CN106111199B - 多含硫氮杂卟啉阵列纳米晶的制备与应用 - Google Patents

多含硫氮杂卟啉阵列纳米晶的制备与应用 Download PDF

Info

Publication number
CN106111199B
CN106111199B CN201610452084.1A CN201610452084A CN106111199B CN 106111199 B CN106111199 B CN 106111199B CN 201610452084 A CN201610452084 A CN 201610452084A CN 106111199 B CN106111199 B CN 106111199B
Authority
CN
China
Prior art keywords
sulfur
nanocrystalline
bearing
aza porphyrin
pdcl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610452084.1A
Other languages
English (en)
Other versions
CN106111199A (zh
Inventor
邓克俭
杨昌军
张丙广
郭烈平
李玫
操兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South Central Minzu University
Original Assignee
South Central University for Nationalities
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South Central University for Nationalities filed Critical South Central University for Nationalities
Priority to CN201610452084.1A priority Critical patent/CN106111199B/zh
Publication of CN106111199A publication Critical patent/CN106111199A/zh
Application granted granted Critical
Publication of CN106111199B publication Critical patent/CN106111199B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • B01J31/1835Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline comprising aliphatic or saturated rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • C07C45/38Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a primary hydroxyl group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • B01J2231/76Dehydrogenation
    • B01J2231/763Dehydrogenation of -CH-XH (X= O, NH/N, S) to -C=X or -CX triple bond species
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/025Ligands with a porphyrin ring system or analogues thereof, e.g. phthalocyanines, corroles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明属于材料、石油和化工领域,具体公开了多含硫氮杂卟啉阵列纳米晶的制备与应用。实验结果显示,外围连接咪唑官能基团的含硫氮杂卟啉可以与氯化钯发生配位反应形成纳米晶,通过控制反应条件可以调控纳米晶的形貌。多含硫氮杂卟啉阵列纳米晶具有很好的光催化活性,可以有效光催化选择性氧化液态醇成为醛或酮和酸,并能重复使用。该多含硫氮杂卟啉阵列纳米晶可以作为仿生光催化剂,在石油和化工领域实施石油产品的深加工和有机物的绿色催化氧化,因此具有重要的应用价值。

Description

多含硫氮杂卟啉阵列纳米晶的制备与应用
技术领域
本发明涉及材料、石油和化工领域,具体涉及多含硫氮杂卟啉阵列纳米晶的制备与应用。
背景技术
醇选择性氧化制备羰基化合物是化工生产过程中的重要反应之一,开发绿色、节能和高效的醇选择性氧化体系一直是研究热点之一。
含硫氮杂卟啉及其金属配合物具有可离域化共轭π电子体系以及在可见光区具有强的摩尔吸光系数,其结构特点使其具有优异的电学和光学性质,使得这类配合物在模拟生物氧化酶活性以及太阳光能转换等方面显示出诱人的应用前景。通过配位等非共价键作用能够较容易地将多个卟啉单元连接起来形成金属-多卟啉阵列纳米晶,可以拓展卟啉在可见光区的吸收范围,这为利用太阳光能作为反应条件的光催化氧化有机化合物提供了一条新的途径,尤其是在提倡绿色化工的今天,对多卟啉阵列纳米晶的研究受到了人们的广泛关注。
以下工作受国家自然科学基金资助,项目编号:21272281;项目名称:磁性纳米材料负载金属氮杂卟啉催化剂的设计及其活化分子氧绿色氧化液态醇的研究。
发明内容
为了开发绿色、节能和高效的醇氧化体系,针对现有醇氧化体系存在的不足,本发明的目的在于提供一种多含硫氮杂卟啉阵列纳米晶的制备技术,并开发利用多含硫氮杂卟啉阵列纳米晶光催化活化分子氧氧化液态有机醇的应用。本发明制备的多含硫氮杂卟啉阵列纳米晶可以高效、可重复使用、选择性地光催化氧化有机醇为有机醛、酮和有机酸。
本申请发明人在合成具有良好水溶性的外围取代基含有咪唑官能团的八(6-咪唑正己硫基)四氮杂卟啉自由配体的基础上,利用其配体中心和取代基尾端的咪唑基团与金属钯发生配位作用组装成纳米晶,研究发现组装的纳米晶具有高效的光催化氧化能力。可以作为绿色的仿生光催化剂,以氧气为氧化剂,在水体系中能选择性氧化苯甲醇为苯甲醛和苯甲酸。
本发明提供的多含硫氮杂卟啉阵列纳米晶,实现本发明目的,获得多含硫氮杂卟啉阵列纳米晶所采取的技术方案是:
制备方法如下:
八(6-咪唑正己硫基)四氮杂卟啉自由配体(简写为H2Pz(SHe-Im)8,分子结构如图1所示)与PdCl2在甲醇或水等溶剂中,在50℃条件下通过搅拌自组装形成特定形貌的纳米晶。所述H2Pz(SHe-Im)8与PdCl2的摩尔比为1:4。
最佳制备方法如下:将2.26μmol H2Pz(SHe-Im)8溶于20mL蒸馏水,得到自由配体水溶液;将9.04μmol PdCl2溶于1mL 2mol·L-1盐酸,同时加入19mL蒸馏水;H2Pz(SHe-Im)8与PdCl2的摩尔比为1:4,自由配体水溶液和氯化钯盐酸溶液体积比为1:1。然后在50℃条件下,采用恒压滴定漏斗,将前述自由配体水溶液以0.05mL·s-1的速度加入到氯化钯盐酸溶液中,滴加滴完后继续搅拌5min,再对反应体系进行过滤得到产物。
本发明的多含硫氮杂卟啉阵列纳米晶可用于石油和化工领域。因此,本发明的技术方案还包括多含硫氮杂卟啉阵列纳米晶在选择性光催化氧化有机醇方面的应用实验,所述有机醇包括液态醇,例如苯甲醇。
以氙灯为光源,以氧气作为氧源,以催化氧化苯甲醇为例来评定多含硫氮杂卟啉阵列纳米晶光催化氧化有机醇的性能。
与现有技术中同类化合物相比,本发明的多含硫氮杂卟啉阵列纳米晶的优点和有益效果在于:
(1)通过含硫氮杂卟啉的中心和外围配体与金属的非共价键配位作用可以获得多含硫氮杂卟啉阵列纳米晶。使催化剂镶嵌在纳米晶中,既能起到类似“均相”的催化效果,又便于催化剂回收、重复使用;
(2)与现有的贵金属或半导体催化剂不同,无重金属和有毒溶剂的污染。多含硫氮杂卟啉阵列纳米晶可以作为绿色的仿生光催化剂,利用太阳光为能源、以空气或氧气为氧源、溶剂为水的条件下实施有机物的催化氧化,整个氧化反应绿色、环保。
附图说明
图1为H2Pz(SHe-Im)8的分子结构;
图2为H2Pz(SHe-Im)8与PdCl2自组装的TEM图;
图3为H2Pz(SHe-Im)8与PdCl2自组装的SEM图;
图4为PSSW和H2Pz(SHe-Im)8的IR图谱,a:H2Pz(SHe-Im)8;b:PSSW;
图5为PSSW的XPS谱图;
图6为苯甲醇分别在空白(a)、K2CO3(b)、K2CO3/PdCl2(c)和K2CO3/PSSW(d)的体系中无光照条件(左柱)和光照(右柱)下的转化率比较;
图7为温度对苯甲醇的残余量(a)和氧化产物苯甲醛(b)和苯甲酸(c)的产率的影响;
图8为氧压对苯甲醇的残余量(a)和氧化产物苯甲醛(b)和苯甲酸(c)的产率的影响;
图9为光强对苯甲醇的残余量(a)和氧化产物苯甲醛(b)和苯甲酸(c)的产率的影响;
图10为催化剂量对苯甲醇的残余量(a)和氧化产物苯甲醛(b)和苯甲酸(c)的产率的影响。
具体实施方式
下面通过具体的实施例对本发明的多含硫氮杂卟啉阵列纳米晶的制备与应用作进一步的描述,但以下内容不应在任何程度上被理解为对本发明请求保护范围的限制。
实施例1:八(6-咪唑正己硫基)四氮杂卟啉自由配体H2Pz(SHe-Im)8与PdCl2自组装形成纳米晶
将2.26μmol H2Pz(SHe-Im)8溶于20mL蒸馏水,得到自由配体水溶液;将9.04μmolPdCl2溶于1mL 2mol·L-1盐酸,同时加入19mL蒸馏水;H2Pz(SHe-Im)8与PdCl2的摩尔比为1:4,自由配体水溶液和氯化钯盐酸溶液体积比为1:1。然后在50℃条件下,采用恒压滴定漏斗,将前述自由配体水溶液以0.05mL·s-1的速度加入到氯化钯盐酸溶液中,滴加滴完后继续搅拌5min,再对反应体系进行过滤得到产物。产物的TEM和SEM图分别如图2和图3所示。
自组装产物是由球和线共同组成的不规则的、交叉的链状结构。由于此形貌是由球和线组成的链状疏松多孔结构,用英语表达为A porous structure composed ofspheres and wires,简称为PSSW。以下内容介绍都是围绕本实施例组装成的产物进行,因此组装的纳米晶H2Pz(SHe-Im)8·nPdCl2用PSSW简称。
利用IR光谱研究了自组装产物PSSW中H2Pz(SHe-Im)8与PdCl2的配位方式,PSSW和自由配体H2Pz(SHe-Im)8的IR图谱如图4所示。从图4a可知,在3424cm-1、3154cm-1、2938cm-1、1681cm-1、1427cm-1、1295cm-1、1203cm-1与1135cm-1处出现的吸收峰分别归属于H2Pz(SHe-Im)8分子结构中的N-H伸缩振动、=C-H伸缩振动、-C-H伸缩振动、C-N和C=N伸缩振动、C-H弯曲振动、=C-H弯曲振动、C-S-C伸缩振动;从图4b可知,在3448cm-1、3131cm-1、2931cm-1、1621cm-1、1458cm-1、1292cm-1、1081cm-1与1010cm-1处出现的吸收峰分别归属于PSSW分子结构中的N-H伸缩振动、=C-H伸缩振动、-C-H伸缩振动、C-N和C=N伸缩振动、C-H弯曲振动、=C-H弯曲振动、C-S-C伸缩振动。进一步从PSSW和H2Pz(SHe-Im)8的IR图谱的比较可知,H2Pz(SHe-Im)8中的C-N伸缩振动峰和C=N伸缩振动峰的强度大于其C-H弯曲振动峰的强度,而PSSW中的C-N伸缩振动峰和C=N伸缩振动峰的强度却小于其C-H弯曲振动峰的强度,表明H2Pz(SHe-Im)8中的末端咪唑上的N与PdCl2发生配位作用,导致C-N和C=N键的伸缩振动减弱。同时,H2Pz(SHe-Im)8中的N-H伸缩振动峰较其C-H伸缩振动峰的强度大,而PSSW的N-H伸缩振动峰较其C-H伸缩峰的强度小,表明H2Pz(SHe-Im)8与PdCl2形成自组装体后,部分H2Pz(SHe-Im)8大环中心被PdCl2占据,导致N-H键的伸缩振动峰的强度减弱。
为了研究Pd在PSSW中的化学环境,对PSSW进行了XPS分析,结果如图5所示。从图中可知,Pd的3d5/2的电子结合能为337.46eV,这与PdCl2中Pd的3d5/2的电子结合能一致,表示PSSW中的Pd仍以PdCl2的形态存在,表明PdCl2与H2Pz(SHe-Im)8形成自组装体发生的是配位作用。同时,利用能量色散X射线光谱也检测到了PSSW中C、N、S、Pd、Cl的存在,其中H元素本身不能在EDS中检测出来。进一步通过EDS-MAP图谱分析可知PdCl2分散于体系中的各个部位,而S的分布也表明H2Pz(SHe-Im)8分散于体系各个部位。
实施例2:本发明的多含硫氮杂卟啉阵列纳米晶的催化活性测定
其步骤如下:在光反应釜中加入20mL 0.01mol·L-1苯甲醇溶液,然后再加入5mg实施例1制备的多含硫氮杂卟啉阵列纳米晶(相当于0.002mmol PSSW),此时催化剂与底物的摩尔比为1:100,再加入27.6mg K2CO3(0.2mmol)作助剂。然后将反应釜密封并加以10atm氧压,在氙灯光照(功率280W)和60℃的条件下反应3h,为光照条件下的实验;取消氙灯光照,则为无光照条件下的实验。本组记为K2CO3/PSSW(d)。
此外,还设其他三组作为对照:空白(a)、K2CO3(b)、K2CO3/PdCl2(c),其中,a组既不加助剂也不加催化剂;b组只加助剂不加催化剂;c组将PSSW换成PdCl2,其中催化活性成分Pd用量相同。
每组均进行光照和无光照条件下的实验。
实验结果如图6所示。结果:对比实验表明,在无光照的条件下,苯甲醇基本上不发生转化,苯甲醇在空白(a)、K2CO3(b)、K2CO3/PdCl2(c)和K2CO3/PSSW(d)的体系中,其转化率分别为0、9.9%、21.65%和23.21%。
而在光照条件下的实验表明,苯甲醇反应3h空白组转化率仅为8.9%;而苯甲醇在K2CO3、K2CO3/PdCl2和K2CO3/PSSW的体系中,其转化率分别为19.66%、45.07%和71.81%,表明光照显著促进了苯甲醇的氧化。与无光照条件下相比较,在K2CO3/PSSW的光催化体系中,苯甲醇的转化率提高了2.1倍。
实施例3:温度对PSSW的催化活性的影响
在光反应釜中加入20mL 0.01mol·L-1苯甲醇溶液,然后再加入5mg实施例1制备的多含硫氮杂卟啉阵列纳米晶(相当于0.002mmol PSSW),此时催化剂与底物的摩尔比为1:100,再加入27.6mg K2CO3(0.2mmol)作助剂。然后将反应釜密封并加以10atm氧压,在氙灯光照(功率280W)下,分别在60℃、80℃、100℃、110℃和120℃下反应3h进行光催化实验。温度对PSSW催化活性的影响的实验结果如图7所示。对比实验表明,苯甲醇的转化率随着温度的升高而增大,其氧化产物苯甲醛和苯甲酸的产率也增大,苯甲醇反应后体系的残余量从60℃时的92.4%下降到120℃时的28.2%。
实施例4:考察氧压对催化活性的影响
按照实施例3的操作步骤,改变氧压,分别在1atm、2atm、4atm、6atm、8atm和12atm氧压的条件下进行光催化实验。
氧压对催化活性的影响的实验结果如图8所示。结果:对比实验表明,苯甲醇的转化率在10atm氧压时达到最大,而氧化产物的产率在8atm氧压时达到最大,且低氧压时有利于苯甲醛的生成,高氧压是有利于苯甲酸的生成。
实施例5:考察光强对催化活性的影响
按照实施例3的操作步骤,改变光强,分别在氙灯功率为0W、70W和210W条件下进行光催化实验。
光强对催化活性的影响的实验结果如图9所示。结果:对比实验表明,随着氙灯功率的提高(即光强度增加),苯甲醇转化率和氧化产物的产率都有所提高,且光强提高有利苯甲酸的生成。
实施例6:考察催化剂量对催化活性的影响
按照实施例3的操作步骤,改变催化剂用量,分别在催化剂与底物的摩尔比为1:200、1:250、1:300和1:500的条件下进行光催化实验。
催化剂量对催化活性的影响的实验结果如图10所示。结果:对比实验表明,随着催化剂用量的增加,苯甲醇转化率和氧化产物的产率都有所提高。

Claims (5)

1.多含硫氮杂卟啉阵列纳米晶在光催化氧化有机醇中的应用;
所述多含硫氮杂卟啉阵列纳米晶的制备方法如下:
八(6-咪唑正己硫基)四氮杂卟啉自由配体H2Pz(SHe-Im) 8与PdCl2在甲醇或水溶剂中,在50℃条件下通过搅拌自组装形成,所述 H2Pz(SHe-Im) 8与PdCl2的摩尔比为1:4。
2.根据权利要求1所述的应用,其特征在于:所述多含硫氮杂卟啉阵列纳米晶的制备方法如下:
将2.26μmol H2Pz(SHe-Im)8溶于20mL蒸馏水,得到自由配体水溶液;将9.04μmol PdCl2溶于1mL 2mol·L-1盐酸,同时加入19mL蒸馏水,得到氯化钯盐酸溶液;然后在50℃条件下,采用恒压滴定漏斗,将自由配体水溶液以0.05mL·s-1的速度加入到氯化钯盐酸溶液中,滴加完后继续搅拌5min,过滤得到产物。
3.根据权利要求1或2所述的应用,其特征在于:所述有机醇为液态醇。
4.根据权利要求3所述的应用,其特征在于:所述液态醇为苯甲醇。
5.根据权利要求4所述的应用,其特征在于:所述光催化氧化有机醇为以氧气为氧化剂,在水体系中选择性氧化苯甲醇为苯甲醛和苯甲酸。
CN201610452084.1A 2016-06-21 2016-06-21 多含硫氮杂卟啉阵列纳米晶的制备与应用 Expired - Fee Related CN106111199B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610452084.1A CN106111199B (zh) 2016-06-21 2016-06-21 多含硫氮杂卟啉阵列纳米晶的制备与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610452084.1A CN106111199B (zh) 2016-06-21 2016-06-21 多含硫氮杂卟啉阵列纳米晶的制备与应用

Publications (2)

Publication Number Publication Date
CN106111199A CN106111199A (zh) 2016-11-16
CN106111199B true CN106111199B (zh) 2018-10-12

Family

ID=57471248

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610452084.1A Expired - Fee Related CN106111199B (zh) 2016-06-21 2016-06-21 多含硫氮杂卟啉阵列纳米晶的制备与应用

Country Status (1)

Country Link
CN (1) CN106111199B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108097284A (zh) * 2017-12-18 2018-06-01 铜仁学院 一种可见光催化分解水用均相催化剂及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1267238A (zh) * 1997-06-20 2000-09-20 卡内基梅隆大学 使用金属配合物的均相氧化催化作用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1267238A (zh) * 1997-06-20 2000-09-20 卡内基梅隆大学 使用金属配合物的均相氧化催化作用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
不同含硫四氮杂卟啉配体对催化氧化有机醇的影响;郭烈平等;《中国化学会第九届全国有机化学学术会议》;20150728;第715页 *

Also Published As

Publication number Publication date
CN106111199A (zh) 2016-11-16

Similar Documents

Publication Publication Date Title
Zhao et al. Controlled synthesis of metal-organic frameworks coated with noble metal nanoparticles and conducting polymer for enhanced catalysis
CN103566956B (zh) 一种微米级磷化镍材料及其制备方法及用途
CN104324761B (zh) 一种多孔稀土有机配合物基催化剂的制备和应用
CN102274724B (zh) 一种高活性的芳香族硝基化合物加氢反应中的催化剂及其制备方法
CN101195579A (zh) 醇水体系中氯代硝基苯选择加氢合成氯代苯胺的方法
CN103599776A (zh) 一种Pd/CeO2可见光光催化剂及其制备方法和应用
Wen et al. Heterometal modified Fe3O4 hollow nanospheres as efficient catalysts for organic transformations
CN108404987B (zh) 一种提高纳米颗粒@MOFs材料催化效率的方法
CN104628118B (zh) 废水催化湿式氧化处理方法
CN105327714B (zh) 一种纳米Cu‑有机配合物/Ag复合材料的制备方法和应用
CN107362819B (zh) 一种石油沥青基非金属催化剂的制备方法及应用
Jiang et al. Photocatalytic aldehydes/alcohols/toluenes oxidative amidation over bifunctional Pd/MOFs: Effect of Fe-O clusters and Lewis acid sites
CN102295524B (zh) 一种环己烷选择氧化制环己醇和环己酮的方法
CN103464195A (zh) 一种扩孔剂引入活性组分的甲烷氧化制甲醇催化剂方法
CN100569661C (zh) 一种球形纳米氧化铁的制备方法
Luo et al. Engineering of single atomic Cu-N3 active sites for efficient singlet oxygen production in photocatalysis
Dutta et al. Metal–organic framework based catalytic nanoreactors: synthetic challenges and applications
CN104415765A (zh) 一种Ru-Ni双金属基有序介孔碳催化剂的制备方法
Sha et al. Hierarchically macro–meso–microporous metal–organic framework for photocatalytic oxidation
CN106111199B (zh) 多含硫氮杂卟啉阵列纳米晶的制备与应用
CN106111129B (zh) 用于同时产氢和选择性氧化乙醇的光催化剂及其制备方法
CN109201029B (zh) 一种高效多孔复合光催化材料的制备方法
Xu et al. Photoinduced enhanced catalytic activity for Suzuki-Miyaura coupling reaction using porous poly (lactic acid) fiber with palladium/graphitic carbon nitride
CN103638949B (zh) 一种纳米镍/银/铜复合催化剂的制备及其应用
CN113292734A (zh) 一种纺锤体形貌的MIL-101(Fe)光催化剂的合成及光催化应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181012

Termination date: 20210621