CN106049951A - 多级地震作用下工程结构抗震性能设计评估方法 - Google Patents

多级地震作用下工程结构抗震性能设计评估方法 Download PDF

Info

Publication number
CN106049951A
CN106049951A CN201610351887.8A CN201610351887A CN106049951A CN 106049951 A CN106049951 A CN 106049951A CN 201610351887 A CN201610351887 A CN 201610351887A CN 106049951 A CN106049951 A CN 106049951A
Authority
CN
China
Prior art keywords
seismic
performance
design
displacement
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610351887.8A
Other languages
English (en)
Other versions
CN106049951B (zh
Inventor
刘文锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Technology
Original Assignee
Qingdao University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Technology filed Critical Qingdao University of Technology
Priority to CN201610351887.8A priority Critical patent/CN106049951B/zh
Publication of CN106049951A publication Critical patent/CN106049951A/zh
Application granted granted Critical
Publication of CN106049951B publication Critical patent/CN106049951B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground

Abstract

本发明属于土木工程领域,涉及工程结构抗震设计评估方法。该方法包括以下步骤:(1)确定设防烈度、性能水准、性能目标、结构方案,按照抗震规范进行多遇地震作用的承载力设计、截面配筋和能力构造设计;(2)根据振型参与质量系数,确定振型数量;(3)基于性能水准和每一振型下的等效单自由度模型,确定性能水准的地震动,建立地震动‑地震需求的量化关系;(4)获得地震需求,采用平方和开方组合或完全二次振型组合确定模态反应;(5)振型响应组合后,转为结构位移,判断是否满足顶点位移、层间位移和构件性能目标要求;(6)在多性能水准下,预测评估地震动水准。本发明提供了抗震性能设计评估的新方法和新思路。

Description

多级地震作用下工程结构抗震性能设计评估方法
技术领域
本发明属于土木工程领域,涉及工程结构抗震设计评估方法。
背景技术
抗震性能设计评估的宗旨是在结构抗震安全设计的基础上,控制地震造成的损失。这种先进的设计思想已被世界各国学者认同,是世界各国抗震设计规范的发展方向,广泛应用于工程抗震设计评估。
工程抗震设计评估允许设计者在抗震规范最低安全水准基础上,进行相应的抗震设计评估,因此,建立新的工程结构抗震性能设计评估方法十分必要。
抗震性能设计评估思想发展大致经历了两个阶段。第一代抗震性能设计评估是以性能水平(包括立即居住、正常使用、生命安全、防止倒塌等)的非线性响应指标(包括层间位移、顶点位移、构件曲率、损伤指标等)为导向,以静动力线性、非线性分析方法(包括能力谱法、目标位移法、动力时程分析等)为手段完成的。第二代抗震性能设计评估是以本质(基于地震动和结构)和认知(基于认识和知识)的不确定性分析与传播为主线,以概率描述为表征,通过条件概率相连完成的。抗震性能设计评估方法可以概括为以下四类:1)基于位移的结构抗震性能设计评估方法;2)基于能量的结构抗震性能设计评估方法;3)基于损伤的结构抗震性能设计评估方法;4)基于概率的结构抗震性能设计评估方法。其中基于位移的结构抗震性能设计评估方法应用最为广泛。
基于位移的结构抗震性能设计评估方法主要有三种思路:延性控制设计方法、直接基于位移设计方法和性能评估方法。延性控制设计方法,也称能力设计方法,是指在确保结构构件具有一定承载力的条件下,使结构构件具有足够的延性和变形能力,是由新西兰的Armstrong于1972年针对延性框架结构首先提出,1975年Park和Paulay对这一方法进行了完善(Park R,Paulay T.Reinforced concrete structures[M].New York:Wiley-Interscience,1975),其本质是通过建立构件的位移延性或截面曲率延性与塑性饺区混凝土极限应变的关系,由塑性饺区的定量约束箍筋来保证混凝土能够达到所要求的极限变形,从而使结构构件具有足够的延性和变形能力,已在现行规范和设计中得到应用。
2003年5月国际混凝土联合会推出了报告《钢筋混凝土建筑结构基于位移的抗震设计》(FIP Task Group7.2.Displacement-based seismic design of reinforcedconcrete buidings[R].Lausanne,Switzerland:International Federation forStructrual Concrete,2003),将现有基于位移的分析方法分为:①基于变形的设计方法(deformation calculation based,简称DCB),②基于规定变形的迭代法(iterativedeformation specification based,简称IDSB),③基于规定变形的设计方法(directdeformation Specification based,简称DDSB)。基于规定变形的直接方法,又称直接基于位移设计方法是从目标位移出发(Priestley M J N,Calvi G M,Kowalsky MJ.Displacement-based seismic design of structure[M].Pavia,Italy:IUSS Press,2007),对结构刚度、承载力以及构件变形能力进行设计,但由于需要解构位移、割线刚度误差较大、与现行规范可靠度不能衔接等原因,未在工程设计中广泛应用。
性能评估方法通过静力非线性分析(静力非线性Pushover分析),得到能力曲线,结合单自由反应谱,确定设防地震动下的性能点,性能点的确定主要有能力谱法、目标位移法和规范简化法。能力谱法是Pushover分析确定性能点核心方法(FEMA 440.Improvementof nonlinear static seismic analysis procedures[R].Federal EmergencyManagement Agency,Washington,D.C.,2005;FEMA 273.NEHRP Guidelines for seismicrehabilitation of buildings[R].Federal Emergency Management Agency,Washington,D.C.,1997;FEMA 356.Prestandard and commentary for the seismicrehabilitation of buildings[R].Federal Emergency Management Agency,Washington,D.C.,2000;ATC-40.Seismic evaluation and retrofit of existingconcrete buildings[R].Applied Technology Council,RedWood City,California,1996),可将非线性单自由度体系等效为一系列高阻尼比且刚度低于原结构的弹性体系,按等效阻尼比折减弹性反应谱作为需求曲线,但需要迭代,可能出现迭代不收敛,不同类型结构位移可能低估或高估(FEMA440.Improvement of nonlinear static seismic analysisprocedures[R].Federal Emergency Management Agency,Washington,D.C.,2005;ChopraA K,Goel R K.Capacity-demand diagram methods based on inelastic designspectrum[J].Earthquake Spectra,1999,15(4):637-656;Miranada E,Akkar SD.Evaluation of iterative schemes in equivalent liner methods[R].EarthquakeEngineering Research Institute,2003),为此,FEMA440(2005)全面修订了等效周期、等效阻尼比和迭代格式(FEMA 440.Improvement of nonlinear static seismic analysisprocedures[R].Federal Emergency Management Agency,Washington,D.C.,2005)。Fajfar(1966)和Chopra(1999)基于强度折减系数,采用弹塑性反应谱作为需求曲线(Chopra A K,Goel R K.Capacity-demand diagram methods based on inelasticdesign spectrum[J].Earthquake Spectra,1999,15(4):637-656;Fajfar P,GaspersicP.The N2 method for the seismic damage analysis of RC buildings[J].EarthquakeEngineering and Structural Dynamics,1996,25(1):31-46)。目标位移法基于一系列经过动力非线性分析校准的经验统计系数,如多自由度体系转换为单自由度体系的转换系数、非弹性位移增大系数、滞回性能影响系数、结构的P-Δ效应增大系数,采用弹性反应谱,确定结构性能点(FEMA 440.Improvement of nonlinear static seismic analysisprocedures[R].Federal Emergency Management Agency,Washington,D.C.,2005;FEMA273.NEHRP Guidelines for seismic rehabilitation of buildings[R].FederalEmergency Management Agency,Washington,D.C.,1997;FEMA 356.Prestandard andcommentary for the seismic rehabilitation of buildings[R].Federal EmergencyManagement Agency,Washington,D.C.,2000;ATC-40.Seismic evaluation and retrofitof existing concrete buildings[R].Applied Technology Council,RedWood City,California,1996;Chopra A K,Goel R K.Capacity-demand diagram methods based oninelastic design spectrum[J].Earthquake Spectra,1999,15(4):637-656;MiranadaE,Akkar S D.Evaluation of iterative schemes in equivalent liner methods[R].Earthquake Engineering Research Institute,2003;Fajfar P,Gaspersic P.The N2method for the seismic damage analysis of RC buildings[J].EarthquakeEngineering and Structural Dynamics,1996,25(1):31-46)。规范简化法直指我国抗规对规定的结构,基于楼层屈服强度系数和弹塑性层间位移增大系数,采用罕遇地震弹性反应谱,计算最大层间位移,映射结构性能点(中华人民共和国国家标准.GB 50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010)。性能评估方法对结构非线性全过程的承载力和变形进行评估,已在多国抗震规范和设计中得到应用。
专利号为201110131954.2的中国发明专利:工程结构多目标性能化抗震设计方法中公开,根据结构达到的性能目标,将不同的性能目标输入到单自由度弹塑性结构体系,不断调整地震波的大小,确定达到不同性能目标下地震影响系数和结构周期的函数关系,获得地震需求谱曲线。采用静力推覆分析方法(PUSHOVER)或增量动力分析方法(IDA)获得工程结构的剪力与位移的关系,获得能力曲线。在结构整体系统或等效的单自由度系统,进行能力曲线和地震需求曲线的比较。
专利号为201110419187.5的中国发明专利:工程结构多级设防烈度下的性能化抗震设计方法中公开:(1)采用分析方法获得工程结构的底部剪力和位移的函数关系,或将工程结构的底部剪力和位移的函数关系转化成单自由度体系下的底部剪力等效系数与位移的函数关系;(2)根据规定的设防地震烈度水平,按照工程结构应处的弹塑性状态,对多级设防烈度下的地震作用进行调整,获得调整后的多级设防烈度下的地震作用;(3)在等效的单自由度体系下,工程结构多级设防烈度下的性能化抗震设计步骤如下:1)进行最大层间位移角、顶点位移角、谱位移的转换,将等效的单自由度体系下的能力曲线绘制在底部剪力等效系数和最大层间位移角、顶点位移角、谱位移为坐标轴的图中;2)将调整后的多级设防烈度下的地震作用曲线,按照弹塑性状态和相应的弹塑性位移,绘制在底部剪力等效系数和最大层间位移角、顶点位移角、谱位移为坐标轴的图中;3)在等效的单自由度体系下,若等效的单自由度体系下的能力曲线与调整后的多级设防烈度下的地震作用曲线有性能交点,且性能交点对应的位移角满足规定的某级设防烈度规定的位移角限制,说明本级设防烈度下,位移满足要求;否则,不满足位移要求;(4)在整体结构的体系下,工程结构多级设防烈度下的性能化抗震设计步骤如下:1)进行最大层间位移角、顶点位移角的转换,将整体结构体系下的能力曲线绘制在底部剪力和最大层间位移角、顶点位移角为坐标轴的图中;2)将调整后的多级设防烈度下的地震作用曲线,转化成整体结构体系下的底部剪力,按照弹塑性状态和相应的弹塑性位移,绘制在底部剪力等效系数和最大层间位移角、顶点位移角为坐标轴的图中;3)在整体结构的体系下,若整体结构体系下的能力曲线与调整后的多级设防烈度下的等效底部剪力曲线有性能交点,且性能交点对应的位移角满足规定的某级设防烈度规定的位移角限制,说明本级设防烈度下,位移满足要求;否则,不满足位移要求。
我国GB18306-2015《中国地震动参数区划图》新规定四级地震作用水准,增加了极罕遇地震动水准(中华人民共和国国家标准.GB18306-2015中国地震动参数区划图[S].北京:中国标准出版社,2015)。TBI Version 1.0(2010)已提出增强性能目标(EnhancedObjectives),地震动水准和相应的设计评估流程由设计者自己确定(TBI Version1.0.Guidelines for performance-based seismic design of tall buildings[R].Pacific Earthquake Engineering Research Center,2010),因此,在多级地震作用,发明抗震规范以外的抗震性能设计评估方法十分必要。
发明内容
本发明的目的在于基于性能水准,建立地震动-地震需求的量化关系,提取多级地震作用下地震需求(位移),采用平方和开方组合(SRSS)或完全二次振型组合(CQC)确定模态反应,建立多级地震作用下的结构抗震性能设计评估方法。
本发明实现其目的采用的技术方案是:多级地震作用下工程结构抗震性能设计评估方法,包括以下步骤:(1)确定设防烈度、性能水准、性能目标、结构方案,按照抗震规范进行多遇地震作用的承载力设计、截面配筋和能力构造设计;(2)根据振型参与质量系数,确定振型数量;(3)基于性能水准和每一振型下的等效单自由度模型,确定性能水准的地震动,建立地震动-地震需求的量化关系;(4)获得地震需求,采用平方和开方组合或完全二次振型组合确定模态反应;(5)振型响应组合后,转为结构位移,判断是否满足顶点位移、层间位移和构件的性能目标求;(6)在多性能水准下,预测评估地震动水准。
步骤(3)中,根据结构性能水准,转为单自由度体系的性能水准,缩放地面运动,使等效单自由度的弹塑性双折线模型的最大地震位移响应等于性能水准,建立地震动-地震需求的量化关系。
步骤(4)中,地震需求通过以下方法获得:每级振型下按照地震动-地震需求的量化关系,提取多级地震作用下地震需求。
作为步骤(4)的简化实用方法,地震需求通过以下方法获得:基本振型下按照地震动-地震需求的量化关系,提取基本振型下的地震需求,在高阶振型下按照设计反应谱获得地震需求。
本发明的抗震性能设计评估方法适用于工程结构,工程结构包括框架结构、或剪力墙结构、或框架-剪力墙结构、或框支剪力墙结构、或筒中筒结构、或框架-核心筒结构;简支板梁桥、或悬臂梁桥、或连续梁桥、或T形刚架桥、或吊桥、或斜拉桥、或悬索桥、或组合体系桥;电视塔、或储油罐、或塔架、或仓库、或水塔、或水池、或烟囱、或隧道、或水坝。
本发明的抗震性能设计评估方法适用于工程结构,提供了一种抗震性能设计评估的新方法和新思路。
附图说明
图1是本发明的多级地震作用下工程结构抗震性能设计评估方法流程图。
具体实施方式
本发明的多级地震作用下工程结构抗震性能设计评估方法,方法流程如图1所示,具体步骤如下:
(1)确定设防烈度、性能水准、性能目标、结构方案等,按照抗规进行多遇地震作用的承载力设计、截面配筋和能力构造设计。此步骤按照各国抗震规范完成。
(2)确定振型数量
1)计算振型参与系数
地震时结构的弹塑性运动方程可以写成:
M X · · + C X · + F s ( X , s i g n X · ) = - M I x g · · ( t ) - - - ( 1 )
M、C是质量和阻尼矩阵;X是位移向量;I是单位向量;Fs是恢复力向量。X=Φq,Φ是归一化的模态振型矩阵。
第j振型的振型参与系数为:
Γj=ΦTMI/ΦTMΦ (2)
2)计算振型参与质量
第j振型的广义质量为:
Mi=ΦTMΦ (3)
振型参与质量是第j阶振型的模态质量与第j阶振型参与系数平方的乘积,即
3)计算振型参与质量系数
振型参与质量系数为:
r j = Γ j 2 M j Σ j = 1 n Γ j 2 M j - - - ( 4 )
n为结构的自由度数,振型数量取为m,使累计质量参与系数大于90%。
(3)建立地震动-地震需求的量化关系
1)确定结构达到的性能水准
从控制结构破坏考虑,参考中国、美国、欧洲和日本等规范确定性能水准的关键参数,以及中外实验数据,根据不同结构确定量化的位移角参数。当采用最大层间位移角时,可转换成为顶点位移角。
2)建立每一振型下的等效单自由度模型
由式(1)可确定第j振型的等效单自由度模型的运动微分方程:
x · · j + 2 ξ j ω j x · j + F s j L j = - x · · g ( t ) - - - ( 5 )
xj是第j振型的等效单自由度体系的侧移,2ξjωj=ΦTCΦ/ΦTMΦ,Lj=ΦTMI。第j振型下解耦的恢复力将结构多自由度的底部剪力与顶点位移格式(Vb-Xr)转为Fsj/xj格式,转化关系如下:
F s j = V b Γ j - - - ( 6 )
x j = X r Γ j - - - ( 7 )
公式(5)表示多自由度体系转化为等效单自由度下的运动方程,可求解单自由度体系的谱位移、谱加速度,但恢复力为Fjs/Lj格式,因此,将结构多自由度的底部剪力与顶点位移格式(Vb-Xr)转化为谱位移-谱加速度格式(Sa-Sd),转化关系如下:
S a = F s j L j = V b Γ j L j = V b M j * - - - ( 8 )
S d = x j = X r Γ j - - - ( 9 )
3)确定性能水准的地震动,建立地震动-地震需求的量化关系
根据结构达到的性能水准和式(1),可确定等效单自由度模型的性能水准。
按模态采用PUSHOVER分析推覆结构,获得各阶振型结构弹塑性抗震能力曲线,将抗震能力曲线转换为弹塑性双折线模型,根据式(5)-式(9),确定等效单自由度的弹塑性双折线模型。
将符合场地环境条件的地面运动(地震波),输入到等效单自由度弹塑性双折线模型的运动微分方程中,缩放地面运动,使等效单自由度的位移达到等效单自由度的性能水准,标定位移与地面运动加速度峰值关系、位移与谱加速度关系,建立等效单自由度的地震动-地震需求的量化关系。
(4)提取多级地震作用下地震需求
根据GB18306-2015《中国地震动参数区划图》,确定场地的各级地震作用,每级地震作用下,提取不同振型下的等效位移与地震动峰值加速度、谱加速度的函数关系。采用SRSS或CQC进行振型响应组合。
作为本步骤的简化实用方法,每级地震作用下,提取基本振型下的等效位移按位移的地震动峰值加速度、谱加速度;高阶振型下的等效位移按Chopra的MPA研究成果,基于设计反应谱获得。采用SRSS或CQC进行振型响应组合。
(5)判断结构层面、构件层面是否满足构件性能目标的要求
振型响应组合后,转为结构位移,判断是否满足顶点位移、层间位移性能目标的要求;Pushover能力曲线上确定目标位移,判断构件转角是否满足构件性能目标的要求。
假定每级地震作用下,结构的地震需求概率模型与等效单自由度的地震需求概率模型相同。在每级地震作用下,根据SRSS或CQC确定结构位移(地震需求)的中位值,性能水准给出抗震能力的中位值,地震需求的对数标准差由等效单自由度的地震需求概率模型确定,抗震能力的对数标准差由MH MR4Technical Manual(FEMA Multi-hazard lossestimation methodology:Earthquake model[R].National Institute of BuildingSciences,Washington D.C.,2003)给出,易损性分析确定满足性能目标的超越概率。
(6)在多性能水准下,预测评估地震动水准
振型响应组合后,转为结构位移,判断是否满足层间位移性能目标的要求;Pushover能力曲线上标定目标位移,判断构件转角是否满足构件性能目标的要求。
假定达到性能水准时,结构的地震动概率模型与等效单自由度的地震动概率模型相同。根据SRSS或CQC进行振型响应组合,确定达到性能水准的结构位移。按照单自由度地震动-位移量化关系,预测达到性能水准的地震动均值,根据等效单自由度的地震动概率模型,预测概率保证为一定数值(16%和84%)的地震动数值。
以上实施例是以一维工程结构为例,三维工程结构抗震性能设计评估方法与以上方法完全相同。

Claims (4)

1.多级地震作用下工程结构抗震性能设计评估方法,包括以下步骤:(1)确定设防烈度、性能水准、性能目标、结构方案,按照抗震规范进行多遇地震作用的承载力设计、截面配筋和能力构造设计;(2)根据振型参与质量系数,确定振型数量;(3)基于性能水准和每一振型下的等效单自由度模型,确定性能水准的地震动,建立地震动-地震需求的量化关系;(4)获得地震需求,采用平方和开方组合或完全二次振型组合确定模态反应;(5)振型响应组合后,转为结构位移,判断是否满足顶点位移、层间位移和构件的性能目标求;(6)在多性能水准下,预测评估地震动水准。
2.根据权利要求1所述的多级地震作用下工程结构抗震性能设计评估方法,其特征在于:步骤(3)中,根据结构性能水准,转为单自由度体系的性能水准,缩放地面运动,使等效单自由度的弹塑性双折线模型的最大地震位移响应等于性能水准,建立地震动-地震需求的量化关系。
3.根据权利要求1所述的多级地震作用下工程结构抗震性能设计评估方法,其特征在于:步骤(4)中,地震需求的获得方法为:每级振型下按照地震动-地震需求的量化关系,提取多级地震作用下地震需求。
4.根据权利要求1所述的多级地震作用下工程结构抗震性能设计评估方法,其特征在于:步骤(4)中,地震需求的获得方法为:基本振型下按照地震动-地震需求的量化关系,提取基本振型下的地震需求,在高阶振型下按照设计反应谱获得地震需求。
CN201610351887.8A 2016-05-25 2016-05-25 多级地震作用下工程结构抗震性能设计评估方法 Active CN106049951B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610351887.8A CN106049951B (zh) 2016-05-25 2016-05-25 多级地震作用下工程结构抗震性能设计评估方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610351887.8A CN106049951B (zh) 2016-05-25 2016-05-25 多级地震作用下工程结构抗震性能设计评估方法

Publications (2)

Publication Number Publication Date
CN106049951A true CN106049951A (zh) 2016-10-26
CN106049951B CN106049951B (zh) 2018-04-24

Family

ID=57174440

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610351887.8A Active CN106049951B (zh) 2016-05-25 2016-05-25 多级地震作用下工程结构抗震性能设计评估方法

Country Status (1)

Country Link
CN (1) CN106049951B (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106803006A (zh) * 2017-01-23 2017-06-06 华中科技大学 一种基于帕累托多目标优化的最不利地震动选择方法
CN107220678A (zh) * 2017-06-28 2017-09-29 合肥工业大学 多自由度梁式结构非线性类型确定方法
CN107944202A (zh) * 2018-01-08 2018-04-20 西安科技大学 一种rc框架结构倒塌极限状态的判定方法
CN109344511A (zh) * 2018-10-09 2019-02-15 青岛理工大学 基于性能水准的结构构件抗震承载力计算方法
CN109635441A (zh) * 2018-12-13 2019-04-16 青岛理工大学 一种基于bim的建筑群震害模拟可视化系统及方法
WO2019148950A1 (zh) * 2018-02-05 2019-08-08 清华大学 城市建筑群地震反应非线性历程分析方法及装置
CN110110368A (zh) * 2019-04-03 2019-08-09 青岛理工大学 基于顶点位移和底部剪力双指标的抗震振型数选取方法
CN110119531A (zh) * 2019-04-03 2019-08-13 青岛理工大学 基于性能水准的全概率性能评估方法
WO2019192166A1 (zh) * 2018-04-02 2019-10-10 青岛理工大学 设定地震风险的性能抗震设计评估方法
CN110610041A (zh) * 2019-09-10 2019-12-24 青岛理工大学 一种井筒失稳破坏的极限应变判别方法
CN110674595A (zh) * 2019-10-17 2020-01-10 上海市建筑科学研究院 一种基于位移的砌体结构抗震性能评估方法
CN111339602A (zh) * 2020-04-09 2020-06-26 中国人民解放军火箭军研究院核技术研究所 一种确定地下直墙拱顶隧道结构抗震性能评价指标的方法
CN111622378A (zh) * 2020-06-03 2020-09-04 上海市建筑科学研究院有限公司 序列型地震作用下基于延性的砌体结构抗震性能评估方法
CN111695268A (zh) * 2020-06-17 2020-09-22 青岛理工大学 智慧城市震灾推演快速动力时程分析方法
CN111859758A (zh) * 2020-07-21 2020-10-30 湖北文理学院 动力人工边界条件设置方法及系统、安全评估方法及系统
CN113533505A (zh) * 2021-06-17 2021-10-22 北京工业大学 基于卡尔曼滤波及弹塑性耗能差的震损结构损伤量化方法
CN113591181A (zh) * 2021-07-15 2021-11-02 中国建筑科学研究院有限公司 一种利用协调地震作用超越概率进行抗震性能鉴定的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012159239A1 (zh) * 2011-05-20 2012-11-29 青岛理工大学 工程结构多目标性能化抗震设计方法
CN103065024A (zh) * 2013-01-22 2013-04-24 青岛理工大学 基于设计反应谱谐函数的抗震设计方法
CN103161234A (zh) * 2011-12-15 2013-06-19 青岛理工大学 工程结构多级设防烈度下的性能化抗震设计方法
CN103161348A (zh) * 2011-12-15 2013-06-19 青岛理工大学 工程结构多目标性能化抗震评估方法
CN103161347A (zh) * 2011-12-15 2013-06-19 青岛理工大学 消能减震结构多级设防烈度下的性能化抗震设计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012159239A1 (zh) * 2011-05-20 2012-11-29 青岛理工大学 工程结构多目标性能化抗震设计方法
CN103161234A (zh) * 2011-12-15 2013-06-19 青岛理工大学 工程结构多级设防烈度下的性能化抗震设计方法
CN103161348A (zh) * 2011-12-15 2013-06-19 青岛理工大学 工程结构多目标性能化抗震评估方法
CN103161347A (zh) * 2011-12-15 2013-06-19 青岛理工大学 消能减震结构多级设防烈度下的性能化抗震设计方法
CN103065024A (zh) * 2013-01-22 2013-04-24 青岛理工大学 基于设计反应谱谐函数的抗震设计方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘文锋,等: "抗震能力曲线弹塑性双折线模型的确定方法", 《建筑结构》 *
刘文锋,等: "设防烈度下非比例阻尼结构地震随机响应峰值区间估计方法", 《计算力学学报》 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106803006A (zh) * 2017-01-23 2017-06-06 华中科技大学 一种基于帕累托多目标优化的最不利地震动选择方法
CN107220678A (zh) * 2017-06-28 2017-09-29 合肥工业大学 多自由度梁式结构非线性类型确定方法
CN107220678B (zh) * 2017-06-28 2020-04-14 合肥工业大学 多自由度梁式结构非线性类型确定方法
CN107944202A (zh) * 2018-01-08 2018-04-20 西安科技大学 一种rc框架结构倒塌极限状态的判定方法
WO2019148950A1 (zh) * 2018-02-05 2019-08-08 清华大学 城市建筑群地震反应非线性历程分析方法及装置
WO2019192166A1 (zh) * 2018-04-02 2019-10-10 青岛理工大学 设定地震风险的性能抗震设计评估方法
US10962664B2 (en) 2018-04-02 2021-03-30 Qingdao university of technology Method for assessing a performance-based seismic design by setting a seismic risk
WO2020073364A1 (zh) * 2018-10-09 2020-04-16 青岛理工大学 基于性能水准的结构构件抗震承载力计算方法
CN109344511A (zh) * 2018-10-09 2019-02-15 青岛理工大学 基于性能水准的结构构件抗震承载力计算方法
CN109344511B (zh) * 2018-10-09 2019-11-05 青岛理工大学 基于性能水准的结构构件抗震承载力计算方法
CN109635441A (zh) * 2018-12-13 2019-04-16 青岛理工大学 一种基于bim的建筑群震害模拟可视化系统及方法
CN109635441B (zh) * 2018-12-13 2023-08-04 广州珠江外资建筑设计院有限公司 一种基于bim的建筑群震害模拟可视化系统及方法
CN110110368A (zh) * 2019-04-03 2019-08-09 青岛理工大学 基于顶点位移和底部剪力双指标的抗震振型数选取方法
CN110110368B (zh) * 2019-04-03 2021-12-21 青岛理工大学 基于顶点位移和底部剪力双指标的抗震振型数选取方法
CN110119531B (zh) * 2019-04-03 2022-10-21 青岛理工大学 基于性能水准的全概率性能评估方法
CN110119531A (zh) * 2019-04-03 2019-08-13 青岛理工大学 基于性能水准的全概率性能评估方法
CN110610041A (zh) * 2019-09-10 2019-12-24 青岛理工大学 一种井筒失稳破坏的极限应变判别方法
CN110674595A (zh) * 2019-10-17 2020-01-10 上海市建筑科学研究院 一种基于位移的砌体结构抗震性能评估方法
CN110674595B (zh) * 2019-10-17 2023-04-07 上海市建筑科学研究院 一种基于位移的砌体结构抗震性能评估方法
CN111339602A (zh) * 2020-04-09 2020-06-26 中国人民解放军火箭军研究院核技术研究所 一种确定地下直墙拱顶隧道结构抗震性能评价指标的方法
CN111622378B (zh) * 2020-06-03 2021-11-05 上海市建筑科学研究院有限公司 序列型地震作用下基于延性的砌体结构抗震性能评估方法
CN111622378A (zh) * 2020-06-03 2020-09-04 上海市建筑科学研究院有限公司 序列型地震作用下基于延性的砌体结构抗震性能评估方法
CN111695268B (zh) * 2020-06-17 2022-05-31 青岛理工大学 智慧城市震灾推演快速动力时程分析方法
CN111695268A (zh) * 2020-06-17 2020-09-22 青岛理工大学 智慧城市震灾推演快速动力时程分析方法
CN111859758A (zh) * 2020-07-21 2020-10-30 湖北文理学院 动力人工边界条件设置方法及系统、安全评估方法及系统
CN113533505A (zh) * 2021-06-17 2021-10-22 北京工业大学 基于卡尔曼滤波及弹塑性耗能差的震损结构损伤量化方法
CN113533505B (zh) * 2021-06-17 2023-10-20 北京工业大学 基于卡尔曼滤波及弹塑性耗能差的震损结构损伤量化方法
CN113591181A (zh) * 2021-07-15 2021-11-02 中国建筑科学研究院有限公司 一种利用协调地震作用超越概率进行抗震性能鉴定的方法
CN113591181B (zh) * 2021-07-15 2023-11-24 中国建筑科学研究院有限公司 一种利用协调地震作用超越概率进行抗震性能鉴定的方法

Also Published As

Publication number Publication date
CN106049951B (zh) 2018-04-24

Similar Documents

Publication Publication Date Title
CN106049951B (zh) 多级地震作用下工程结构抗震性能设计评估方法
Bergami et al. Proposal of a incremental modal pushover analysis (IMPA)
CN103161234A (zh) 工程结构多级设防烈度下的性能化抗震设计方法
Yang et al. A study on improvement of pushover analysis
Dutta et al. An innovative application of base isolation technology
CN106013916B (zh) 煤矿采动损伤建筑抗震性能评价方法
Gardiner et al. Internal forces of concrete floor diaphragms in multi-storey buildings
Morandi et al. Seismic design of masonry buildings: Current procedures and new perspectives
Baradaran et al. A modal seismic design procedure based on a selected level of ductility demand
Gandomi et al. Seismic response prediction of self-centering, concentrically-braced frames using genetic programming
Malviya et al. Seismic analysis of high rise building with is code 1893-2002 and IS CODE 1893-2016
Nakazawa et al. Evaluation of seismic performance for single layer reticular domes based on static analysis
Eroğlu Seismic design optimization and seismic performance of tall buildings and seismic performance
Fakhraddini et al. Optimum automated direct displacement based design of reinforced concrete frames
Budak et al. Performance based seismic evaluation of a 62 story RC tower in Istanbul
Van Der Merwe et al. An investigation of South African low-income housing roof anchor systems
Anwar et al. Case study: challenges of a single-layer reticulated dome
Shi Seismic performance analysis methods for frame-core structures in elastic and elastic-plastic phases
Freeman Performance-Based Seismic Engineering: Past, Current, and Future
Maulana et al. Seismic performance improvement of reinforced concrete frame with vertical irregularity using buckling-restrained braces
Matamoros et al. Evaluation of ASCE-41 Modeling Parameters and Acceptance Criteria through an RC Building Case Study
Sporn et al. A “retrofit” solution for force-based design: eliminating the need for iteration and initial period estimation
Hrasnica Seismic Analysis of a Reinforced Concrete Frame Building Using N2 Method
Tu et al. Nonlinear static seismic analysis and its validation using damage data from reinforced-concrete school buildings
Vu et al. SEISMIC ISOLATION FOR MULTISTORIED BUILDINGS USING ELASTOMERIC BEARINGS

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant