CN106099063A - 一种水热合成金属氧化物/石墨烯纳米复合材料及其制备方法和应用 - Google Patents

一种水热合成金属氧化物/石墨烯纳米复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN106099063A
CN106099063A CN201610607847.5A CN201610607847A CN106099063A CN 106099063 A CN106099063 A CN 106099063A CN 201610607847 A CN201610607847 A CN 201610607847A CN 106099063 A CN106099063 A CN 106099063A
Authority
CN
China
Prior art keywords
graphene
oxide
preparation
metal
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610607847.5A
Other languages
English (en)
Other versions
CN106099063B (zh
Inventor
李运勇
朱俊陆
欧长志
黄莹
傅炽铭
苏文城
张海燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201610607847.5A priority Critical patent/CN106099063B/zh
Publication of CN106099063A publication Critical patent/CN106099063A/zh
Application granted granted Critical
Publication of CN106099063B publication Critical patent/CN106099063B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开一种水热合成金属氧化物/石墨烯纳米复合材料及其制备方法和应用。合成步骤如下:将石墨烯加入到溶有金属盐的有机溶剂中均匀混合,在搅拌条件下滴加一定用量比的去离子水;待分散均匀后转移至水热反应釜中,低温水热反应;所得产物经抽滤、洗涤、烘干,制备出金属氧化物/石墨烯纳米复合材料。本发明方法简单、成本低,水热温度低,规模化生产时安全。所制备的复合材料中的金属氧化物颗粒在石墨烯表面分布均匀,颗粒原位生长,平均粒径在1~3nm之间,将其应用于锂离子电池和超级电容器中,都可实现高比容量、超高倍率性能以及高循环稳定性的电化学性能。

Description

一种水热合成金属氧化物/石墨烯纳米复合材料及其制备方 法和应用
技术领域
本发明属于纳米材料技术领域,更具体地,涉及一种水热合成金属氧化物/石墨烯纳米复合材料及其制备方法和应用。
背景技术
石墨烯是由单层碳原子紧密堆积而成的具有蜂窝状晶格结构的二维纳米材料,其特殊的二维结构,使其具有完美的量子隧道效应、半整数的量子霍尔效应和从不消失的电导率等一系列特殊的性质。由于其优越性能,石墨烯被广泛应用于制作各种电化学储能领域。但是由于石墨烯之间具有较强的范德华力,使得石墨烯之间很容易产生团聚,给石墨烯的实际应用造成了极大的影响。为了能够获得稳定分散的石墨烯悬浮液,改善石墨烯与其他基体之间的相溶性,就需要对石墨烯表面进行适当的功能化。其中的有效方法是在石墨烯表面上固定金属氧化物纳米颗粒。石墨烯具有很大的比表面积,且表面有许多含氧官能团,这些都有利于金属氧化物纳米颗粒在石墨烯的表面成核生长,而纳米颗粒的引入,对石墨烯起到空间阻隔的作用,大大降低了石墨烯片层之间发生团聚。而金属氧化物纳米颗粒,其具有物产丰富、价格低、理论比容量高,作为下一代电化学储能材料而被广泛关注。但是由于金属氧化物纳米颗粒自身导电性较差,使得其电阻较大以及在大电流密度下活性物质利用率低。因而导致其倍率性能和功率密度差,实际比容量低。另外,在离子嵌入脱出过程中,它们都会较大的体积变化,由此导致活性材料严重粉化和剥落,造成不可逆容量大以及循环稳定性差。因此,在石墨烯表面上固定金属氧化物纳米颗粒既能有效避免石墨烯团聚,有效发挥石墨烯优势,也能降低金属氧化物纳米颗粒的电子传递电阻,缓冲离子嵌入脱出过程中,金属氧化物纳米颗粒发生较大的体积变化,有效增强复合材料的倍率性能和循环稳定性。
另外,金属氧化物负载在石墨烯表面上的颗粒大小和分散性,在改进其倍率性能和稳定性方面,起着决定性作用。因为小的金属氧化物颗粒加上好的分散性(例如小至几纳米)能使复合物电极具有高的比表面积,进而能有效地缓冲金属氧化物的体积膨胀以及提供更多的反应活性位点,也能增加每个金属氧化物的导电性以及缩短离子固相传输距离,从而有利于提高活性材料的比容量和倍率性能以及稳定性。
