CN106082175B - 一种熔融碳酸钠高温制备碳化物衍生碳的方法 - Google Patents

一种熔融碳酸钠高温制备碳化物衍生碳的方法 Download PDF

Info

Publication number
CN106082175B
CN106082175B CN201610715843.9A CN201610715843A CN106082175B CN 106082175 B CN106082175 B CN 106082175B CN 201610715843 A CN201610715843 A CN 201610715843A CN 106082175 B CN106082175 B CN 106082175B
Authority
CN
China
Prior art keywords
carbide
derived carbon
high temperature
sodium carbonate
melting sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610715843.9A
Other languages
English (en)
Other versions
CN106082175A (zh
Inventor
徐斌
李婷婷
贾梦秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201610715843.9A priority Critical patent/CN106082175B/zh
Publication of CN106082175A publication Critical patent/CN106082175A/zh
Application granted granted Critical
Publication of CN106082175B publication Critical patent/CN106082175B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种熔融碳酸钠高温制备碳化物衍生碳的方法,属于碳材料技术领域。将过渡金属碳化物和碳酸钠固相混合,在惰性气体保护下于500~1000°C高温煅烧,用盐酸洗去金属杂质,抽滤、洗涤得到碳化物衍生碳材料。本发明制备过程简单,操作方便,对环境污染小,易于控制,制备出的碳材料具有类石墨烯的二维层状结构。

