CN106065174B - 含腈基的化合物作为阻燃剂在阻燃热塑性塑料中的应用 - Google Patents

含腈基的化合物作为阻燃剂在阻燃热塑性塑料中的应用 Download PDF

Info

Publication number
CN106065174B
CN106065174B CN201610528837.2A CN201610528837A CN106065174B CN 106065174 B CN106065174 B CN 106065174B CN 201610528837 A CN201610528837 A CN 201610528837A CN 106065174 B CN106065174 B CN 106065174B
Authority
CN
China
Prior art keywords
flame retardant
thermoplastic
nitrile group
compound
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610528837.2A
Other languages
English (en)
Other versions
CN106065174A (zh
Inventor
陈希磊
王文多
焦传梅
李少香
钱翌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201610528837.2A priority Critical patent/CN106065174B/zh
Publication of CN106065174A publication Critical patent/CN106065174A/zh
Application granted granted Critical
Publication of CN106065174B publication Critical patent/CN106065174B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • B29B7/005Methods for mixing in batches
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/04Thermoplastic elastomer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明公开了含腈基的化合物作为阻燃剂在阻燃热塑性塑料中的应用,所述含腈基的化合物包括丁腈橡胶,聚丙烯腈的至少一种。丁腈橡胶和聚丙烯腈作为添加剂添加到热塑性聚氨酯弹性体中能有效的提高聚合物的阻燃性能,热释放速率、总热释放、生烟速率,总生烟量、烟因子显著降低,而炭渣剩余质量则大大提高。

Description

含腈基的化合物作为阻燃剂在阻燃热塑性塑料中的应用
技术领域
本发明属于阻燃热塑性塑料改性的技术领域,涉及含腈基的化合物作为阻燃剂在阻燃热塑性塑料中的应用,尤其是在阻燃热塑性塑料中的应用。
背景技术
热塑性聚氨酯弹性体(TPU)是目前世界上比较常用的塑料之一,它兼具了塑料的加工工艺性能与橡胶的物理机械性能,具有高弹性、高强度、高耐磨性、耐辐射性、耐油性、耐低温脆性并且硬度可在很大范围内可调等力学性能,在国民经济的许多领域有广泛的应用。但是TPU由于本身结构特殊,极容易燃烧,TPU燃烧时火焰剧烈并且伴有浓烈的黑烟,热释放量大,同时具有严重的熔滴滴淌现象,使其直接应用到工业具有很大的局限性,所以阻燃热塑性聚氨酯材料的研究一直是当今聚氨酯材料研究的热点。据《阻燃剂的发展及在塑料中的应用》(塑料,31:11-15,2002)介绍,传统的阻燃剂(如卤系阻燃剂)在火灾中往往会产生很多有害烟气,甚至提高了烟气的毒性和腐蚀性,易造成重大人员伤亡。而传统无卤阻燃剂,如铝镁氢氧化物等阻燃效果好、低烟无毒,但所需阻燃剂的添加量较大,使材料的力学性能如拉伸强度,断裂强度下降。
含腈基化合物已经被应用在很多领域当中,尤其在阻燃领域当中。芳香族腈基聚合物是近年发展起来的一类新型耐高温高分子材料,由于出色的热稳定性将在电子电器、航空航天、舰船、机械等领域具有广泛的应用前景。另一种耐高温腈基聚合物是通过邻苯二甲腈类单体在高温下的加成聚合反应而得到的一系列高性能热固性树脂,因此也被称为邻苯二甲腈树脂,由于其具备优异的高温力学性能、热(氧)稳定性、耐腐蚀性、阻燃性及良好的加工性能,邻苯二甲腈树脂在航空航天、船舶制造、微电子工业等高科技领域内展现出广泛的应用前景。但是将腈基化合物添加到热塑性聚氨酯弹性体中作为阻燃剂,目前在国内外并没有相关的研究与报道。本专利旨在研究丁腈橡胶对热塑性聚氨酯弹性体是否有阻燃效果以及是否腈基基团在热塑性聚氨酯弹性体中起阻燃作用,为此进行了一系列实验。
丁腈橡胶(NBR)是由丙烯腈和丁二烯经乳液聚合法制得的,丁腈橡胶主要采用低温乳液聚合法生产,耐油性极好,耐磨性较高,耐热性较好,粘接力强。其缺点是非常容易燃烧、耐低温性差、耐臭氧性差,绝缘性能低劣,弹性稍低。丁腈橡胶的极性非常强,与其它聚合物的相容性一般不太好,但和氯丁橡胶、改性酚醛树脂、聚氯乙烯等极性强的聚合物,特别是和含氯的聚合物具有较好的相容性,常进行并用,以改善其加工性能及使用性能,还可与聚氯乙烯以任意比例共混,改善胶料的耐老化及耐油性能等。但把丁腈橡胶作为阻燃剂添加到聚氨酯材料中,尚未有相关的研究资料。
聚丙烯腈(PAN)是由单体丙烯腈经自由基聚合反应而得到的,是合成NBR的主要成分。聚丙烯腈主要用来制作聚丙烯腈纤维(俗称腈纶),腈纶的强度并不高,耐磨性和抗疲劳性也较差。聚丙烯腈纤维的优点是耐候性和耐日晒性好,在室外放置18个月后还能保持原有强度的77%。它还耐化学试剂,特别是无机酸、漂白粉、过氧化氢及一般有机试剂。聚丙烯腈对碱不稳定,遇碱易着色,在80℃以上的浓碱中能水解为聚丙烯酸钠。在回弹性和卷曲性方面,与羊毛存在很大的差距。随着合成纤维生产技术的不断发展,复合聚丙烯腈纤维以及各种改性聚丙烯腈相继出现,如高收缩、抗起球、亲水、抗静电、阻燃、细纤度、异型截面等品种都已有商品生产。与丁腈橡胶一样,把聚丙烯腈作为阻燃剂添加到聚氨酯材料中至今还没有相关的资料报道。
发明内容
本发明的目的是提供一种阻燃剂,阻燃效率高、用量少、低毒,并将其用于阻燃热塑性塑料,尤其是热塑性聚氨酯弹性体的改性中,克服现有热塑性聚氨酯弹性体燃烧热释放量大、生烟多且毒性高的缺点。
含腈基的化合物作为阻燃剂在阻燃热塑性塑料中的应用。
优选的,所述的含腈基化合物包括丁腈橡胶(NBR)、聚丙烯腈(PAN)。
优选的,所述热塑性塑料为热塑性聚氨酯弹性体(TPU)。
基于所述NBR作为阻燃剂在制备阻燃热塑性塑料中的应用,一种阻燃热塑性塑料材料,由热塑性塑料、添加型阻燃剂组成,以质量百分数计,所述热塑性塑料为80-98%,添加型阻燃剂为2-20%。
基于所述PAN在制备阻燃热塑性塑料中的应用,一种阻燃热塑性塑料材料,由热塑性塑料、添加型阻燃剂组成,以质量百分数计,所述热塑性塑料为80-98%,添加型阻燃剂为2-20%。
进一步地,所述阻燃热塑性塑料材料制备方法为:
1)将密炼机温度控制在170-190℃,转速为10-50转/分,将热塑性塑料加入到密炼机中,待其熔融加入含腈基化合物,熔融共混5-30分钟,得到阻燃热塑性塑料材料,取出材料压制成型。
2)所得材料在进行性能测试之前放置于恒温恒湿试验箱(25℃、相对湿度60%)内放置72小时。
本发明的有益效果是:
首次将含腈基化合物作为阻燃剂使用,并阐述了其在阻燃热塑性塑料中的应用,含腈基化合物作为极性很强的化合物可以良好的分散在聚氨酯基体中,使用含腈基化合物作为阻燃剂制备的阻燃热塑性塑料,热释放速率、总热释放、生烟速率,总生烟量、烟因子显著降低,而炭渣剩余质量则大大提高。
具体实施方式
下面用实施例进一步描述本发明,以下实例提到的丁腈橡胶、聚丙烯腈均为市售产品。
为了探知丁腈橡胶中是哪一种单体对共混物的燃烧特性起作用,本发明将TPU与顺丁橡胶(BR)共混,探究二者共混物的燃烧特性。顺丁橡胶是由丁二烯单体聚合而成,本实验可以判断究竟丁腈橡胶中的哪种单体起作用。
对比例1
将热塑性聚氨酯弹性体放入100×100×3mm3的模具中,用平板硫化机压片,控温180℃,保压10分钟。将样品35kW/m2辐射功率下进行锥形量热仪测试检测,结果见表1。
实施例1:
顺丁橡胶作为阻燃剂制备阻燃热塑性聚氨酯弹性体复合材料-1。
所述阻燃热塑性聚氨酯弹性体复合材料的制备方法为:
1)样品的准备,提前称取适量的TPU和BR放入容器中待用。
2)将密炼机温度控制在180℃,转速为30转/分,将质量百分比为98.00wt%的热塑性聚氨酯弹性体加入到密炼机中,待其熔融加入质量百分比为2.00wt%的顺丁橡胶,熔融共混10分钟,取出复合材料压制成型。
3)所得材料在进行性能测试之前放置于恒温恒湿试验箱(25℃、相对湿度60%)内放置72小时。
4)所得的阻燃复合材料用平板硫化机压制成100×100×3mm3样品。35kW/m2辐射功率下对样品进行锥形量热仪检测,结果见表1。
实施例2:
顺丁橡胶作为阻燃剂制备阻燃热塑性聚氨酯弹性体复合材料-2。
所述阻燃热塑性聚氨酯弹性体复合材料的制备方法为:
1)样品的准备,同实例1。
2)将密炼机温度控制在180℃,转速为30转/分,将质量百分比为95.00wt%的热塑性聚氨酯弹性体加入到密炼机中,待其熔融加入质量百分比为5.00wt%的顺丁橡胶,熔融共混10分钟,取出复合材料压制成型。
3)所得材料在进行性能测试之前放置于恒温恒湿试验箱(25℃、相对湿度60%)内放置72小时。
4)所得的阻燃复合材料用平板硫化机压制成100×100×3mm3样品。35kW/m2辐射功率下对样品进行锥形量热仪检测,结果见表1。
实施例3:
顺丁橡胶作为阻燃剂制备阻燃热塑性聚氨酯弹性体复合材料-3。
所述阻燃热塑性聚氨酯弹性体复合材料的制备方法为:
1)样品的准备,同实例1。
2)将密炼机温度控制在180℃,转速为30转/分,将质量百分比为90.00wt%的热塑性聚氨酯弹性体加入到密炼机中,待其熔融加入质量百分比为10.00wt%的顺丁橡胶,熔融共混10分钟,取出复合材料压制成型。
3)所得材料在进行性能测试之前放置于恒温恒湿试验箱(25℃、相对湿度60%)内放置72小时。
4)所得的阻燃复合材料用平板硫化机压制成100×100×3mm3样品。35kW/m2辐射功率下对样品进行锥形量热仪检测,结果见表1。
实施例4:
顺丁橡胶作为阻燃剂制备阻燃热塑性聚氨酯弹性体复合材料-4。
所述阻燃热塑性聚氨酯弹性体复合材料的制备方法为:
1)样品的准备,同实例1。
2)将密炼机温度控制在180℃,转速为30转/分,将质量百分比为85.00wt%的热塑性聚氨酯弹性体加入到密炼机中,待其熔融加入质量百分比为15.00wt%的顺丁橡胶,熔融共混10分钟,取出复合材料压制成型。
3)所得材料在进行性能测试之前放置于恒温恒湿试验箱(25℃、相对湿度60%)内放置72小时。
4)所得的阻燃复合材料用平板硫化机压制成100×100×3mm3样品。35kW/m2辐射功率下对样品进行锥形量热仪检测,结果见表1。
实施例5:
顺丁橡胶作为阻燃剂制备阻燃热塑性聚氨酯弹性体复合材料-5。
所述阻燃热塑性聚氨酯弹性体复合材料的制备方法为:
1)样品的准备,同实例1。
2)将密炼机温度控制在180℃,转速为30转/分,将质量百分比为80.00wt%的热塑性聚氨酯弹性体加入到密炼机中,待其熔融加入质量百分比为20.00wt%的顺丁橡胶,熔融共混10分钟,取出复合材料压制成型。
3)所得材料在进行性能测试之前放置于恒温恒湿试验箱(25℃、相对湿度60%)内放置72小时。
4)所得的阻燃复合材料用平板硫化机压制成100×100×3mm3样品。35kW/m2辐射功率下对样品进行锥形量热仪检测,结果见表1。
表1本发明所述阻燃热塑性聚氨酯弹性体复合材料性能表-1
对比例1 实施例1 实施例2 实施例3 实施例4 实施例5
TPU(wt%) 100 98.00 95.00 90.00 85.00 80.00
BR(wt%) 0 2.00 5.00 10.00 15.00 20.00
峰值热释放速率(kW/m2) 1355.9 1316.6 1428.2 1375.5 1374.3 994.1
剩余质量(%) 8.10 9.09 9.84 11.48 10.56 14.09
总热释放量(MJ/m2) 121.35 115.74 116.13 119.75 115.49 117.19
总的生烟量(m2/m2) 819.42 831.92 834.75 802.40 851.27 991.85
烟因子(g/s) 1024.67 985.45 1209.32 1165.84 952.13 986.58
峰值生烟速率(m2/s) 0.069 0.076 0.085 0.073 0.081 0.079
由表1可以看出,顺丁橡胶(BR)作为阻燃添加剂的加入,PHRR并没有有效降低,只有在实施列5,即添加BR量为20%时PHRR才明显降低。燃烧剩余质量在添加BR后明显升高,并且随着BR的添加量的增多剩余质量也越来越多。总热释放、总生烟量、烟因子和峰值生烟速率变化不大。说明BR作为添加剂添加到TPU中并没有较好的阻燃效果。
对比例2:
如对比例1制备样品,将样品在35kW/m2辐射功率下进行锥形量热仪测试检测,结果见表2。
实施例6:
丁腈橡胶(NBR)作为阻燃剂制备阻燃热塑性聚氨酯弹性体复合材料-6。
所述含腈基化合物为丁腈橡胶。
所述阻燃热塑性聚氨酯弹性体复合材料的制备方法为:
1)样品的准备,提前称取适量的TPU和NBR放入容器中待用。
2)将密炼机温度控制在180℃,转速为30转/分,将质量百分比为98.00wt%的热塑性聚氨酯弹性体加入到密炼机中,待其熔融加入质量百分比为2.00wt%的丁腈橡胶,熔融共混10分钟,取出复合材料压制成型。
3)所得材料在进行性能测试之前放置于恒温恒湿试验箱(25℃、相对湿度60%)内放置72小时。
4)所得的阻燃复合材料用平板硫化机压制成100×100×3mm3样品。35kW/m2辐射功率下对样品进行锥形量热仪检测,结果见表2。
实施例7:
丁腈橡胶作为阻燃剂制备阻燃热塑性聚氨酯弹性体复合材料-7。
所述阻燃热塑性聚氨酯弹性体复合材料的制备方法为:
1)样品的准备,同实例6。
2)将密炼机温度控制在180℃,转速为30转/分,将质量百分比为95.00wt%的热塑性聚氨酯弹性加入到密炼机中,待其熔融加入质量百分比为5.00wt%的丁腈橡胶,熔融共混10分钟,取出复合材料压制成型。
3)所得材料在进行性能测试之前放置于恒温恒湿试验箱(25℃、相对湿度60%)内放置72小时。
4)所得的阻燃复合材料用平板硫化机压制成100×100×3mm3样品。35kW/m2辐射功率下对样品进行锥形量热仪检测,结果见表2。
实施例8:
丁腈橡胶作为阻燃剂制备阻燃热塑性聚氨酯弹性体复合材料-8。
所述阻燃热塑性聚氨酯弹性体复合材料的制备方法为:
1)样品的准备,同实例6。
2)将密炼机温度控制在180℃,转速为30转/分,将质量百分比为90.00wt%的热塑性聚氨酯弹性加入到密炼机中,待其熔融加入质量百分比为10.00wt%的高浓度的丁腈橡胶,熔融共混10分钟,取出复合材料压制成型。
3)所得材料在进行性能测试之前放置于恒温恒湿试验箱(25℃、相对湿度60%)内放置72小时。
4)所得的阻燃复合材料用平板硫化机压制成100×100×3mm3样品。35kW/m2辐射功率下对样品进行锥形量热仪检测,结果见表2。
实施例9:
丁腈橡胶作为阻燃剂制备阻燃热塑性聚氨酯弹性体复合材料-9。
所述阻燃热塑性聚氨酯弹性体复合材料的制备方法为:
1)样品的准备,同实例6。
2)将密炼机温度控制在180℃,转速为30转/分,将质量百分比为85.00wt%的热塑性聚氨酯弹性加入到密炼机中,待其熔融加入质量百分比为15.00wt%的丁腈橡胶,熔融共混10分钟,取出复合材料压制成型;
3)所得材料在进行性能测试之前放置于恒温恒湿试验箱(25℃、相对湿度60%)内放置72小时
4)所得的阻燃复合材料用平板硫化机压制成100×100×3mm3样品。35kW/m2辐射功率下对样品进行锥形量热仪检测,结果见表2。
实施例10:
丁腈橡胶作为阻燃剂制备阻燃热塑性聚氨酯弹性体复合材料-10。
所述阻燃热塑性聚氨酯弹性体复合材料的制备方法为:
1)样品的准备,同实例6。
2)将密炼机温度控制在180℃,转速为30转/分,将质量百分比为80.00wt%的热塑性聚氨酯弹性加入到密炼机中,待其熔融加入质量百分比为20.00wt%的丁腈橡胶,熔融共混10分钟,取出复合材料压制成型;
3)所得材料在进行性能测试之前放置于恒温恒湿试验箱(25℃、相对湿度60%)内放置72小时
4)所得的阻燃复合材料用平板硫化机压制成100×100×3mm3样品。35kW/m2辐射功率下对样品进行锥形量热仪检测,结果见表2。
表2本发明所述阻燃热塑性聚氨酯弹性体复合材料性能表-2
对比例2 实施例6 实施例7 实施例8 实施例9 实施例10
TPU(wt%) 100 98.00 95.00 90.00 85.00 80.00
NBR(wt%) 0 2.00 5.00 10.00 15.00 20.00
峰值热释放速率(kW/m2) 1355.9 698.0 800.0 1094.2 1075.4 791.9
剩余质量(%) 8.10 8.28 8.75 4.41 6.78 5.15
总热释放量(MJ/m2) 121.24 117.25 112.11 122.89 134.46 140.67
总的生烟量(m2/m2) 831.93 876.19 856.35 824.19 921.16 997.65
烟因子(g/s) 1128.09 611.61 685.09 901.85 935.22 790.04
峰值生烟速率(m2/s) 0.069 0.035 0.043 0.059 0.058 0.045
从表2可以看出,丁腈橡胶(NRB)的加入使得峰值热释放速率明显降低,其中NBR含量为2%时PHRR降低了48.5%;但燃烧剩余质量也明显减少;总热释放量随着NBR的添加量增加也逐渐增加;总的生烟量在NBR添加之后也会稍微增高,规律不明显;烟因子和峰值生烟速率在NBR添加之后明显降低。综上表明,NBR对TPU有较好的阻燃抑烟效果。
对比例3:
如对比例1制备样品,将样品在35kW/m2辐射功率下进行锥形量热仪测试检测,结果见表3。
实施例11:
聚丙烯腈作为阻燃剂制备阻燃热塑性聚氨酯弹性体复合材料-11。
所述含腈基化合物为聚丙烯腈。
所述阻燃热塑性聚氨酯弹性体复合材料的制备方法为:
1)样品的准备,提前称取适量的TPU和PAN放入容器中待用。
2)将密炼机温度控制在180℃,转速为30转/分,将质量百分比为98.00wt%的热塑性聚氨酯弹性体加入到密炼机中,待其熔融加入质量百分比为2.00wt%的聚丙烯腈,熔融共混10分钟,取出复合材料压制成型。
3)所得材料在进行性能测试之前放置于恒温恒湿试验箱(25℃、相对湿度60%)内放置72小时。
4)所得的阻燃复合材料用平板硫化机压制成100×100×3mm3样品。35kW/m2辐射功率下对样品进行锥形量热仪检测,结果见表3。
实施例12:
聚丙烯腈化合物作为阻燃剂制备阻燃热塑性聚氨酯弹性体复合材料-12。
所述阻燃热塑性聚氨酯弹性体复合材料的制备方法为:
1)样品的准备,同实例11。
2)将密炼机温度控制在180℃,转速为30转/分,将质量百分比为95.00wt%的热塑性聚氨酯弹性体加入到密炼机中,待其熔融加入质量百分比为5.00wt%的聚丙烯腈,熔融共混10分钟,取出复合材料压制成型。
3)所得材料在进行性能测试之前放置于恒温恒湿试验箱(25℃、相对湿度60%)内放置72小时。
4)所得的阻燃复合材料用平板硫化机压制成100×100×3mm3样品。35kW/m2辐射功率下对样品进行锥形量热仪检测,结果见表3。
实施例13:
聚丙烯腈作为阻燃剂制备阻燃热塑性聚氨酯弹性体复合材料-13。
所述阻燃热塑性聚氨酯弹性体复合材料的制备方法为:
1)样品的准备,同实例11。
2)将密炼机温度控制在180℃,转速为30转/分,将质量百分比为90.00wt%的热塑性聚氨酯弹性体加入到密炼机中,待其熔融加入质量百分比为10.00wt%的聚丙烯腈,熔融共混10分钟,取出复合材料压制成型。
3)所得材料在进行性能测试之前放置于恒温恒湿试验箱(25℃、相对湿度60%)内放置72小时。
4)所得的阻燃复合材料用平板硫化机压制成100×100×3mm3样品。35kW/m2辐射功率下对样品进行锥形量热仪检测,结果见表3。
实施例14:
聚丙烯腈作为阻燃剂制备阻燃热塑性聚氨酯弹性体复合材料-14。
所述阻燃热塑性聚氨酯弹性体复合材料的制备方法为:
1)样品的准备,同实例11。
2)将密炼机温度控制在180℃,转速为30转/分,将质量百分比为85.00wt%的热塑性聚氨酯弹性体加入到密炼机中,待其熔融加入质量百分比为15.00wt%的聚丙烯腈,熔融共混10分钟,取出复合材料压制成型。
3)所得材料在进行性能测试之前放置于恒温恒湿试验箱(25℃、相对湿度60%)内放置72小时。
4)所得的阻燃复合材料用平板硫化机压制成100×100×3mm3样品。35kW/m2辐射功率下对样品进行锥形量热仪检测,结果见表3。
实施例15:
聚丙烯腈作为阻燃剂制备阻燃热塑性聚氨酯弹性体复合材料-15。
所述阻燃热塑性聚氨酯弹性体复合材料的制备方法为:
1)样品的准备,同实例11。
2)将密炼机温度控制在180℃,转速为30转/分,将质量百分比为80.00wt%的热塑性聚氨酯弹性体加入到密炼机中,待其熔融加入质量百分比为20.00wt%的聚丙烯腈,熔融共混10分钟,取出复合材料压制成型。
3)所得材料在进行性能测试之前放置于恒温恒湿试验箱(25℃、相对湿度60%)内放置72小时。
4)所得的阻燃复合材料用平板硫化机压制成100×100×3mm3样品。35kW/m2辐射功率下对样品进行锥形量热仪检测,结果见表3。
表3本发明所述阻燃热塑性聚氨酯弹性体复合材料性能表-2
由表3可以得出,TPU复合材料的峰值热释放速率在PAN添加15%以后才会有明显的降低,燃烧剩余质量在添加PAN后皆有明显增多,其中PAN含量为5%时碳渣质量增加43.8%,PAN含量为20%时碳渣质量增加45.6%,表明PAN对TPU燃烧过程的成炭作用明显。总热释放量和总的生烟量在添加了PAN之后皆有升高,这与燃烧结束后复合材料的阴燃有关。烟因子和峰值生烟速率在PAN添加10%后有明显的降低,其中PAN含量为15%时二者最低,分别降低了40.3%和40.8%。综上所述,PAN作为阻燃添加剂添加到TPU中,当PAN的添加量大于10%时有较好的阻燃抑烟效果。

Claims (6)

1.含腈基类化合物作为阻燃剂在阻燃热塑性塑料中的应用,其特征在于,所述含腈基的化合物包括丁腈橡胶,聚丙烯腈的至少一种。
2.如权利要求1所述含腈基类化合物作为阻燃剂在阻燃热塑性塑料中的应用,其特征在于,所述热塑性塑料为热塑性聚氨酯弹性体。
3.一种阻燃热塑性塑料材料,其特征在于,包括热塑性塑料以及权利要求1或2所述的含腈基类化合物,以质量百分数计,所述热塑性塑料为80-99.5%,含腈基的化合物为0.5-20%。
4.如权利要求3所述一种阻燃热塑性塑料材料,其特征在于,含腈基的化合物为丁腈橡胶时,以质量百分数计,所述热塑性塑料为80-98%,丁腈橡胶为2-20%。
5.如权利要求3所述一种阻燃热塑性塑料材料,其特征在于,含腈基的化合物为聚丙烯腈时,以质量百分数计,所述热塑性塑料为90-99.5%,聚丙烯腈为0.5-10%。
6.一种阻燃热塑性塑料的制备方法,其特征在于,采用母粒-熔融共混的方法,步骤如下:
1)将密炼机温度控制在170-190℃,转速为10-50转/分,将热塑性塑料加入到密炼机中,待其熔融加入含腈基的化合物,熔融共混5-30分钟,取出材料压制成型;
2)所得材料在进行性能测试之前放置于恒温恒湿试验箱(25℃、相对湿度60%)内放置72小时。
CN201610528837.2A 2016-07-06 2016-07-06 含腈基的化合物作为阻燃剂在阻燃热塑性塑料中的应用 Active CN106065174B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610528837.2A CN106065174B (zh) 2016-07-06 2016-07-06 含腈基的化合物作为阻燃剂在阻燃热塑性塑料中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610528837.2A CN106065174B (zh) 2016-07-06 2016-07-06 含腈基的化合物作为阻燃剂在阻燃热塑性塑料中的应用

Publications (2)

Publication Number Publication Date
CN106065174A CN106065174A (zh) 2016-11-02
CN106065174B true CN106065174B (zh) 2018-12-04

Family

ID=57206607

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610528837.2A Active CN106065174B (zh) 2016-07-06 2016-07-06 含腈基的化合物作为阻燃剂在阻燃热塑性塑料中的应用

Country Status (1)

Country Link
CN (1) CN106065174B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106883587A (zh) * 2017-02-24 2017-06-23 江苏斯德瑞克化工有限公司 芳纶纤维及其改性体作为阻燃剂的阻燃热塑性塑料
CN109735065B (zh) * 2018-12-28 2021-11-12 武汉融科包装材料有限公司 钢卷包装用无卤阻燃再生pet片材专用料及其制备方法
CN110105746A (zh) * 2019-05-24 2019-08-09 青岛科技大学 一种阻燃剂及在热塑性聚氨酯弹性体阻燃中的应用
CN111173216B (zh) * 2020-01-03 2021-08-17 苏州兴禾源复合材料有限公司 一种高强度抗冲击vcm覆膜板

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103467969A (zh) * 2013-08-21 2013-12-25 青岛科技大学 复合阻燃剂及其在阻燃热塑性聚氨酯弹性体材料制备中的应用
CN105440653A (zh) * 2015-12-30 2016-03-30 青岛科技大学 硅烷偶联剂作为阻燃剂在阻燃热塑性塑料中的应用
CN105601991A (zh) * 2015-12-30 2016-05-25 青岛科技大学 铝酸酯类物质作为阻燃剂在阻燃热塑性塑料中的应用
CN105601992A (zh) * 2015-12-30 2016-05-25 青岛科技大学 钛酸酯类物质作为阻燃剂在阻燃热塑性塑料中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103467969A (zh) * 2013-08-21 2013-12-25 青岛科技大学 复合阻燃剂及其在阻燃热塑性聚氨酯弹性体材料制备中的应用
CN105440653A (zh) * 2015-12-30 2016-03-30 青岛科技大学 硅烷偶联剂作为阻燃剂在阻燃热塑性塑料中的应用
CN105601991A (zh) * 2015-12-30 2016-05-25 青岛科技大学 铝酸酯类物质作为阻燃剂在阻燃热塑性塑料中的应用
CN105601992A (zh) * 2015-12-30 2016-05-25 青岛科技大学 钛酸酯类物质作为阻燃剂在阻燃热塑性塑料中的应用

Also Published As

Publication number Publication date
CN106065174A (zh) 2016-11-02

Similar Documents

Publication Publication Date Title
CN106065174B (zh) 含腈基的化合物作为阻燃剂在阻燃热塑性塑料中的应用
Sun et al. Effect of the particle size of expandable graphite on the thermal stability, flammability, and mechanical properties of high‐density polyethylene/ethylene vinyl‐acetate/expandable graphite composites
CN107236273B (zh) 一种无卤阻燃的pc/abs塑料合金及其制备方法
CN109385071B (zh) 一种阻燃性能达到垂直燃烧v0等级的tpu材料及其制备方法
CN103333364B (zh) 复合膨胀型阻燃剂及其在阻燃聚丙烯和聚氨酯中的应用
CN102617972A (zh) 无卤阻燃苯乙烯系树脂组合物及其制备方法
CN101050290A (zh) 一种动态硫化无卤阻燃聚丙烯复合材料及其制备方法
CN104513420B (zh) 一种无卤无红磷热缩套管及其制备方法
CN102863691A (zh) 聚丙烯复合材料及其制备方法
CN108102359A (zh) 一种绿色环保、高性能、高cti阻燃增强尼龙材料及其制备方法
CN108148288A (zh) 一种电缆护套料及其制备方法
JPH04506829A (ja) 耐発火性ポリカーボネートブレンド
CN114736500B (zh) 一种无卤阻燃聚碳酸酯/苯乙烯类树脂合金及其制备方法和应用
CN103360697A (zh) 高抗冲高耐光氧老化的聚氯乙烯注塑材料组合物
CN103396627B (zh) 一种耐老化pvc
CN110791074A (zh) 一种无卤阻燃pc/abs合金料及其制备方法
CN109553874A (zh) 一种耐低温、耐光老化阻燃聚苯乙烯复合材料、制备方法及其应用
CN105601991B (zh) 铝酸酯类物质作为阻燃剂在阻燃热塑性塑料中的应用
CN106916396A (zh) Pvc电力管及其制备方法
CN101205328A (zh) 一种综合性能优异的无卤阻燃聚丙烯组合物及制备方法
CN112724627B (zh) Pc/abs合金料及其应用
CN105968764A (zh) 一种安全帽用pc/abs塑料合金及其制备方法
CN105440653A (zh) 硅烷偶联剂作为阻燃剂在阻燃热塑性塑料中的应用
CN101724131A (zh) 一种聚四氟乙烯-苯乙烯-丙烯腈-丁苯橡胶体系的阻燃剂共聚物、其制备方法及用途
CN113881216B (zh) 耐磨阻燃改性聚氨酯电缆材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 266061 Shandong Province, Qingdao city Laoshan District Songling Road No. 69

Patentee after: QINGDAO University OF SCIENCE AND TECHNOLOGY

Address before: 266042 Zhengzhou Road, Shibei District, Qingdao, Shandong 53

Patentee before: QINGDAO University OF SCIENCE AND TECHNOLOGY