目前,在石墨烯表面上生长金属氧化物通常采用的水热温度高于160℃,并且生长的金属氧化物纳米颗粒的尺寸也较大(一般大于5nm),由此会导致在实际规模化应用时,复合材料制备不太安全。另外,金属氧化物纳米颗粒的尺寸大也易导致复合材料的倍率性能和循环稳定性不高,不能满足当前高能耗储能领域的实际应用。
因此,探索一种制备工艺简单、安全,且在石墨烯表面生长金属氧化物纳米颗粒尺寸小的方法用以制备金属氧化物/石墨烯的复合材料是亟待解决的问题。
发明内容
本发明所要解决的技术问题是克服现有技术中制备金属氧化物/石墨烯纳米复合材料的缺陷和不足,提供一种以金属盐溶液和石墨烯为起始材料,制备金属氧化物/石墨烯纳米复合材料的方法,解决了金属氧化物颗粒在石墨烯表面原位生长过大、结晶性差、粒径尺寸和分布不均匀,以及合成成本高、工艺复杂、不易规模化及工业化的问题。
本发明的目的是提供一种水热合成金属氧化物/石墨烯纳米复合材料的制备方法。
本发明另一目的是提供上述方法制备的金属氧化物/石墨烯纳米复合材料。
本发明再一目的是提供上述金属氧化物/石墨烯纳米复合材料在锂离子电池和超级电容器中的应用。
本发明上述目的是通过以下技术方案予以实现:
本发明采用水热法在石墨烯表面原位生长金属氧化物纳米颗粒的新方法,制备金属氧化物/石墨烯纳米复合材料。利用石墨烯具有高比表面积和良好的功能基团的优势,将高载量的金属氧化物纳米颗粒均匀分散并导向组装固定到该载体表面,融合金属氧化物纳米颗粒具有小尺寸(直径为1~3nm)、高比表面积及表面原子比的特点,实现制备高比功率和高比能量且长稳定的电化学储能材料。
具体地,上述金属氧化物/石墨烯纳米复合材料的制备方法,包括如下具体步骤:
S1.将氧化石墨烯或部分还原的石墨烯均匀分散到金属盐的有机溶剂中,然后滴加一定用量比的去离子水,搅拌5~120min,得到石墨烯和金属盐的均匀分散液;
S2.将步骤S1中的分散液移至水热反应釜中80~120℃,水热反应0.1~72h,待其自然冷却,得到金属氧化物/石墨烯纳米复合材料的水热产物;
S3.将步骤S2所得产物经抽滤、洗涤、烘干处理,得到金属氧化物/石墨烯纳米复合材料。
优选地,所述步骤S1中的氧化石墨烯是采用改进的Hummers法制备所得,所述部分还原的石墨烯是氧化石墨烯经过化学或热处理部分还原所得。
优选地,步骤S1中所述的金属盐为铁盐、锡盐、钴盐、钛盐及锗盐中的任意一种,
其中,所述铁盐为硫酸铁、硝酸铁、氯化铁、氯化亚铁、醋酸铁的一种或任意两种;
所述锡盐为四氯化锡、氯化亚锡、硝酸锡、硝酸亚锡、醋酸锡、醋酸亚锡的一种或任意两种;
所述的钛盐为四氯化钛、硫酸钛、溴化钛、碘化钛、钛酸丁酯的一种或任意两种;
所述钴盐为氯化钴、硫酸钴、硝酸钴、醋酸钴的一种或两种;
所述锗盐为四氯化锗、四乙基锗的一种或两种。
优选地,步骤S1中所述的有机溶剂为无水乙醇、丙酮、乙二醇、异丙醇、N,N-二甲基酰胺、N-甲基吡咯烷酮其中的一种或任意两种。
优选地,步骤S1中所述的金属盐的浓度为0.002~1.0mol/L;所述的金属盐与石墨烯的用量比为0.001~0.2:1mol/g;所述的金属盐与去离子水的用量比为1.0×10-6~2.0×10-3:1mol/mL。
优选地,步骤S3中所述抽滤洗涤所用溶剂为乙醇和去离子水中的一种或两种混合;
优选地,步骤S3中所述烘干的温度为50~90℃,烘干的时间为2~12h。
优选地,步骤S3中所述金属氧化物颗粒的尺寸为1.0~3.0nm。
另外,上述方法制备的金属氧化物/石墨烯纳米复合材料及其在锂离子电池和超级电容器中的应用也在本发明的保护范围之内。
与现有技术相比,本发明具有以下有益效果:
本发明采用水热法在80~120℃的反应温度下,将在石墨烯表面上原位生长1.0~3.0nm的金属氧化物纳米颗粒。相对于传统所采用的水热反应温度,一般高于160℃,由于反应温度高,在相同容器下,其反应所形成的压力也大,故导致晶体成核、结晶速率快,纳米晶易团聚和长大。而低温水热反应时,反应体系压力较小,晶体成核、结晶速率较慢,另外加入的有机溶剂和石墨烯也能起到稳定和分散的作用,因而能有效地抑制纳米晶团聚和长大,故在石墨烯表面能生长较小尺寸(直径为1.0~3.0nm)的金属氧化物纳米颗粒。此外,本发明不需经过苛刻的材料前处理,所使用的金属盐,种类繁多,成本低,水热反应温度低,规模化生产时安全。
本发明通过低温水热过程形成均匀的金属氧化物纳米颗粒,而且能够均匀分散在石墨烯片层上。通过调节水热反应温度和时间可有效地控制金属氧化物纳米颗粒粒径的晶型、大小和形貌,形成大小均一、结晶性好的金属氧化物纳米颗粒。对于解决水热方法制备金属氧化物纳米颗粒和分散均一性的问题有重要改进,而且本发明的制备工艺简单易行、成本低廉、规模化生产时安全。
附图说明
图1为实施例1所制备的二氧化锡/石墨烯纳米复合材料的X射线衍射图。
图2为实施例1所制备的二氧化锡/石墨烯纳米复合材料的透射电镜图像;其中,a为STEM模式下的透射电镜图像,b为高分辨透射电镜图像。
图3为实施例1所制备的二氧化锡/石墨烯纳米复合电极材料在0.1A/g充放电电流密度下的电化学性能图;其中1为库伦效率,2为循环稳定性。
具体实施方式
下面结合说明书附图和具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明精神和实质的情况下,对本发明方法、步骤或条件所作的简单修改或替换,均属于本发明的范围;除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
1.制备:
S1.量取280ml丙酮置于500ml烧杯中,在磁力搅拌下缓慢加入0.7mmol的SnCl4,再量取50mg的氧化石墨烯溶液,缓慢加入到上述溶液中,搅拌均匀后超声30min,获得均匀的分散液;
S2.将分散液转移到水热反应釜中100℃反应6h;
S3.将反应后的产物抽滤、去离子水洗涤,最后在60℃干燥12h即得到二氧化锡/石墨烯纳米复合材料。
2.测试分析:
图1是上述制得的二氧化锡/石墨烯的XRD图。从图可知,纳米复合材料中所固定的金属氧化物为二氧化锡。图2是上述制得的二氧化锡/石墨烯纳米复合材料的透射电镜图像。其中,a为STEM模式下的透射电镜图像,b为高分辨透射电镜图像。从图2a可知,高密度的纳米颗粒均匀地负载在石墨烯表面。从图2b可知,尺寸小于3nm的二氧化锡纳米颗粒高密度、均匀地固定在石墨烯表面,并呈现出明显的结晶性。图3是上述所制备二氧化锡/石墨烯作为锂离子电池负极材料的电化学性能。以该复合电极材料作为锂离子电池的负极材料,在0.1A/g的充放电电流密度下,循环100次后,比容量仍高达874mAh/g,库伦效率达99%以上,证实了该纳米复合材料具有良好的循环稳定性和高库伦效率。
实施例2
1.制备:
S1.将采用Hummers法制备的氧化石墨烯在500℃空气气氛下微波热处理2min得到部分还原的石墨烯;
S2.量取280ml无水乙醇置于500ml烧杯中,在磁力搅拌下缓慢加入0.6mmol的FeCl3·6H2O,再称取50mg步骤S1所制备的部分还原的石墨烯,缓慢加入到上述溶液中,搅拌5min后超声30min,获得均匀的分散液;
S3.将分散液转移到水热反应釜中120℃反应2h;
S4.将反应后的产物抽滤、去离子水洗涤,最后在60℃干燥12h即得到三氧化二铁/石墨烯纳米复合材料。
2.性能测试:
经测试,该材料中所固定的三氧化二铁纳米颗粒的平均尺寸约为2.7nm,放电电流密度0.1A/g下,循环100次后的可逆比容量约为901mAh/g,放电电流密度达10A/g时,容量保持率仍高达73.7%。
实施例3
1.制备:
S1.将采用Hummers法制备的氧化石墨烯在500℃空气气氛下微波热处理2min得到部分还原的石墨烯;
S2.量取280ml乙二醇置于500ml烧杯中,在磁力搅拌下缓慢加入1mmol的Co(NO3)2·6H2O,再称取50mg步骤S1所制备的部分还原的石墨烯,缓慢加入到上述溶液中,搅拌10min后超声30min,获得均匀的分散液;
S3.将分散液转移到水热反应釜中120℃反应2h;
S4.将反应后的产物抽滤、去离子水洗涤,最后在60℃干燥12h即得到氧化钴/石墨烯纳米复合材料。
2.性能测试:
经测试,该材料中所固定的氧化钴纳米颗粒的平均尺寸约为2.9nm,放电电流密度0.1A/g下,循环200次后的可逆容量约1023mAh/g,放电电流密度达10A/g时,容量保持率仍高达67.8%。
实施例4
S1.量取280ml异丙醇置于500ml烧杯中,在磁力搅拌下缓慢加入1.2mmol的TiCl4,再量取50mg的氧化石墨烯溶液,缓慢加入到上述溶液中,搅拌5min后超声30min,获得均匀的分散液;
S2.将分散液转移到水热反应釜中80℃反应72h;
S3.将反应后的产物抽滤、去离子水洗涤,最后在60℃干燥12h即得到二氧化钛/石墨烯纳米复合材料。
经测试,该材料中所固定的二氧化钛纳米颗粒的平均尺寸约为2.4nm,放电电流密度0.1A/g下,循环150次后,其容量几乎保持不变;当放电电流密度增加到10A/g后,容量保持率高达85.3%。
实施例5
S1.量取280ml N,N-二甲基酰胺置于500ml烧杯中,在磁力搅拌下缓慢加入0.65mmol GeCl4,再取50mg的氧化石墨烯溶液,缓慢加入到上述溶液中,搅拌5min后超声30min,获得均匀的分散液;
S2.将分散液转移到水热,反应釜中120℃反应0.1h;
S3.将反应后的产物抽滤、无水乙醇洗涤,最后在50℃干燥12h即得到二氧化锗/石墨烯纳米复合材料。
经测试,该材料中所固定的二氧化锗纳米颗粒的平均尺寸约为3.0nm;放电电流密度0.1A/g下,循环100次后,容量保持在1223mAh/g;当放电电流密度增加到8A/g后,容量仍保持65.9%。
上述实施例仅为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (10)

1.一种水热合成金属氧化物/石墨烯纳米复合材料的制备方法,其特征在于,包括如下具体步骤:
S1.将氧化石墨烯或部分还原的石墨烯均匀分散到金属盐的有机溶剂中,然后滴加一定用量比的去离子水,搅拌5~120min,得到石墨烯和金属盐的均匀分散液;
S2.将步骤S1中的分散液移至水热反应釜中80~120℃,水热反应0.1~72h,待其自然冷却,得到金属氧化物/石墨烯纳米复合材料的水热产物;
S3.将步骤S2所得产物经抽滤、洗涤、烘干处理,得到金属氧化物/石墨烯纳米复合材料。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤S1中的氧化石墨烯是采用改进的Hummers法制备所得,所述部分还原的石墨烯是氧化石墨烯经过化学或热处理部分还原所得。
3.根据权利要求1所述的制备方法,其特征在于,步骤S1中所述的金属盐为铁盐、锡盐、钴盐、钛盐及锗盐中的任意一种;
其中,所述铁盐为硫酸铁、硝酸铁、氯化铁、氯化亚铁、醋酸铁的一种或任意两种;
所述锡盐为四氯化锡、氯化亚锡、硝酸锡、硝酸亚锡、醋酸锡、醋酸亚锡的一种或任意两种;
所述的钛盐为四氯化钛、硫酸钛、溴化钛、碘化钛、钛酸丁酯的一种或任意两种;
所述钴盐为氯化钴、硫酸钴、硝酸钴、醋酸钴的一种或两种;
所述锗盐为四氯化锗、四乙基锗的一种或两种。
4.根据权利要求1所述的制备方法,其特征在于,步骤S1中所述的有机溶剂为无水乙醇、丙酮、乙二醇、异丙醇、N,N-二甲基酰胺、N-甲基吡咯烷酮其中的一种或任意两种。
5.根据权利要求1所述的制备方法,其特征在于,步骤S1中所述的金属盐的浓度为0.002~1.0mol/L;所述的金属盐与石墨烯的用量比为0.001~0.2:1mol/g;所述的金属盐与去离子水的用量比为1.0×10-6~2.0×10-3:1mol/mL。
6.根据权利要求1所述的制备方法,其特征在于,步骤S3中所述抽滤洗涤所用溶剂为乙醇和去离子水中的一种或两种混合。
7.根据权利要求1所述的制备方法,其特征在于,步骤S3中所述烘干的温度为50~90℃,烘干的时间为2~12h。
8.根据权利要求1所述的制备方法,其特征在于,步骤S3中所述金属氧化物颗粒的粒径为1.0~3.0nm。
9.一种由权利要求1-8任一项所述方法制备的金属氧化物/石墨烯纳米复合材料。
10.权利要求9所述的金属氧化物/石墨烯纳米复合材料在锂电池和超级电容器中的应用。
CN201610607847.5A 2016-07-28 2016-07-28 一种水热合成金属氧化物/石墨烯纳米复合材料及其制备方法和应用 Active CN106099063B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610607847.5A CN106099063B (zh) 2016-07-28 2016-07-28 一种水热合成金属氧化物/石墨烯纳米复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610607847.5A CN106099063B (zh) 2016-07-28 2016-07-28 一种水热合成金属氧化物/石墨烯纳米复合材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN106099063A true CN106099063A (zh) 2016-11-09
CN106099063B CN106099063B (zh) 2018-11-23

Family

ID=57478904

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610607847.5A Active CN106099063B (zh) 2016-07-28 2016-07-28 一种水热合成金属氧化物/石墨烯纳米复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106099063B (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106449178A (zh) * 2016-11-24 2017-02-22 桂林理工大学 磺化氧化石墨烯/二氧化锡/聚苯胺复合材料的制备方法
CN106531468A (zh) * 2016-11-24 2017-03-22 桂林理工大学 磺化氧化石墨烯/二氧化锡/聚吡咯复合材料的制备方法
CN106848229A (zh) * 2017-02-03 2017-06-13 南京邮电大学 一种金属有机化合物负极材料制备方法
CN106876670A (zh) * 2016-12-28 2017-06-20 广东工业大学 一种柔性自支撑的金属氧化物/石墨烯纳米复合膜及其制备方法和应用
CN107528062A (zh) * 2017-03-31 2017-12-29 上海大学 一种锂电池锡基负极材料的制备方法
CN107946084A (zh) * 2017-10-26 2018-04-20 广东工业大学 一种金属氧化物/三维多孔石墨烯复合材料及其制备方法和应用
CN108695077A (zh) * 2018-04-04 2018-10-23 广东工业大学 一种柔性的金属氧化物/氮掺杂石墨烯复合纸及其制备方法和应用
CN108711611A (zh) * 2018-04-04 2018-10-26 广东工业大学 一种三维高密度的金属纳米颗粒/石墨烯多孔复合材料及其制备方法和应用
CN108735983A (zh) * 2018-04-04 2018-11-02 广东工业大学 一种金属纳米颗粒负载于石墨烯水凝胶复合材料及其制备方法和应用
CN108726558A (zh) * 2018-06-05 2018-11-02 桂林理工大学 由分级纳米棒组成的SnO2/CoOOH微米花材料的制备方法
CN109088064A (zh) * 2018-08-17 2018-12-25 北京师范大学 一种电化学剥离石墨烯基金属氧化物的制备方法及应用
CN109637844A (zh) * 2018-11-27 2019-04-16 中国电子科技集团公司第十八研究所 一种锂离子电容器用正极复合材料的制备方法
CN110171842A (zh) * 2019-04-17 2019-08-27 华中科技大学 一种混合价态锡基氧化物半导体材料的制备方法及应用
CN111454691A (zh) * 2020-04-14 2020-07-28 大连理工大学 一种石墨烯/非晶二氧化钛纳米棒复合材料、制备方法及其应用
CN113479871A (zh) * 2021-07-30 2021-10-08 绍兴文理学院 一种基于原位自生长的超小金属氧化物纳米颗粒改性石墨烯的制备方法
CN113816468A (zh) * 2021-09-13 2021-12-21 华南理工大学 一种dsa电极及其制备方法与应用
CN113903877A (zh) * 2021-09-24 2022-01-07 大连理工大学 一种SnO2-TiO2@rGO锂离子电池负极材料的制备方法及应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881905A (zh) * 2012-09-28 2013-01-16 黑龙江科技学院 一种石墨烯基纳米复合材料的制备方法
JP2015078096A (ja) * 2013-10-17 2015-04-23 独立行政法人物質・材料研究機構 水熱生成グラフェン/cnt複合体エアロゲルの作成方法、水熱生成グラフェン/cnt複合体エアロゲル及びua、da、aa分離検出電極
CN105576224A (zh) * 2015-10-30 2016-05-11 武汉理工大学 一种分级结构的板钛矿型氧化钛/石墨烯复合材料及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881905A (zh) * 2012-09-28 2013-01-16 黑龙江科技学院 一种石墨烯基纳米复合材料的制备方法
JP2015078096A (ja) * 2013-10-17 2015-04-23 独立行政法人物質・材料研究機構 水熱生成グラフェン/cnt複合体エアロゲルの作成方法、水熱生成グラフェン/cnt複合体エアロゲル及びua、da、aa分離検出電極
CN105576224A (zh) * 2015-10-30 2016-05-11 武汉理工大学 一种分级结构的板钛矿型氧化钛/石墨烯复合材料及其制备方法和应用

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106449178A (zh) * 2016-11-24 2017-02-22 桂林理工大学 磺化氧化石墨烯/二氧化锡/聚苯胺复合材料的制备方法
CN106531468A (zh) * 2016-11-24 2017-03-22 桂林理工大学 磺化氧化石墨烯/二氧化锡/聚吡咯复合材料的制备方法
CN106531468B (zh) * 2016-11-24 2018-05-08 桂林理工大学 磺化氧化石墨烯/二氧化锡/聚吡咯复合材料的制备方法
CN106449178B (zh) * 2016-11-24 2018-07-03 桂林理工大学 磺化氧化石墨烯/二氧化锡/聚苯胺复合材料的制备方法
CN106876670A (zh) * 2016-12-28 2017-06-20 广东工业大学 一种柔性自支撑的金属氧化物/石墨烯纳米复合膜及其制备方法和应用
CN106848229A (zh) * 2017-02-03 2017-06-13 南京邮电大学 一种金属有机化合物负极材料制备方法
CN107528062A (zh) * 2017-03-31 2017-12-29 上海大学 一种锂电池锡基负极材料的制备方法
CN107946084A (zh) * 2017-10-26 2018-04-20 广东工业大学 一种金属氧化物/三维多孔石墨烯复合材料及其制备方法和应用
CN108711611B (zh) * 2018-04-04 2021-08-17 广东工业大学 一种三维高密度的金属纳米颗粒/石墨烯多孔复合材料及其制备方法和应用
CN108711611A (zh) * 2018-04-04 2018-10-26 广东工业大学 一种三维高密度的金属纳米颗粒/石墨烯多孔复合材料及其制备方法和应用
CN108735983A (zh) * 2018-04-04 2018-11-02 广东工业大学 一种金属纳米颗粒负载于石墨烯水凝胶复合材料及其制备方法和应用
CN108695077A (zh) * 2018-04-04 2018-10-23 广东工业大学 一种柔性的金属氧化物/氮掺杂石墨烯复合纸及其制备方法和应用
CN108735983B (zh) * 2018-04-04 2021-05-11 广东工业大学 一种金属纳米颗粒负载于石墨烯水凝胶复合材料及其制备方法和应用
CN108726558B (zh) * 2018-06-05 2020-02-18 桂林理工大学 由分级纳米棒组成的SnO2/CoOOH微米花材料的制备方法
CN108726558A (zh) * 2018-06-05 2018-11-02 桂林理工大学 由分级纳米棒组成的SnO2/CoOOH微米花材料的制备方法
CN109088064A (zh) * 2018-08-17 2018-12-25 北京师范大学 一种电化学剥离石墨烯基金属氧化物的制备方法及应用
CN109637844A (zh) * 2018-11-27 2019-04-16 中国电子科技集团公司第十八研究所 一种锂离子电容器用正极复合材料的制备方法
CN110171842A (zh) * 2019-04-17 2019-08-27 华中科技大学 一种混合价态锡基氧化物半导体材料的制备方法及应用
CN111454691A (zh) * 2020-04-14 2020-07-28 大连理工大学 一种石墨烯/非晶二氧化钛纳米棒复合材料、制备方法及其应用
CN113479871A (zh) * 2021-07-30 2021-10-08 绍兴文理学院 一种基于原位自生长的超小金属氧化物纳米颗粒改性石墨烯的制备方法
CN113479871B (zh) * 2021-07-30 2023-03-28 绍兴文理学院 一种基于原位自生长的超小金属氧化物纳米颗粒改性石墨烯的制备方法
CN113816468A (zh) * 2021-09-13 2021-12-21 华南理工大学 一种dsa电极及其制备方法与应用
CN113816468B (zh) * 2021-09-13 2022-08-12 华南理工大学 一种dsa电极及其制备方法与应用
CN113903877A (zh) * 2021-09-24 2022-01-07 大连理工大学 一种SnO2-TiO2@rGO锂离子电池负极材料的制备方法及应用

Also Published As

Publication number Publication date
CN106099063B (zh) 2018-11-23

Similar Documents

Publication Publication Date Title
CN106099063A (zh) 一种水热合成金属氧化物/石墨烯纳米复合材料及其制备方法和应用
CN106159228B (zh) 一种氮掺杂石墨烯-金属氧化物纳米复合材料及其制备方法和应用
Zhang et al. Synthesis strategies and potential applications of metal-organic frameworks for electrode materials for rechargeable lithium ion batteries
Sun et al. Hierarchically flower-like structure assembled with porous nanosheet-supported MXene for ultrathin electromagnetic wave absorption
Salehabadi et al. Self-assembly of hydrogen storage materials based multi-walled carbon nanotubes (MWCNTs) and Dy3Fe5O12 (DFO) nanoparticles
CN105932252B (zh) 一种硫硒化钼/碳纳米管复合材料及其制备和应用
Zhao et al. The synthesis of hierarchical nanostructured MoS2/graphene composites with enhanced visible-light photo-degradation property
Du et al. Rationally designed ultrathin Ni-Al layered double hydroxide and graphene heterostructure for high-performance asymmetric supercapacitor
Zai et al. 3D hierarchical Co–Al layered double hydroxides with long-term stabilities and high rate performances in supercapacitors
CN104282446B (zh) 一种钴酸镍@钼酸镍核壳结构纳米材料、制备方法及其应用
CN107946084A (zh) 一种金属氧化物/三维多孔石墨烯复合材料及其制备方法和应用
Mubarak et al. A systematic review on recent advances of metal–organic frameworks-based nanomaterials for electrochemical energy storage and conversion
Zhao et al. Boron doped graphitic carbon nitride dots dispersed on graphitic carbon nitride/graphene hybrid nanosheets as high performance photocatalysts for hydrogen evolution reaction
Xu et al. Synchronous etching-epitaxial growth fabrication of facet-coupling NaTaO3/Ta2O5 heterostructured nanofibers for enhanced photocatalytic hydrogen production
Hao et al. Higher photocatalytic removal of organic pollutants using pangolin-like composites made of 3–4 atomic layers of MoS2 nanosheets deposited on tourmaline
CN105749896A (zh) 一种氧化锌/还原氧化石墨烯气凝胶及其制备方法
Chandrasekaran et al. Advanced opportunities and insights on the influence of nitrogen incorporation on the physico-/electro-chemical properties of robust electrocatalysts for electrocatalytic energy conversion
Liu et al. A general approach to direct growth of oriented metal–organic framework nanosheets on reduced graphene oxides
Zhang et al. Vacancy engineering and constructing built-in electric field in Z-scheme full-spectrum-Response 0D/3D BiOI/MoSe2 heterojunction modified PVDF membrane for PPCPs degradation and anti-biofouling
Li et al. MoS2 with structure tuned photocatalytic ability for degradation of methylene blue
Chen et al. A polarization boosted strategy for the modification of transition metal dichalcogenides as electrocatalysts for water‐splitting
Ding et al. Ultrathin defective nanosheet subunit ZnIn2S4 hollow nanoflowers for efficient photocatalytic hydrogen evolution
Xu et al. Oxygen-rich vacancies CuCoLDH with 1D/2D nanoarray structure for high performance asymmetric supercapacitor
CN111774058A (zh) 一种异质结复合光催化剂及其制备方法和应用
Zhao et al. Design and construction of nickel-cobalt-sulfide nanoparticles in-situ grown on graphene with enhanced performance for asymmetric supercapacitors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant