CN106057669A - Igbt终端场氧工艺方法 - Google Patents
Igbt终端场氧工艺方法 Download PDFInfo
- Publication number
- CN106057669A CN106057669A CN201610470546.2A CN201610470546A CN106057669A CN 106057669 A CN106057669 A CN 106057669A CN 201610470546 A CN201610470546 A CN 201610470546A CN 106057669 A CN106057669 A CN 106057669A
- Authority
- CN
- China
- Prior art keywords
- oxide layer
- field
- igbt
- thermal
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 230000008569 process Effects 0.000 claims abstract description 25
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 16
- 230000003647 oxidation Effects 0.000 claims abstract description 5
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 5
- 239000000126 substance Substances 0.000 claims abstract 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 40
- 239000001301 oxygen Substances 0.000 claims description 40
- 229910052760 oxygen Inorganic materials 0.000 claims description 40
- 230000001502 supplementing effect Effects 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 2
- 239000007789 gas Substances 0.000 claims 1
- 239000007792 gaseous phase Substances 0.000 claims 1
- 239000013049 sediment Substances 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract description 4
- 230000006872 improvement Effects 0.000 abstract description 4
- 238000002360 preparation method Methods 0.000 abstract description 4
- 239000013589 supplement Substances 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 3
- 238000000151 deposition Methods 0.000 abstract 2
- 230000008021 deposition Effects 0.000 abstract 2
- 239000002131 composite material Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000001259 photo etching Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66234—Bipolar junction transistors [BJT]
- H01L29/66325—Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/02227—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
- H01L21/0223—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Ceramic Engineering (AREA)
- Formation Of Insulating Films (AREA)
Abstract
本发明公开了一种IGBT终端场氧工艺方法,终端场氧采用热氧化和化学气相淀积两步骤形成,化学气相淀积所形成的氧化层作为场氧的补充及损耗层,化学气相淀积所形成的氧化层在IGBT的场限环推进过程中进一步致密,能作为热氧化层使用。热氧化生长的氧化层作为场氧基本材质,CVD生长的氧化层作为场氧补充及损耗层。CVD生长的氧化层在后续高温推进过程中其膜质有明显改善,基本近似于热氧;较薄的热氧层可以通过更低温度的热过程来制备,基本不影响器件后续制备的热预算;改善工艺可以降低器件缺陷数量,提高器件良率及可靠性,可以制备更厚的场氧层。
Description
技术领域
本发明涉及半导体器件制造领域,特别是指一种IGBT终端场氧工艺方法。
背景技术
IGBT(Insulated Gate Bipolar Transistor)绝缘栅双极型晶体管,是由BJT(双极型三极管)和MOS(绝缘栅型场效应管)组成的复合全控型电压驱动式功率半导体器件,兼有MOSFET的高输入阻抗和GTR的低导通压降两方面的优点。
IGBT器件主要应用在中高压领域,器件击穿耐压达到600V以上,其常见终端结构是场限环(Field Limiting Ring)和场板(Field Plate)复合结构。如图1所示,1是P型主结,2是场限环,3是N型截止环,4是多晶硅,5是场氧,6是金属层。在场限环和场板的复合结构中场氧厚度是一个关键因素,由于IGBT耐压高,器件场氧厚度要求较厚,一般初始厚度能达到2μm,其生长热过程温度高时间长,易产生缺陷。传统工艺通常是在流程初始通过长时间高温热过程来生长终端结构所需的场氧。其制造工艺包含:热氧化来制备场氧化层,热氧化的温度范围在1000~1050℃,形成厚度1.5~2μm的热氧化层;然后是场限环的光刻及刻蚀、离子注入、推进,推进的温度为1050~1150℃,时间30~300分钟;然后形成沟槽,形成牺牲氧化层及栅氧化层;多晶硅淀积及图案化;P阱的注入及推进等。
以常见2μm场氧为例,其整个生长过程温度达到1100℃,时间达到13小时。该高温热过程会降低器件后续制备过程的热预算,传统工艺长时间高温氧化过程易产生各种缺陷,降低器件良率,影响器件可靠性。
发明内容
本发明所要解决的技术问题在于提供一种IGBT终端场氧工艺方法。
为解决上述问题,本发明所述的IGBT终端场氧工艺方法,终端场氧采用热氧化和化学气相淀积CVD两步骤形成。
进一步地,热氧化步骤采用温度为900~1500℃,生成热氧化层的厚度为0.8~1.5μm。
进一步地,热氧化之后,化学气相淀积一层氧化层,淀积的厚度为0.4~2.5μm。
进一步地,化学气相淀积所形成的氧化层作为场氧的补充及损耗层。
进一步地,化学气相淀积所形成的氧化层在IGBT的场限环推进过程中进一步致密,能作为热氧化层使用。
本发明所述的IGBT终端场氧工艺方法,采用热氧化和化学气相淀积CVD来制备终端所需的场氧;热氧化生长的氧化层作为场氧基本材质,CVD生长的氧化层作为场氧补充及损耗层。CVD生长的氧化层在后续高温推进过程中其膜质有明显改善,基本近似于热氧;较薄的热氧层可以通过更低温度的热过程来制备,基本不影响器件后续制备的热预算;改善工艺可以降低器件缺陷数量,提高器件良率及可靠性,可以制备更厚的场氧层。
附图说明
图1是IGBT终端结构示意图。
图2是本发明IGBT终端场氧的工艺方法流程图。
具体实施方式
本发明所述的IGBT终端场氧工艺方法,终端场氧采用热氧化和化学气相淀积CVD两步骤形成。
热氧化步骤采用温度为900~1500℃,生成热氧化层的厚度为0.8~1.5μm。
热氧化之后,再采用化学气相淀积CVD的方法淀积一层氧化层,淀积的厚度为0.4~2.5μm。化学气相淀积所形成的氧化层作为场氧的补充及损耗层。场氧形成之后,在后续的IGBT场限环工艺中,化学气相淀积所形成的氧化层在IGBT的场限环推进过程中,即经过1050~1150℃,时间为30~300分钟的热过程进一步致密,基本近似于热氧,可以作为热氧化层使用。
本发明所述的IGBT终端场氧工艺方法,采用热氧化和化学气相淀积CVD来制备终端所需的场氧;热氧化生长的氧化层作为场氧基本材质,CVD生长的氧化层作为场氧补充及损耗层。CVD生长的氧化层在后续高温推进过程中其膜质有明显改善,基本近似于热氧;较薄的热氧层可以通过更低温度的热过程来制备,基本不影响器件后续制备的热预算;改善工艺可以降低器件的缺陷数量,提高器件良率及可靠性,可以制备更厚的高质量场氧层。
以上仅为本发明的优选实施例,并不用于限定本发明。对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (6)
1.一种IGBT终端场氧工艺方法,其特征在于,终端场氧采用热氧化和化学气相淀积两步骤形成。
2.如权利要求1所述的IGBT终端场氧工艺方法,其特征在于:热氧化步骤采用温度为900~1500℃,生成热氧化层的厚度为0.8~1.5μm。
3.如权利要求1所述的IGBT终端场氧工艺方法,其特征在于:热氧化之后,化学气相淀积一层氧化层,淀积的厚度为0.4~2.5μm。
4.如权利要求3所述的IGBT终端场氧工艺方法,其特征在于:化学气相淀积所形成的氧化层作为场氧的补充及损耗层。
5.如权利要求1所述的IGBT终端场氧工艺方法,其特征在于:还包含的步骤为,化学气相淀积所形成的氧化层在IGBT的场限环推进过程中进一步致密,能作为热氧化层使用。
6.如权利要求5所述的IGBT终端场氧工艺方法,其特征在于:IGBT的场限环推进温度为1050~1150℃,时间为30~300分钟。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610470546.2A CN106057669A (zh) | 2016-06-24 | 2016-06-24 | Igbt终端场氧工艺方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610470546.2A CN106057669A (zh) | 2016-06-24 | 2016-06-24 | Igbt终端场氧工艺方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106057669A true CN106057669A (zh) | 2016-10-26 |
Family
ID=57166649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610470546.2A Pending CN106057669A (zh) | 2016-06-24 | 2016-06-24 | Igbt终端场氧工艺方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106057669A (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1591832A (zh) * | 2003-07-17 | 2005-03-09 | 夏普株式会社 | 低功率快擦写存储单元及方法 |
US20050167742A1 (en) * | 2001-01-30 | 2005-08-04 | Fairchild Semiconductor Corp. | Power semiconductor devices and methods of manufacture |
CN103178104A (zh) * | 2013-02-20 | 2013-06-26 | 国网智能电网研究院 | 一种半导体器件多级场板终端结构及其制造方法 |
CN103681355A (zh) * | 2013-12-18 | 2014-03-26 | 北京大学 | 制备准soi源漏场效应晶体管器件的方法 |
CN103824769A (zh) * | 2012-11-19 | 2014-05-28 | 上海华虹宏力半导体制造有限公司 | 一种有效控制功率器件终端场氧化层角度的方法 |
JP2015216400A (ja) * | 2008-12-25 | 2015-12-03 | 三菱電機株式会社 | 電力用半導体装置 |
-
2016
- 2016-06-24 CN CN201610470546.2A patent/CN106057669A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050167742A1 (en) * | 2001-01-30 | 2005-08-04 | Fairchild Semiconductor Corp. | Power semiconductor devices and methods of manufacture |
CN1591832A (zh) * | 2003-07-17 | 2005-03-09 | 夏普株式会社 | 低功率快擦写存储单元及方法 |
JP2015216400A (ja) * | 2008-12-25 | 2015-12-03 | 三菱電機株式会社 | 電力用半導体装置 |
CN103824769A (zh) * | 2012-11-19 | 2014-05-28 | 上海华虹宏力半导体制造有限公司 | 一种有效控制功率器件终端场氧化层角度的方法 |
CN103178104A (zh) * | 2013-02-20 | 2013-06-26 | 国网智能电网研究院 | 一种半导体器件多级场板终端结构及其制造方法 |
CN103681355A (zh) * | 2013-12-18 | 2014-03-26 | 北京大学 | 制备准soi源漏场效应晶体管器件的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI467662B (zh) | 在基於溝槽的碳化矽功率裝置中的分裂柵結構 | |
CN102569067A (zh) | 一种平面高压超快软恢复二极管的制造方法 | |
CN103985746B (zh) | 沟槽型igbt器件及其制造方法 | |
CN104241338A (zh) | 一种SiC金属氧化物半导体晶体管及其制作方法 | |
CN103928344A (zh) | 一种基于N型纳米薄层来提高N型DiMOSFET沟道迁移率方法 | |
CN106098762A (zh) | 一种rc‑igbt器件及其制备方法 | |
CN104576347A (zh) | Igbt背面金属化的改善方法 | |
CN104143568A (zh) | 具有终端结构的场截止型igbt器件及其制造方法 | |
CN109273534A (zh) | 一种新型屏蔽栅功率mos的器件 | |
CN104103514A (zh) | 一种垂直沟道恒流二极管制造方法 | |
CN100568469C (zh) | 低导通阻抗功率场效应管vdmos的制作方法 | |
CN103928309A (zh) | N沟道碳化硅绝缘栅双极型晶体管的制备方法 | |
CN106057669A (zh) | Igbt终端场氧工艺方法 | |
CN105826195B (zh) | 一种超结功率器件及其制作方法 | |
CN108615769A (zh) | 氧化镓mosfet器件的制备方法 | |
CN103489776B (zh) | 一种实现场截止型绝缘栅双极型晶体管的工艺方法 | |
CN102054702A (zh) | 沟槽功率mosfet器件制造方法 | |
CN103489775A (zh) | 一种新型场截止型绝缘栅双极型晶体管的制造方法 | |
CN104681434A (zh) | 一种fs-igbt的制备方法 | |
CN209626226U (zh) | 一种新型屏蔽栅功率mos的器件 | |
CN105097570B (zh) | 钝化层制造方法及高压半导体功率器件 | |
CN102142374B (zh) | 一种mosfet功率器件及减小其导通电阻的工艺方法 | |
CN207250522U (zh) | 一种逆向阻断型igbt | |
CN106981510A (zh) | 一种碳化硅双极结型晶体管 | |
CN102420187B (zh) | 一种改善先栅极工艺中高k栅电介质pmos负偏置温度不稳定性效应的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20161026 |