Description

一种熔融碳酸钠高温制备碳化物衍生碳的方法
技术领域
本发明涉及一种熔融碳酸钠高温制备碳化物衍生碳的方法,属于碳材料技术领域。
背景技术
碳化物衍生碳是以碳化物为前驱体,去除其晶格中的金属原子剩下骨架碳结构,从而得到的一种新型碳材料。由于具有导电性好、比表面高、孔径分布可调等优点,碳化物衍生碳在超级电容器电极材料、水处理、催化剂载体、气体储存等领域具有独特的应用优势。
目前制备碳化物衍生碳的方法主要有高温卤化法、超临界水过滤法、真空热分解法等方法(Encyclopedia of Nanoscience and Nanotechnology, 2004, 10, 1-22)。超临界水过滤和真空热分解法存在制备效率低、纯度不高等不足。相比之下,高温卤化法是制备碳化物衍生碳的最有效方法,采用氯气高温刻蚀可高效去除碳化物中的金属元素,得到高比表面的碳化物衍生碳。但是氯气腐蚀性强,有毒性,操作不便,安全风险大。专利号为CN103436904B的《一种熔盐电解法制备碳化物衍生碳的方法》中介绍了通过电解法制备碳化物衍生碳的方法。但这种方法耗能高,装置复杂。
发明内容
针对现有技术的不足,本发明提出了一种熔融碳酸钠高温刻蚀过渡金属碳化物中的金属元素制备碳化物衍生碳的方法,其目的是提供制备方法简单、低能耗、无污染、安全性能高、便于工业化生产的碳化物衍生碳的制备方法。
本发明所采用的技术方案包括如下步骤:
1)将过渡金属碳化物与无水碳酸钠按质量比1:3~1:20固相混合均匀;
2)将步骤1)所得混合物放于高温管式炉内,在惰性气体保护下,在500-1000°C煅烧1-10 h,待炉温降至室温后取出;
3)将步骤2)所得煅烧产物中加入过量盐酸水溶液中,其中盐酸水溶液的温度保持在0-25°C,至反应完全;
4)将步骤3)反应后的产物减压抽滤,用去离子水洗至中性,干燥,即得碳化物衍生碳。
其中,所述步骤1)中的过渡金属碳化物优选为Ti3AlC2、Ti2AlC、Ti3SiC2、Ti2SiC、Ti3C2和Ti2C中的一种或几种。
其中,所述步骤(2)中的惰性气氛为氮气、氦气、氩气中的一种或几种,升温速度为0.1~200°C/min。
其中,所述步骤3)中的盐酸的浓度为1~7mol/L。
其中,所得碳化物衍生碳具有类石墨烯的二维层状结构。
优选的,所述步骤3)的反应时间在2-72h。
本发明使用熔融碳酸钠高温刻蚀过渡金属碳化物制备碳化物衍生碳,其反应机理为:
2Ti3AlC2 + 15Na2CO3 (l) = 6Na4TiO4 + 2Na3AlO3 + 4C + 15CO (g)
Na2CO3 + 2HCl = 2NaCl + H2O+ CO2 (g)
Na3AlO3 + 6HCl = AlCl3 + 3NaCl + 3H2O
Na4TiO4 + 8HCl = TiCl4 + 4NaCl + 4H2O
TiCl4 + 2H2O = TiO2 + 4HCl
首先,碳化铝钛和熔融碳酸钠在高温下反应生成Na4TiO4、Na3AlO3及C,然后Na4TiO4和Na3AlO3及多余的Na2CO3分别与HCl反应生成TiCl4、AlCl3和NaCl。在低温(0-25°C)条件下,TiCl4不发生水解,且与AlCl3和NaCl在抽滤过程中与碳材料分离,从而制得碳化物衍生碳。
本发明得到的碳化物衍生碳可作为锂离子电池负极材料和超级电容器的电极材料,均具有高的比容量和良好的循环稳定性。
本发明与现有技术相比具有以下优点:
1)本发明的制备工艺简单,易于控制,所制备出的碳材料纯度高。
2)本发明的制备过程安全程度高,对环境污染小,制备成本低。
3)本发明制备的碳化物衍生碳具有类石墨烯的二维层状结构。
附图说明
图1为实施方案1中的碳化物衍生碳材料的XRD图。
图2为实施方案1中的碳化物衍生碳材料的SEM图。
图3为实施方案1中的碳化物衍生碳材料的拉曼图。
图4为实施方案1中的碳化物衍生碳材料的充放电曲线图。
图5为实施方案1中的碳化物衍生碳材料的循环性能曲线图。
图6为实施方案2中的碳化物衍生碳材料的SEM图。
具体实施方式
下面结合实施例对本发明作进一步说明,但本发明并不限于以下实施例。
实施例1
将2g Ti3AlC2和6g无水碳酸钠混合均匀,盛于镍舟中放置在管式炉中央,在氮气保护下升温至500°C,500°C保温10h。物料自然冷却到室温后,将煅烧后的产物溶解于3M HCl中,室温(20±5°C)下反应2h。将反应产物抽滤,水洗至中性,120°C烘干,即得碳化物衍生碳材料。所得碳化物衍生碳的XRD曲线如图1所示,经检测可知,上述方法制备出了一种碳化物衍生碳材料。所得碳材料的扫描电镜如图2所示,该碳材料具有类石墨烯的二维层状结构。所得碳化物衍生碳的拉曼光谱如图3所示,明显的2D峰表明该碳化物衍生碳材料为二维片层结构。将该碳化物衍生碳用于锂离子电池负极,其充放电曲线和循环性能分别如图4、5所示,可以看出其首次可逆容量达到696mAh/g,循环性能较好。
实施例2
将2g Ti3SiC2和20g无水碳酸钠混合均匀,盛于镍舟中放置在管式炉中央,在氩气保护下升温至880°C,保温5h。将煅烧后的产物溶解于5M HCl中,在室温下反应2h。将反应产物抽滤,水洗至中性,120°C烘干,得到碳化物衍生碳材料。所得碳化物衍生碳材料的扫描电镜图如图6所示,表明制备出一种二维层状材料。将该碳化物衍生碳用于超级电容器电极材料,在6mol/L KOH电解液中质量比电容220 F/g,循环10000次容量保持91%。
实施例3
将1g Ti2AlC和20g无水碳酸钠混合均匀放于镍舟中,将镍舟放置于管式炉内,在氮气和氩气混合气体(体积比1:1)保护下升温至1000°C,保温1h。将煅烧后的产物溶解于3MHCl中,在室温下反应2h。将反应产物抽滤,水洗至中性,120°C烘干,即得碳化物衍生碳材料。
实施例4
将1g Ti2C和15g无水碳酸钠混合均匀放于镍舟中,将镍舟放置于管式炉内,在氮气和氦气混合气体(体积比1:1)保护下升温至850°C,保温10h。将煅烧后的产物溶解于5MHCl中,在室温下反应72h。将反应产物抽滤,水洗至中性,120°C烘干,即得碳化物衍生碳材料。

Claims (5)

1.一种熔融碳酸钠高温制备碳化物衍生碳的方法,其特征在于,采用熔融无水碳酸钠高温刻蚀过渡金属碳化物中的金属元素,制备碳化物衍生碳材料,包括如下步骤:
1)将过渡金属碳化物与无水碳酸钠按质量比1:3~1:20固相混合均匀;
2)将步骤1)所得混合物放于高温管式炉内,在惰性气氛保护下,在500-1000℃煅烧1-10h,待炉温降至室温后取出;
3)将步骤2)所得煅烧产物中加入过量盐酸水溶液中,其中盐酸溶液的温度保持在0-25℃,至反应完全;
4)将步骤3)反应后的产物减压抽滤,用去离子水洗至中性,干燥,即得碳化物衍生碳;
所述步骤1)中的过渡金属碳化物为Ti3AlC2、Ti2AlC、Ti3SiC2、Ti2SiC、Ti3C2和Ti2C中的一种或几种。
2.按照权利要求1所述的一种熔融碳酸钠高温制备碳化物衍生碳的方法,其特征在于,所述步骤2)中的惰性气氛为氮气、氦气、氩气中的一种或几种,升温速度为0.1~200℃/min。
3.按照权利要求1所述的一种熔融碳酸钠高温制备碳化物衍生碳的方法,其特征在于,所述步骤3)中的盐酸的浓度为1~7mol/L。
4.按照权利要求1所述的一种熔融碳酸钠高温制备碳化物衍生碳的方法,其特征在于,所述步骤3)的反应时间在2-72h。
5.按照权利要求1所述的一种熔融碳酸钠高温制备碳化物衍生碳的方法,其特征在于,所得碳化物衍生碳具有类石墨烯的二维层状结构。
CN201610715843.9A 2016-08-25 2016-08-25 一种熔融碳酸钠高温制备碳化物衍生碳的方法 Active CN106082175B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610715843.9A CN106082175B (zh) 2016-08-25 2016-08-25 一种熔融碳酸钠高温制备碳化物衍生碳的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610715843.9A CN106082175B (zh) 2016-08-25 2016-08-25 一种熔融碳酸钠高温制备碳化物衍生碳的方法

Publications (2)

Publication Number Publication Date
CN106082175A CN106082175A (zh) 2016-11-09
CN106082175B true CN106082175B (zh) 2019-09-17

Family

ID=57225599

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610715843.9A Active CN106082175B (zh) 2016-08-25 2016-08-25 一种熔融碳酸钠高温制备碳化物衍生碳的方法

Country Status (1)

Country Link
CN (1) CN106082175B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190094037A (ko) * 2018-02-02 2019-08-12 주식회사 엘지화학 고순도의 맥신 (MXene) 제조 방법
CN111039291A (zh) * 2018-10-12 2020-04-21 中国科学院金属研究所 利用熔盐歧化反应原位制备NbC和/或TaC粉体方法
CN109928393B (zh) * 2019-03-12 2021-03-30 宝晟(苏州)能源科技有限公司 一种多孔二维过度金属碳化物的制备方法及其应用
CN112159605A (zh) * 2020-09-09 2021-01-01 苏州北科纳米科技有限公司 一种基于熔盐法制备mxene材料的方法及应用
CN113735125B (zh) * 2021-08-27 2023-08-01 西安交通大学 一种碳化物衍生碳材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007566A2 (en) * 2003-07-03 2005-01-27 Drexel University Nanoporous carbide derived carbon with tunable pore size
EP1957405A1 (en) * 2005-11-23 2008-08-20 Drexel University Process for producing nanoporous carbide derived carbon with large specific surface area
CN103436904A (zh) * 2013-07-29 2013-12-11 燕山大学 一种熔盐电解法制备碳化物衍生碳的方法
CN105314622A (zh) * 2015-11-13 2016-02-10 哈尔滨工程大学 熔融盐辅助碳化生物质制备杂原子掺杂多孔碳材料的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150035192A1 (en) * 2013-08-01 2015-02-05 University Of North Dakota Porous ceramic and method of making

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005007566A2 (en) * 2003-07-03 2005-01-27 Drexel University Nanoporous carbide derived carbon with tunable pore size
EP1667932A2 (en) * 2003-07-03 2006-06-14 Drexel University Nanoporous carbide derived carbon with tunable pore size
EP1957405A1 (en) * 2005-11-23 2008-08-20 Drexel University Process for producing nanoporous carbide derived carbon with large specific surface area
CN103436904A (zh) * 2013-07-29 2013-12-11 燕山大学 一种熔盐电解法制备碳化物衍生碳的方法
CN105314622A (zh) * 2015-11-13 2016-02-10 哈尔滨工程大学 熔融盐辅助碳化生物质制备杂原子掺杂多孔碳材料的方法

Also Published As

Publication number Publication date
CN106082175A (zh) 2016-11-09

Similar Documents

Publication Publication Date Title
CN106082175B (zh) 一种熔融碳酸钠高温制备碳化物衍生碳的方法
Wang et al. Hydrothermal synthesis of hierarchical SnO 2 microspheres for gas sensing and lithium-ion batteries applications: Fluoride-mediated formation of solid and hollow structures
Yu et al. ZnFe 2 O 4 decorated CdS nanorods as a highly efficient, visible light responsive, photochemically stable, magnetically recyclable photocatalyst for hydrogen generation
Wessel et al. Ionic‐Liquid Synthesis Route of TiO2 (B) Nanoparticles for Functionalized Materials
CN106587017A (zh) 一种多孔石墨烯及其制备方法
Padmini et al. Mesoporous rutile TiO2: Synthesis, characterization and photocatalytic performance studies
CN105905908B (zh) 一种基于埃洛石原料制备纳米硅的方法
CN103626179B (zh) 一种制备纳米碳化锆粉末的方法
CN103274461B (zh) 一种采用氟离子调变二氧化钛晶相的方法
Sim et al. Electrochemical Properties of Yolk-Shell, Hollow, and Dense WO 3 Particles Prepared by using Spray Pyrolysis.
CN103560237B (zh) 一种纳米铁锂氧化物复合负极材料及其制备方法
Xie et al. Understanding formation mechanism of titanate nanowires through hydrothermal treatment of various Ti-containing precursors in basic solutions
Sun et al. Facile synthesis of two-dimensional (2D) nanoporous NiO nanosheets from metal–organic frameworks with superior capacitive properties
Hu et al. Controllable hydrothermal-assisted synthesis of mesoporous Co 3 O 4 nanosheets
Yao et al. Solid-state synthesis of Li4Ti5O12 whiskers from TiO2-B
CN113148994B (zh) 一种石墨烯及其制备方法与应用
CN109055997A (zh) 熔盐电解法制备超细Al3Zr金属间化合物颗粒的方法
CN106207146B (zh) 一种原位制备纳米金红石二氧化钛/碳复合锂电池负极材料的方法
Wang et al. Shape-controlled synthesis of porous SnO 2 nanostructures via morphologically conserved transformation from SnC 2 O 4 precursor approach
CN107151009A (zh) 一种氮掺杂石墨烯及其制备方法和应用
Liu et al. Topotactic conversion route to ultrafine crystalline TiO 2 nanotubes with optimizable electrochemical performance
Li et al. Thermal instability-induced formation of hierarchically structured porous GaN/nitrogen-doped carbon with high performance for supercapacitor
KR100991013B1 (ko) 질소 치환 티타니아 나노튜브 및 이의 제조방법
CN110002448A (zh) 一种二维稀土钇碳化合物材料及其制备方法
Zhu et al. Solvent-free one-step green synthesis of MXenes by “gas-phase selective etching”

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant