxicity evaluation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant