CN106019215B - 基于四阶累量的嵌套阵列波达方向角估计方法 - Google Patents

基于四阶累量的嵌套阵列波达方向角估计方法 Download PDF

Info

Publication number
CN106019215B
CN106019215B CN201610560482.5A CN201610560482A CN106019215B CN 106019215 B CN106019215 B CN 106019215B CN 201610560482 A CN201610560482 A CN 201610560482A CN 106019215 B CN106019215 B CN 106019215B
Authority
CN
China
Prior art keywords
array
nested
uniform linear
matrix
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610560482.5A
Other languages
English (en)
Other versions
CN106019215A (zh
Inventor
蔡晶晶
宗汝
赵晗希
武斌
李鹏
苏瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201610560482.5A priority Critical patent/CN106019215B/zh
Publication of CN106019215A publication Critical patent/CN106019215A/zh
Application granted granted Critical
Publication of CN106019215B publication Critical patent/CN106019215B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/14Systems for determining direction or deviation from predetermined direction

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种基于四阶累量的嵌套阵列波达方向角估计方法,主要解决现有技术中阵元利用率低,信号识别数量少的问题,其实现步骤是:1)分别构建一层嵌套阵列和二层嵌套阵列;2)获取一层嵌套阵列的输出信号和二层嵌套阵列的输出信号;3)根据一层嵌套阵列输出信号与二层嵌套阵列输出信号计算所有四阶累量;4)根据所有四阶累量构造四阶累量矩阵;5)计算四阶累量矩阵的噪声子空间;6)根据四阶累量的噪声子空间和阵列流型矩阵计算空间谱;7)根据空间谱绘制幅度谱图,得到波达方向角。本发明在阵元数量有限的情况下大大提高了阵列可识别的信源数目,适用于目标侦察和无源定位。

Description

基于四阶累量的嵌套阵列波达方向角估计方法
技术领域
本发明属于信号处理技术领域,特别涉及一种电磁信号的阵列信号波达方向角估计方法,可用于对飞机、舰船运动目标的侦察与无源定位。
背景技术
信号的波达方向角DOA估计是阵列信号处理领域的一个重要分支,它是指利用天线阵列对空间声学信号、电磁信号进行感应接收,再运用现代信号处理方法快速准确的估计出信号源的方向,在雷达、声纳、无线通信等领域具有重要应用价值。随着科技的不断进步,对阵列在进行信号波达方向估计时达到的自由度也有越来越高的要求。
针对该问题的研究中,出现较早、应用较为广泛的是多重信号分类MUSIC子空间的模型,对于一个L阵元的典型线性均匀阵列,传统的MUSIC类计算方法可检测的信源数目是L-1个。之后的大部分算法都是利用该模型生成的,例如信号参数估计旋转不变技术ESPRIT。这些算法采用典型的线性均匀阵列,造成估计的信号数目低于阵元数目,目标个数很多时甚至无法识别,导致目标捕获失败。
为了在少的阵元条件下得到尽量大的角度自由度,检测更多的信源,一些新的阵列结构被提出,比较有代表性的是嵌套阵列以及互质阵列。Piya Pal等人在其发表的论文“Nested Arrays:A Novel Approach to Array Processing With Enhanced Degrees ofFreedom”(《IEEE transactions on signal processing》,VOL 58,NO.8,August 2010)中公开了一种基于嵌套阵列的DOA估计方法,该方法能够使用M+N个阵元,生成2MN+2N-1个虚拟阵元,可检测MN+N-1个信号。该方法具有估计多于阵元数目的信号数的能力,但是,该方法仍然存在的不足之处是,在阵元数量一定的情况下,能估计的信号数量有时仍不能满足实际应用。
为解决上述问题,近年来,出现了使用四阶累量增加阵列虚拟阵元的方法,可使信号估计数量得到较大提升。但已有的基于四阶累量的波达角度估计方法多数是针对均匀阵列,而对于嵌套阵列的算法,由于没有合理设置阵元位置而不能使阵元达到最大利用率。在实际应用中,给定一定数量的阵元,如果不能合理利用这些阵元获得足够多的虚拟阵元,就不能估计足够多的信号,造成侦察和定位资源的浪费。
发明内容
本发明的目的在于针对上述现有技术存在的不足,提出一种基于四阶累量的嵌套阵列波达方向角估计方法,以在阵元数量一定的情况下,提高能够进行估计的信号数量,避免因不能合理利用阵元造成的资源浪费。
为实现上述目的,本发明技术方案包括如下:
(1)用M+N个天线接收机形成一层嵌套阵列:
(1a)将每个天线接收机称为一个阵元,用M个天线接收机形成第一均匀线性阵列a,其阵元间距为d;用N个天线接收机形成第二均匀线性阵列b,其阵元间距为(M+1)d;定义第一均匀线性阵列a的第一个阵元为起始阵元,其中,M≥1,N≥1,0<d≤λ/2,λ为入射到阵列的窄带信号波长;
(1b)将第一均匀线性阵列a与第二均匀线性阵列b组合为一层嵌套阵列:将第二均匀线性阵列b的第一个阵元放置于与起始阵元相距为Md的位置;将第二均匀线性阵列b的所有阵元依次插于第一均匀线性阵列a中,形成一层嵌套阵列;
(1c)计算一层嵌套阵列的虚拟阵元数A=2(M+1)N-1;
(2)用P+Q个天线接收机形成二层嵌套阵列:
(2a)用P个天线接收机形成第三均匀线性阵列c,其阵元间距为Ad,用Q个天线接收机形成第四均匀线性阵列f,其阵元间距为(P+1)Ad,其中,Q≥1,P≥1;
(2b)将第三均匀线性阵列c与第四均匀线性阵列f组合为二层嵌套阵列,即将第三均匀线性阵列c的第一个阵元放置于与起始阵元相距为(A-1)d的位置,将第四均匀线性阵列f的第一个阵元放置于与起始阵元相距为[(P+1)A-1]d的位置,并将第四均匀线性阵列f的所有阵元依次插于第三均匀线性阵列c中,组合为二层嵌套阵列;
(2c)计算二层嵌套阵列的虚拟阵元数B=2(P+1)Q-1;
(3)由一层嵌套阵列和二层嵌套阵列的天线接收机对空间目标信号进行采样,分别得到一层嵌套阵列输出信号Y(t)和二层嵌套阵列输出信号Z(t),其中,Y(t)=[y0(t),…,yi(t),…,yM+N(t)],yi(t)表示一层嵌套阵列第i个阵元的输出信号,i的取值范围是0≤i≤M+N,Z(t)=[z0(t),…,zj(t),…,zP+Q(t)],zj(t)表示二层嵌套阵列的第j个阵元的输出信号,j的取值范围是0≤j≤P+Q;
(4)计算一层嵌套阵列输出信号Y(t)与二层嵌套阵列输出信号Z(t)的所有四阶累量c(k1,k2,k3,k4)=cum(yk1(t),yk2(t)*,zk3(t),zk4(t)*),
其中,0≤k1,k2≤M+N,1≤k3,k4≤P+Q,cum表示求解四阶累量操作,(·)*表示向量的共轭运算;
(5)定义中间变量D=(AB+2A-1)/2,从所有四阶累量c(k1,k2,k3,k4)中依次找出k1,k2,k3,k4满足k1+k3A-k2-k4A=-D,…,-1,0,1,…,D条件的四阶累量,并依次定义为四阶累量元素g(-D),…,g(-1),g(0),g(1),…,g(D),将这些四阶累量元素重新排列形成四阶累量矩阵G:
(6)计算四阶累量矩阵G的噪声子空间Un
(7)根据阵列流型矩阵α(θ)和四阶累量矩阵G的噪声子空间Un,计算空间谱P(θ);
(8)以波达方向角范围θ的值为x轴坐标,以空间谱P(θ)的幅度值为y轴坐标,绘制幅度谱图,从该幅度谱图中按照从高到低的顺序寻找幅值较大的前K个谱峰,这些谱峰的峰值点所对应的x轴坐标即为目标的波达方向角度值,其中,K表示入射到一层嵌套阵列与二层嵌套阵列的空间目标信号个数,K≥1。
本发明与现有技术相比具有以下优点:
1)本发明采用了双层嵌套阵列模型进行波达方向角度估计,克服了现有技术中采用典型的线性均匀阵列,造成估计的信号数目低于阵元数目的缺点,提高了在阵元数目相同的条件下的阵列可识别信源数目。
2)本发明将四阶累量应用到嵌套阵列的DOA估计中,通过使用四阶累量,设置阵元位置,可使用M+N+P+Q+1个阵元获得(2M+2N+1)(2PQ+2Q+1)个连续虚拟阵元,大大提高了阵列利用率,同时通过获得更多的虚拟阵元,进一步增加了阵列可识别的信源数目。
3)本发明采用了双层嵌套阵列模型进行波达方向角度估计,相比于使用其他新型阵列模型对阵元的数目要求更低,提高了阵元数目使用的灵活性。
附图说明
图1是本发明的实现流程图;
图2是本发明中一层嵌套阵列与二层嵌套阵列的结构示意图。
具体实施方式
以下参照附图,对本发明的技术方案和效果作进一步的详细说明。
参附图1,本发明的具体步骤如下:
步骤1:用M+N个天线接收机形成一层嵌套阵列,得到其一层嵌套阵列虚拟阵元数A。
(1a)将每个天线接收机称为一个阵元,用M个天线接收机形成第一均匀线性阵列a,其阵元间距为d;用N个天线接收机形成第二均匀线性阵列b,其阵元间距为(M+1)d;定义第一均匀线性阵列a的第一个阵元为起始阵元,其中,M≥1,N≥1,0<d≤λ/2,λ为入射到阵列的窄带信号波长;
(1b)将第一均匀线性阵列a与第二均匀线性阵列b组合为一层嵌套阵列:将第二均匀线性阵列b的第一个阵元放置在与起始阵元相距为Md的位置;将第二均匀线性阵列b的所有阵元依次插于第一均匀线性阵列a中,形成一层嵌套阵列;
(1c)计算一层嵌套阵列的虚拟阵元数A=2(M+1)N-1。
步骤2:用P+Q个天线接收机形成二层嵌套阵列,得到二层嵌套阵列的虚拟阵元数B。
(2a)用P个天线接收机形成第三均匀线性阵列c,其阵元间距为Ad,用Q个天线接收机形成第四均匀线性阵列f,其阵元间距为(P+1)Ad,其中,Q≥1,P≥1;
(2b)将第三均匀线性阵列c与第四均匀线性阵列f组合为二层嵌套阵列,即将第三均匀线性阵列c的第一个阵元放置于与起始阵元相距为(A-1)d的位置,将第四均匀线性阵列f的第一个阵元放置于与起始阵元相距为[(P+1)A-1]d的位置,并将第四均匀线性阵列f的所有阵元依次插于第三均匀线性阵列c中,组合为二层嵌套阵列;
(2c)计算二层嵌套阵列的虚拟阵元数B=2(P+1)Q-1。
步骤3:获得一层嵌套阵列输出信号和二层嵌套阵列输出信号。
由一层嵌套阵列和二层嵌套阵列的天线接收机对空间目标信号进行采样,分别得到一层嵌套阵列输出信号Y(t)和二层嵌套阵列输出信号Z(t),其中,Y(t)=[y0(t),…,yi(t),…,yM+N(t)],yi(t)表示一层嵌套阵列第i个阵元的输出信号,i的取值范围是0≤i≤M+N,Z(t)=[z0(t),…,zj(t),…,zP+Q(t)],zj(t)表示二层嵌套阵列的第j个阵元的输出信号,j的取值范围是0≤j≤P+Q。
步骤4:计算输出信号的所有四阶累量。
计算一层嵌套阵列输出信号Y(t)与二层嵌套阵列输出信号Z(t)的所有四阶累量
c(k1,k2,k3,k4)=cum(yk1(t),yk2(t)*,zk3(t),zk4(t)*),
其中,0≤k1,k2≤M+N,1≤k3,k4≤P+Q,cum表示求解四阶累量操作,(·)*表示向量的共轭运算。
步骤5:构造四阶累量矩阵G。
定义中间变量D=(AB+2A-1)/2,从所有四阶累量c(k1,k2,k3,k4)中依次找出k1,k2,k3,k4满足k1+k3A-k2-k4A=-D,…,-1,0,1,…,D条件的四阶累量,并依次定义为四阶累量元素g(-D),…,g(-1),g(0),g(1),…,g(D),将这些四阶累量元素重新排列,形成四阶累量矩阵G:
步骤6:计算四阶累量矩阵的噪声子空间Un
(6a)对四阶累量矩阵G进行如下特征分解:
G=U·Λ·UH
其中,Λ为四阶累量矩阵(·)H的特征值矩阵,U为四阶累量矩阵G的特征值所对应的特征向量矩阵,(·)H表示矩阵的共轭转置远算;
(6b)将特征值矩阵Λ中的特征值按从大到小排序,取后D-K个较小特征值对应的特征向量矩阵作为噪声子空间Un
步骤7:计算空间谱P(θ)。
(7a)将观测空域[-90°,90°]按等间隔L划分成E个角度,定义波达方向角范围为θ=[θ12,…,θe,…θE],其中,θe表示第e个目标波达方向角,e=1,2,…,E,E>>max{M,N,P,Q};L的取值根据期望达到的角度估计精度进行设定,网格划分间隔越小则最终得到的角度估计值精度越高;
(7b)计算第e个目标波达方向角θe对应的导向矢量α(θe):
其中,(·)T表示矩阵转置运算,j为虚数单位;
(7c)计算所有的目标波达方向角对应的导向矢量,得到阵列流型矩阵α(θ):
α(θ)=[α(θ1),…,α(θe),…,α(θE)];
(7d)根据阵列流型矩阵α(θ)和四阶累量矩阵G的噪声子空间Un,计算空间谱P(θ):
其中,(·)H表示矩阵的共轭转置远算。
步骤8:绘制幅度谱图。
(8a)以波达方向角范围θ的值为x轴坐标,以空间谱P(θ)的幅度值为y轴坐标,绘制幅度谱图;
(8b)从绘制的幅度谱图中,按照从高到低的顺序将所有谱峰幅度值进行排序,将前K个谱峰的峰值点所对应的x轴坐标做为目标的波达方向角度值,其中,K表示入射到一层嵌套阵列与二层嵌套阵列的空间目标信号个数,且假设空间目标信号在传播过程中加入了均值为零的复高斯白噪声,K≥1。
下面结合仿真实例对本发明的效果做进一步的描述。
仿真实例1.构建双层嵌套阵列结构。
1.1)利用第一均匀线性阵列a与第二均匀线性阵列b形成一层嵌套阵列,设N=2,M=2,第一均匀线性阵列a含有3个阵元,阵元间距为d,第二均匀线性阵列b含有3个阵元,阵元间距为3d,第一均匀线性阵列a的第一个阵元放置在1d位置;
1.2)计算第一均匀线性阵列a与第二均匀线性阵列b形成的一层嵌套阵列虚拟阵元数A=2MN+2N-1=11;
1.3)利用第三均匀线性阵列c与第四均匀线性阵列f形成二层嵌套阵列,设P=2,Q=2,第三均匀线性阵列c含有2个阵元,阵元间距为11d,第四均匀线性阵列f含有2个阵元,阵元间距为33d,第三均匀线性阵列c的第一个阵元在11d的位置,计算虚拟阵元数B=2PQ+2Q-1=11。
其中第一均匀线性阵列a、第二均匀线性阵列b和第三均匀线性阵列c、第四均匀线性阵列f形成了双层嵌套阵列,其阵列结构图如图2所示。
由图2可见,嵌套阵列结构在阵元数量一定的情况下,可以得到更多的阵元位置信息,从而增加阵列可识别信源数目,同时,嵌套阵列结构相比于使用其他新型阵列模型对阵元的数目要求更低,提高了阵元数目使用的灵活性。
仿真实例2,根据四阶累量计算双层嵌套阵列所有虚拟阵元。
2.1)设第一均匀线性阵列a与第二均匀线性阵列b形成的一层嵌套阵列阵元位置为[1,2,3,6]d,;
2.2)设第三均匀线性阵列c与第四均匀线性阵列f形成的二层嵌套阵列阵元位置为[11,22,33,66]d;
2.3)计算得到一层嵌套阵列每个阵元分别与二层嵌套阵列中每个阵元形成的虚拟阵列为[12,13,15,17]d、[23,24,26,28]d、[34,35,36,39]d、[67,68,70,72]d;
2.4)根据四阶累量计算的方法和原则,用上述这些虚拟阵列生成最终的所有虚拟阵元,结果如表1。
表1 双层嵌套阵列所有虚拟阵元
从表1可见,该双层嵌套阵列用M+N+P+Q=8个原始阵元生成了一个从-60d到60d共含有AB=121个虚拟连续阵元的线性阵列。
综上,本发明解决了现有技术阵元利用率低,识别信源数目少,无源定位估计误差大的问题,降低了对阵元数目的要求,保证了阵元数目使用的灵活性,提高了一定阵元数情况下阵列可识别的信源数目以及低信噪比下对信号方向角的估计性能。

Claims (4)

1.一种基于四阶累量的嵌套阵列的波达方向角估计方法,其特征在于,包括以下步骤:
(1)用M+N个天线接收机形成一层嵌套阵列:
(1a)将每个天线接收机称为一个阵元,用M个天线接收机形成第一均匀线性阵列a,其阵元间距为d;用N个天线接收机形成第二均匀线性阵列b,其阵元间距为(M+1)d;定义第一均匀线性阵列a的第一个阵元为起始阵元,其中,M≥1,N≥1,0<d≤λ/2,λ为入射到阵列的窄带信号波长;
(1b)将第一均匀线性阵列a与第二均匀线性阵列b组合为一层嵌套阵列:将第二均匀线性阵列b的第一个阵元放置于与起始阵元相距为M×d的位置;将第二均匀线性阵列b的所有阵元依次插于第一均匀线性阵列a中,形成一层嵌套阵列;
(1c)计算一层嵌套阵列的虚拟阵元数A=2(M+1)N-1;
(2)用P+Q个天线接收机形成两层嵌套阵列:
(2a)用P个天线接收机形成第三均匀线性阵列c,其阵元间距为A×d,用Q个天线接收机形成第四均匀线性阵列f,其阵元间距为(P+1)(A×d),其中,Q≥1,P≥1;
(2b)将第三均匀线性阵列c与第四均匀线性阵列f组合为二层嵌套阵列,即将第三均匀线性阵列c的第一个阵元放置于与起始阵元相距为(A-1)d的位置,将第四均匀线性阵列f的第一个阵元放置于与起始阵元相距为[(P+1)A-1]d的位置,并将第四均匀线性阵列f的所有阵元依次插于第三均匀线性阵列c中,组合为二层嵌套阵列;
(2c)计算二层嵌套阵列的虚拟阵元数B=2(P+1)Q-1;
(3)由一层嵌套阵列和二层嵌套阵列的天线接收机对空间目标信号进行采样,分别得到一层嵌套阵列输出信号Y(t)和二层嵌套阵列输出信号Z(t),其中,Y(t)=[y0(t),…,yi(t),…,yM+N(t)],yi(t)表示一层嵌套阵列第i个阵元的输出信号,i的取值范围是0≤i≤M+N,Z(t)=[z0(t),…,zj(t),…,zP+Q(t)],zj(t)表示二层嵌套阵列的第j个阵元的输出信号,的取值范围是0≤j≤P+Q;
(4)计算一层嵌套阵列输出信号Y(t)与二层嵌套阵列输出信号Z(t)的所有四阶累量c(k1,k2,k3,k4)=cum(yk1(t),yk2(t)*,zk3(t),zk4(t)*),其中,0≤k1,k2≤M+N,1≤k3,k4≤P+Q,cum表示求解四阶累量操作,(·)*表示向量的共轭运算;
(5)定义中间变量D=(AB+2A-1)/2,从所有四阶累量c(k1,k2,k3,k4)中依次找出k1,k2,k3,k4满足k1+k3A-k2-k4A=-D,...,-1,0,1,...,D条件的四阶累量,并依次定义为四阶累量元素g(-D),...,g(-1),g(0),g(1),...,g(D),将这些四阶累量元素重新排列形成四阶累量矩阵G:
(6)计算四阶累量矩阵G的噪声子空间Un
(7)根据阵列流型矩阵α(θ)和四阶累量矩阵G的噪声子空间Un,计算空间谱P(θ);
(8)以波达方向角范围θ的值为x轴坐标,以空间谱P(θ)的幅度值为y轴坐标,绘制幅度谱图,从该幅度谱图中按照从高到低的顺序寻找幅值较大的前K个谱峰,这些谱峰的峰值点所对应的x轴坐标即为目标的波达方向角度值,其中,K表示入射到一层嵌套阵列与二层嵌套阵列的空间目标信号个数,K≥1。
2.根据权利要求1所述的基于四阶累量的嵌套阵列的波达方向角估计方法,其中步骤(6)中计算四阶累量矩阵G的噪声子空间Un,按如下步骤进行:
(6a)对四阶累量矩阵G进行如下特征分解:
G=U·Λ·UH
其中,Λ为四阶累量矩阵G的特征值矩阵,U为四阶累量矩阵G的特征值所对应的特征向量矩阵,(·)H表示矩阵的共轭转置远算;
(6b)将特征值矩阵Λ中的特征值按从大到小排序,取后D-K个较小特征值对应的特征向量矩阵作为噪声子空间Un
3.根据权利要求1所述的基于四阶累量的嵌套阵列的波达方向角估计方法,其中步骤(7)中的阵列流型矩阵α(θ),按如下步骤构造:
(7a)将观测空域[-90°,90°]等间隔划分成E个角度,定义为波达方向角范围θ=[θ12,…,θe,…θE],其中,θe表示第e个目标波达方向角,e=1,2,...,E,E>>max{M,N,P,Q};
(7b)计算第e个目标波达方向角θe对应的导向矢量α(θe):
<mrow> <mi>&amp;alpha;</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;theta;</mi> <mi>e</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mn>1</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>exp</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mi>j</mi> <mn>2</mn> <mi>&amp;pi;</mi> <mi>D</mi> <mi>d</mi> <mi> </mi> <msub> <mi>sin&amp;theta;</mi> <mi>e</mi> </msub> </mrow> <mi>&amp;lambda;</mi> </mfrac> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> </mrow>
其中,(·)T表示矩阵转置运算,j为虚数单位;
(7c)计算所有的目标波达方向角对应的导向矢量,得到阵列流型矩阵α(θ):
α(θ)=[α(θ1),…,α(θe),…,α(θE)]。
4.根据权利要求1所述的基于四阶累量的嵌套阵列的波达方向角估计方法,其中步骤(7)中计算空间谱P(θ),按如下形式进行:
<mrow> <mi>P</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>&amp;alpha;</mi> <msup> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> <mi>H</mi> </msup> <msub> <mi>U</mi> <mi>n</mi> </msub> <msup> <msub> <mi>U</mi> <mi>n</mi> </msub> <mi>H</mi> </msup> <mi>&amp;alpha;</mi> <mrow> <mo>(</mo> <mi>&amp;theta;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> </mrow>
其中,α(θ)表示阵列流型矩阵,(·)H表示矩阵的共轭转置运算。
CN201610560482.5A 2016-07-15 2016-07-15 基于四阶累量的嵌套阵列波达方向角估计方法 Active CN106019215B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610560482.5A CN106019215B (zh) 2016-07-15 2016-07-15 基于四阶累量的嵌套阵列波达方向角估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610560482.5A CN106019215B (zh) 2016-07-15 2016-07-15 基于四阶累量的嵌套阵列波达方向角估计方法

Publications (2)

Publication Number Publication Date
CN106019215A CN106019215A (zh) 2016-10-12
CN106019215B true CN106019215B (zh) 2018-06-05

Family

ID=57119133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610560482.5A Active CN106019215B (zh) 2016-07-15 2016-07-15 基于四阶累量的嵌套阵列波达方向角估计方法

Country Status (1)

Country Link
CN (1) CN106019215B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106443574B (zh) * 2016-11-08 2018-11-16 西安电子科技大学 基于双层嵌套阵列的波达方向角估计方法
CN106707257B (zh) * 2016-12-01 2019-06-21 西安电子科技大学 基于嵌套阵列的mimo雷达波达方向估计方法
CN106646388B (zh) * 2016-12-16 2019-01-25 西安电子科技大学 基于嵌套阵列的mimo雷达抗干扰方法
CN108957391B (zh) * 2018-07-24 2022-06-28 北京理工大学 一种基于嵌套阵列的l型天线阵的二维波达方向估计方法
CN109061564B (zh) * 2018-08-13 2022-08-12 西北工业大学 基于高阶累积量的简化近场定位方法
CN109061555B (zh) * 2018-08-27 2022-10-11 电子科技大学 嵌套阵列下混合相干doa估计方法
CN109212467B (zh) * 2018-09-17 2020-07-31 燕山大学 幅相误差下基于部分校准嵌套阵列的欠定波达方向估计方法
CN109946643B (zh) * 2019-03-18 2022-08-26 西安电子科技大学 基于music求解的非圆信号波达方向角估计方法
CN110208733B (zh) * 2019-04-10 2023-05-30 西安电子科技大学 基于四阶累量的非圆信号阵列波达方向角估计方法
CN110542880A (zh) * 2019-08-13 2019-12-06 唐晓杰 一种频点部分交叠条件下的doa估计策略

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965732A (en) * 1985-11-06 1990-10-23 The Board Of Trustees Of The Leland Stanford Junior University Methods and arrangements for signal reception and parameter estimation
CN102694588A (zh) * 2012-06-15 2012-09-26 华南师范大学 一种基于共轭扩展的波达方向估计方法
CN105262550A (zh) * 2015-09-21 2016-01-20 梁海浪 一种高阶累积量来波方向快速估计的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4965732A (en) * 1985-11-06 1990-10-23 The Board Of Trustees Of The Leland Stanford Junior University Methods and arrangements for signal reception and parameter estimation
CN102694588A (zh) * 2012-06-15 2012-09-26 华南师范大学 一种基于共轭扩展的波达方向估计方法
CN105262550A (zh) * 2015-09-21 2016-01-20 梁海浪 一种高阶累积量来波方向快速估计的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Nested Arrays: A Novel Approach to Array Processing With Enhanced Degrees of Freedom;Piya Pal and P. P. Vaidyanathan;《IEEE TRANSACTIONS ON SIGNAL PROCESSING》;20100831;第58卷(第8期);全文 *
On the virtual array concept for the fourth-order direction finding problem;Pascal Chevalier and Anne Ferreol;《IEEE Transactions on Signal Processing》;19990930;第47卷(第9期);全文 *
一种用四阶累积量进行DOA估计方法;李科祥 等;《信息工程学院学报》;19970930;第16卷(第3期);全文 *

Also Published As

Publication number Publication date
CN106019215A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
CN106019215B (zh) 基于四阶累量的嵌套阵列波达方向角估计方法
CN104730491B (zh) 一种基于l型阵的虚拟阵列doa估计方法
CN111123192B (zh) 一种基于圆形阵列和虚拟扩展的二维doa定位方法
CN107589399B (zh) 基于多采样虚拟信号奇异值分解的互质阵列波达方向估计方法
CN106569171B (zh) 基于双层混合阵列的波达方向角估计方法
CN106443574B (zh) 基于双层嵌套阵列的波达方向角估计方法
CN104914408B (zh) 基于中国余数定理的频率、doa联合测量方法以及装置
CN107870315B (zh) 一种利用迭代相位补偿技术估计任意阵列波达方向方法
CN106226729B (zh) 基于四阶累量的互质阵列波达方向角估计方法
CN110361691B (zh) 基于非均匀阵列的相干信源doa估计fpga实现方法
CN105589056A (zh) 一种多目标远近场混合源定位方法
CN108254718A (zh) 基于旋转干涉仪的多目标角度解模糊方法
CN103353588B (zh) 基于天线均匀平面阵的二维波达方向角估计方法
CN111413668B (zh) 一种大规模阵列中基于dft增强的doa估计方法
CN107037398B (zh) 一种二维music算法估计波达方向的并行计算方法
CN109946643B (zh) 基于music求解的非圆信号波达方向角估计方法
CN109696657B (zh) 一种基于矢量水听器的相干声源定位方法
CN107315161B (zh) 基于压缩感知的非圆信号波达方向角估计方法
CN108398659B (zh) 一种矩阵束与求根music结合的波达方向估计方法
CN107493106A (zh) 一种基于压缩感知的频率和角度联合估计的方法
CN106324556A (zh) 一种稀疏重构辅助的非均匀阵列波达方向估计方法
CN110244273A (zh) 一种基于均匀分布式阵列的目标角度估计方法
CN115119142A (zh) 一种基于传感器网络的分布式直接定位方法
CN109597021A (zh) 一种波达方向估计方法及装置
CN106980105B (zh) 电磁矢量传感器阵列空间旋转解相干测向方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant