CN106000466B - 同步合成与固载法制备的固载化金属酞菁催化剂及其制备和应用方法 - Google Patents

同步合成与固载法制备的固载化金属酞菁催化剂及其制备和应用方法 Download PDF

Info

Publication number
CN106000466B
CN106000466B CN201610334170.2A CN201610334170A CN106000466B CN 106000466 B CN106000466 B CN 106000466B CN 201610334170 A CN201610334170 A CN 201610334170A CN 106000466 B CN106000466 B CN 106000466B
Authority
CN
China
Prior art keywords
catalyst
metal phthalocyanine
immobilized
pgma
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610334170.2A
Other languages
English (en)
Other versions
CN106000466A (zh
Inventor
王蕊欣
谢美娜
王晓刚
焦纬洲
马彦琴
吴红玲
陈志权
朱智明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North University of China
Original Assignee
North University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North University of China filed Critical North University of China
Priority to CN201610334170.2A priority Critical patent/CN106000466B/zh
Publication of CN106000466A publication Critical patent/CN106000466A/zh
Application granted granted Critical
Publication of CN106000466B publication Critical patent/CN106000466B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/17Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to electromagnetic radiation, e.g. emitted by a laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/165Polymer immobilised coordination complexes, e.g. organometallic complexes
    • B01J31/1658Polymer immobilised coordination complexes, e.g. organometallic complexes immobilised by covalent linkages, i.e. pendant complexes with optional linking groups, e.g. on Wang or Merrifield resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/06Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the liquid phase
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • A62D2101/28Organic substances containing oxygen, sulfur, selenium or tellurium, i.e. chalcogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • B01J2231/72Epoxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/025Ligands with a porphyrin ring system or analogues thereof, e.g. phthalocyanines, corroles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/70Complexes comprising metals of Group VII (VIIB) as the central metal
    • B01J2531/72Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/842Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • Catalysts (AREA)

Abstract

本发明属于固载化金属酞菁非均相催化剂技术领域,具体涉及一种同步合成与固载法制备的固载化金属酞菁催化剂,其为聚甲基丙烯酸缩水甘油酯/硅胶固载化金属酞菁催化剂,首先在聚甲基丙烯酸缩水甘油酯/硅胶载体上键合4‑(4‑羧基苯氧基)邻苯二甲腈,制得键合有邻苯二腈的改性微粒,然后使该改性微粒与溶液中的取代邻苯二腈和金属盐发生成环反应,同步合成与固载了金属酞菁。本发明制备工艺简单,成本低、所选取的原料来源较为广泛,后处理较为简单,适合于工业化生产,提高了催化剂的热稳定性,便于催化剂从反应介质中的分离,使催化剂得到重复使用等,极大地提升了催化过程的效率。所制备的固载化金属酞菁能够利用可见光有效降解废水中的亚甲基蓝,并能催化氧气绿色高效氧化苯乙烯。

Description

同步合成与固载法制备的固载化金属酞菁催化剂及其制备和 应用方法
技术领域
本发明属于固载化金属酞菁非均相催化剂技术领域,具体涉及一种同步合成与固载法制备的固载化金属酞菁催化剂及其制备和应用方法。
背景技术
金属酞菁化合物具有18个π电子的芳香共轭大环,这种大π键共轭体系结构使其拥有非常稳定的特性,耐酸、耐碱、耐水、耐热、耐光以及耐各种有机溶剂,化学性能稳定。金属酞菁及其衍生物除了具有独特的光、声、电、磁等性能外,还具有优良的催化性能(共轭分子为平面结构,催化反应可在轴向位置发生反应;所含芳香环既是供电子体又是电子受体),可以催化氧化反应、还原反应、分解反应、羰基化反应、脱羧反应、脱卤反应、聚合反应、傅克反应等多种反应,作为催化剂已在催化氧化脱硫、加氢和乙烯基化、苯乙烯液相氧化反应中得到了广泛应用。同时,金属酞菁化合物因其较窄的禁带宽度(2.0 eV),在可见光600‒800nm波段具有较强的吸收,加上金属酞菁本身具有的热稳定性能和化学稳定性能,对环境无毒无害且廉价易得,近年来有文献报道将其作为光催化剂处理水环境中的污染物。但不管作为何种催化反应的催化剂,金属酞菁化合物仍具有易形成二聚体、抗氧化能力差、不易分离回收和易造成二次污染等缺点,因此,金属酞菁化合物的负载化和固载化成为近年研究的热点。
金属酞菁的负载化主要是通过共混和浸渍的方法依靠物理吸附方式分散在载体的内外表面。负载化金属酞菁催化剂较容易制备,但存在着活性组分易流失、催化剂活性受到影响等问题。金属酞菁的固载化指将金属酞菁以共价键或者配位键的形式固载到载体上。与负载化相比,虽然制备较困难,但共价键或者配位键结合较牢固,能够减少催化剂活性组分流失,有效提高金属酞菁催化剂性能。通过键合法固载化金属酞菁催化剂是目前研究较多、具有广阔发展前景的催化剂固载化方法。陈文兴等将锌酞菁以共价键的形式固载在纤维素纤维上, 在可见光照射、氧气为氧化剂条件下, 该固载型锌酞菁催化剂能有效地催化氧化难生物降解的有机污染物苯酚[陈文兴,陈世良,吕慎水,姚玉元,徐敏虹. 负载型酞菁催化剂的制备及其光催化氧化苯酚,中国科学B辑: 化学,2007,37(4): 369~373]。李艳丽等通过共价键的形式制成活性炭纤维固载铁酞菁催化剂,在H2O2存在条件下,该固载化铁酞菁对4-硝基苯酚氧化降解反应表现出较好的催化活性[李艳丽,吕汪洋,郭桥生,等.活性碳纤维负载铁酞菁催化降解4-硝基苯酚,功能材料,2010,41: 246-249]。然而,传统的通过共价键固载的方法是先制备金属酞菁,然后通过金属酞菁上的活性基团与载体上的活性基团之间的化学反应实现金属酞菁在载体上的固载化。此方法受到金属酞菁产率低、提纯困难、在有机溶剂中溶解度低、负载底物在有机溶剂中对金属酞菁的化学键合困难等条件限制,所得催化剂负载量较低,一般不超过5%,限制了其应用范围。
发明内容
本发明针对现有技术中金属酞菁催化剂固载量低、制备过程困难的缺陷,提供:(1)一种聚合物/硅胶杂化材料固载化的金属酞菁催化剂,能在可见光照射下有效降解废水中的有机染料污染物,还能催化氧气氧化苯乙烯;(2)一种固载化金属酞菁催化剂的制备方法,(3)一种固载化金属酞菁催化剂的应用方法。
本发明中所用的杂化材料—聚甲基丙烯酸缩水甘油酯/硅胶(PGMA/SiO2),可以按照文献[章艳,王蕊欣,高保娇. 接枝微粒PGMA/SiO2固载的金属卟啉仿生催化剂的制备[J],化学研究与应用,2008, 20 (6) : 678-685]中所述方法制备,其表面PGMA的接枝度为26%。
本发明中所用的4-(4-羧基苯氧基)邻苯二甲腈(CPPN) 可以按照文献[毛利军.锌酞菁类化合物的合成、结构及性能研究[D]. 中北大学, 2013] 中所述方法制备。
本发明采用如下的技术方案实现:
一种同步合成与固载法制备的固载化金属酞菁催化剂,其结构如通式(I)所示,聚甲基丙烯酸缩水甘油酯/硅胶PGMA/SiO2固载化金属酞菁MPc催化剂MPc-PGMA/SiO2,由微米级二氧化硅和具有催化活性的金属酞菁功能化聚合物组成,其二氧化硅粒子尺寸为90~125μm,金属酞菁功能化聚合物的键合量为0.12~0.15mmol/g,
同步合成与固载法制备的固载化金属酞菁催化剂的制备方法,其步骤如下:
第一步,将1.0-1.2 g杂化材料PGMA/SiO2置于35-40 mL的溶剂中浸泡,充分溶胀后,加入0.30-0.35g 4-(4-羧基苯氧基)邻苯二甲腈(CPPN)和催化剂,在氮气保护下升温至90-110℃,恒温反应8-10h,过滤,无水乙醇和蒸馏水充分洗涤微球,真空干燥,得键合有邻苯二腈的改性微粒CPPN-PGMA/SiO2
第二步,将1.0-1.2 g CPPN-PGMA/SiO2置于25-30 mL溶剂中浸泡使微粒充分溶胀,然后加入0.5-0.6 g 取代邻苯二甲腈和金属盐,并加入催化剂,氮气保护下回流反应11-13 h,冷却过滤,并用甲醇反复冲洗产物微粒,再依次分别用浓硫酸浸泡和蒸馏水洗至中性,最后用N,N-二甲基甲酰胺微沸,乙醇洗涤,真空干燥,得键合有金属酞菁的固载化金属酞菁催化剂MPc-PGMA/SiO2(M=Co、Fe、Cu或Mn)。
第一步中所述的溶剂为N,N-二甲基甲酰胺或二甲基亚砜,催化剂为NaOH、NaHCO3、Na2CO3或三乙胺,催化剂的用量为CPPN的摩尔量的5-10倍。
第二步中所述的溶剂为正戊醇,金属盐为水合乙酸钴、乙酸亚铁、水合乙酸铜或水合乙酸锰,取代邻苯二甲腈为4-硝基邻苯二甲腈或CPPN,取代邻苯二甲腈和金属盐的摩尔比为2.4-2.7:1,催化剂为1, 8-二氮杂环[5, 4, 0]十一碳-7-烯(DBU),取代邻苯二甲腈和催化剂的比例为0.5-0.6g:2.4-2.6ml。
同步合成与固载法制备的固载化金属酞菁催化剂的应用方法,其步骤如下:在反应釜中,加入苯乙烯2 mL、N,N-二甲基甲酰胺30 mL和固载化金属酞菁催化剂MPc-PGMA/SiO2(M=Co、Fe、Cu或Mn),苯乙烯与固载化金属酞菁催化剂中所含金属酞菁的摩尔比为1195~1330,常压下通入氧气,于95~105℃反应5.5~6.5h,过滤,乙醇洗涤,回收固载化金属酞菁催化剂。
同步合成与固载法制备的固载化金属酞菁催化剂的应用方法,其步骤如下:在50mL的石英管中加入25 mL的 10 mg/L的亚甲基蓝水溶液和0.09-0.1g的CoPc-PGMA/SiO2,将石英管置于光催化反应装置中,石英管距离光源约15 cm,分别以500 W的汞灯和氙灯为光源,在氙灯外面使用滤光片滤掉紫外光,在磁力搅拌下常温进行光催化降解反应30-60min,过滤,水和乙醇洗涤,回收固载化金属酞菁催化剂。
为说明本发明的固载化催化剂MPc-PGMA/SiO2的化学结构,结合附图进一步说明如下:
图1是接枝微粒PGMA/SiO2、键合微粒CPPN-PGMA/SiO2和固体催化剂CoPc-PGMA /SiO2的红外光谱图。在PGMA/SiO2的谱图中,分别在1736 cm-1和908 cm-1处出现了PGMA上酯羰基C=O和其侧链上环氧键的特征振动吸收峰。PGMA/SiO2键合上CPPN后,1601 cm-1处出现苯环的峰,而且908 cm-1处的峰消失,表明环氧基已开环,且在2200 cm-1处出现了C≡N特征吸收峰,这些都表明CPPN成功键合在PGMA/SiO2上了,制得键合微粒CPPN-PGMA/SiO2。在微粒CPPN-PGMA/SiO2表面同步合成与固载酞菁,形成CoPc-PGMA/SiO2后,在1597 cm-1和1533 cm-1等处出现了酞菁环骨架伸缩振动吸收峰,表明在CPPN-PGMA/SiO 2上成功合成了钴酞菁。
图2为键合微粒CPPN-PGMA/SiO2与固体催化剂CoPc-PGMA-SiO2的固体紫外-可见光谱图。从图中清楚地看到,与CPPN-PGMA/SiO2相比,CoPc-PGMA-SiO2的紫外-可见吸收光谱图中在710 nm处出现了钴酞菁的特征吸收峰,是酞菁环a2u (π)向eg (π*)高能跃迁引起的B带,结合红外光谱,进一步说明在PGMA/SiO2上成功合成了钴酞菁。
图3为接枝微粒PGMA/SiO2与固体催化剂CoPc-PGMA/SiO2的热失重谱图。在图中,温度低于100 ℃时,接枝微粒PGMA/SiO2和固体催化剂CoPc-PGMA/SiO2都有微量失重,此现象是由吸附水的挥发失重所引起的。在240℃附近,接枝微粒PGMA/SiO2开始分解,至大约 800℃,接枝微粒PGMA/SiO2分解完毕,总失重约40.5%。而固体催化剂CoPc-PGMA/SiO2于约320℃左右时开始分解,至约 800 ℃分解完毕,总失重约50.5%,经推算,所制备的固体催化剂CoPc-PGMA/SiO2样品其表面CoPc固载量为0.15mmol/g(即11g/g)。
本发明与现有技术相比,其显著优点:(1) 采用本发明方法,能够将金属酞菁直接以共价键结合到载体上,避免金属酞菁的流失,且变均相催化剂为非均相催化剂,不但保留均相催化剂的活性与选择性,还带来了一系列优点,比如,提高了催化剂的热稳定性,便于催化剂从反应介质中的分离,使催化剂得到重复使用等,极大地提升了催化过程的效率;(2)本发明工艺简单,避免常规化学键合方法中需先制备游离金属酞菁过程中金属酞菁的产率低、分离提纯困难等缺点;(3)采用本发明方法金属酞菁的固载量高(达11%)、成本低、所选取的原料来源较为广泛,后处理较为简单,适合于工业化生产。
附图说明
图1是接枝微粒PGMA/SiO2、键合微粒CPPN-PGMA/SiO2和固体催化剂CoPc-PGMA /SiO2的红外光谱图;
图2是键合微粒CPPN-PGMA/SiO2与固体催化剂CoPc-PGMA-SiO2的固体紫外-可见光谱图;
图3为接枝微粒PGMA/SiO2与固体催化剂CoPc-PGMA/SiO2的热失重谱图。
具体实施方式
同步合成与固载法制备的固载化金属酞菁催化剂,其结构如通式(I)所示,聚甲基丙烯酸缩水甘油酯/硅胶PGMA/SiO2固载化金属酞菁MPc催化剂MPc-PGMA/SiO2,由微米级二氧化硅和具有催化活性的金属酞菁功能化聚合物组成,其二氧化硅粒子尺寸为90~125μm,金属酞菁功能化聚合物的键合量为0.12~0.15mmol/g,
(一)一种同步合成与固载法制备聚甲基丙烯酸缩水甘油酯/硅胶固载化金属酞菁催化剂MPc-PGMA/SiO2的实施例。
实施例1:在四口烧瓶中,加入1.0 g杂化材料PGMA/SiO2和40 mL的N,N-二甲基甲酰胺,充分浸泡溶胀后,加入0.30g CPPN和1.5mL的三乙胺,在氮气保护下升温至100℃,恒温反应8h,过滤,无水乙醇和蒸馏水充分洗涤微球,真空干燥,得键合有CPPN的微粒CPPN-PGMA/SiO2,CPPN的键合量为3.8g/100g。
在四口烧瓶中,将1.0 g CPPN-PGMA/SiO2用30 mL正戊醇浸泡使微粒充分溶胀,然后加入0.6 g 4-硝基邻苯二甲腈和0.35 g水合乙酸钴,并加入一定量2.5 mL的1, 8-二氮杂环[5, 4, 0]十一碳-7-烯,氮气保护下回流反应12 h,冷却过滤,并用甲醇反复冲洗产物微粒,再依次分别用浓硫酸浸泡和蒸馏水洗至中性,最后用N,N-二甲基甲酰胺微沸,乙醇洗涤,真空干燥,得键合有钴酞菁的固载化催化剂CoPc-PGMA/SiO2,钴酞菁的键合量为0.15mmol/g。
实施例2:在四口烧瓶中,加入1.2 g杂化材料PGMA/SiO2和38 mL的二甲基亚砜,充分浸泡溶胀后,加入0.35g CPPN和0.26gNaOH,在氮气保护下升温至90℃,恒温反应9h,过滤,无水乙醇和蒸馏水充分洗涤微球,真空干燥,得键合有CPPN的微粒CPPN-PGMA/SiO2,CPPN的键合量为3.3g/100g。
在四口烧瓶中,将1.1 g CPPN-PGMA/SiO2用28mL正戊醇浸泡使微粒充分溶胀,然后加入0.55g 4-硝基邻苯二甲腈和0.33g水合乙酸锰,并加入2.6 mL的1, 8-二氮杂环[5,4, 0]十一碳-7-烯,氮气保护下回流反应11 h,冷却过滤,并用甲醇反复冲洗产物微粒,再依次分别用浓硫酸浸泡和蒸馏水洗至中性,最后用N,N-二甲基甲酰胺微沸,乙醇洗涤,真空干燥,得键合有锰酞菁的固载化催化剂MnPc-PGMA/SiO2,锰酞菁的键合量为0.13mmol/g。
实施例3:在四口烧瓶中,加入1.1 g杂化材料PGMA/SiO2和35 mL的二甲基亚砜,充分浸泡溶胀后,加入0.32g CPPN和1.00g Na2CO3,在氮气保护下升温至110℃,恒温反应10h,过滤,无水乙醇和蒸馏水充分洗涤微球,真空干燥,得键合有CPPN的微粒CPPN-PGMA/SiO2,CPPN的键合量为3.2g/100g。
在四口烧瓶中,将1.2 g CPPN-PGMA/SiO2用25mL正戊醇浸泡使微粒充分溶胀,然后加入0.5g 4-硝基邻苯二甲腈和0.21g水合乙酸铜,并加入2.4 mL的1, 8-二氮杂环[5,4, 0]十一碳-7-烯,氮气保护下回流反应13 h,冷却过滤,并用甲醇反复冲洗产物微粒,再依次分别用浓硫酸浸泡和蒸馏水洗至中性,最后用N,N-二甲基甲酰胺微沸,乙醇洗涤,真空干燥,得键合有铜酞菁的固载化催化剂CuPc-PGMA/SiO2,铜酞菁的键合量为0.12mmol/g。
实施例4:在四口烧瓶中,加入1.0 g杂化材料PGMA/SiO2和35 mL的N,N-二甲基甲酰胺,充分浸泡溶胀后,加入0.35g CPPN和1.10g NaHCO3,在氮气保护下升温至100℃,恒温反应8h,过滤,无水乙醇和蒸馏水充分洗涤微球,真空干燥,得键合有CPPN的微粒CPPN-PGMA/SiO2,CPPN的键合量为2.8g/100g。
在四口烧瓶中,将1.0g CPPN-PGMA/SiO2用25mL正戊醇浸泡使微粒充分溶胀,然后加入0.6 g CPPN和0.16g乙酸亚铁,并加入2.5 mL的1, 8-二氮杂环[5, 4, 0]十一碳-7-烯,氮气保护下回流反应13 h,冷却过滤,并用甲醇反复冲洗产物微粒,再依次分别用浓硫酸浸泡和蒸馏水洗至中性,最后用N,N-二甲基甲酰胺微沸,乙醇洗涤,真空干燥,得键合有铁酞菁的固载化催化剂FePc-PGMA/SiO2,铁酞菁的键合量为0.14mmol/g。
(二)固载化催化剂MPc-PGMA/SiO2(M=Co、Fe、Cu或Mn)的应用方法一
实施例5:在装有搅拌器及冷凝回流管装置的四口烧瓶中,加入苯乙烯2 mL、DMF30mL和0.09g由上述例1所得的固体催化剂CoPc-PGMA/SiO2,常压下通入氧气,于100℃反应6h,过滤,乙醇洗涤,回收催化剂。气相色谱分析结果表明,环氧苯乙烷是主产物,显示出本催化氧化体系具有优良的选择性。苯乙烯转化率能达到99 %,环氧苯乙烷的收率达33.5%。
实施例6:在装有搅拌器及冷凝回流管装置的四口烧瓶中,加入苯乙烯2 mL、DMF30mL和0.10g由上述例2所得的固体催化剂MnPc-PGMA/SiO2,常压下通入氧气,于105℃反应6h,过滤,乙醇洗涤,回收催化剂。气相色谱分析结果表明,环氧苯乙烷是主产物,显示出本催化氧化体系具有优良的选择性。苯乙烯转化率能达到84%,环氧苯乙烷的收率达29%。
实施例7:在装有搅拌器及冷凝回流管装置的四口烧瓶中,加入苯乙烯2 mL、DMF30mL和0.10g由上述例3所得的固体催化剂CuPc-PGMA/SiO2,常压下通入氧气,于95℃反应5.5h,过滤,乙醇洗涤,回收催化剂。气相色谱分析结果表明,环氧苯乙烷是主产物,显示出本催化氧化体系具有优良的选择性。苯乙烯转化率能达到87%,环氧苯乙烷的收率达30.5%。
实施例8:在装有搅拌器及冷凝回流管装置的四口烧瓶中,加入苯乙烯2 mL、DMF30mL和0.10g由上述例4所得的固体催化剂FePc-PGMA/SiO2,常压下通入氧气,于100℃反应6.5h,过滤,乙醇洗涤,回收催化剂。气相色谱分析结果表明,环氧苯乙烷是主产物,显示出本催化氧化体系具有优良的选择性。苯乙烯转化率能达到83%,环氧苯乙烷的收率达27%。
(三)固载化催化剂CoPc-PGMA/SiO2的应用方法二
实施例9:在50 mL的石英管中加入25 mL新配置的 10 mg/L的亚甲基蓝水溶液和0.1g的CoPc-PGMA/SiO2,将石英管置于光催化反应装置中,石英管距离光源约15 cm,以500W的氙灯(在氙灯外面使用滤光片滤掉紫外光)为光源,在磁力搅拌下常温进行光催化降解反应60min,过滤,水和乙醇洗涤,回收催化剂。亚甲基蓝的降解率能达到99.5%。
实施例10:在50 mL的石英管中加入25 mL新配置的 10 mg/L的亚甲基蓝水溶液和0.1g的CoPc-PGMA/SiO2,将石英管置于光催化反应装置中,石英管距离光源约15 cm,以500W的汞灯为光源,在磁力搅拌下常温进行光催化降解反应30min,过滤,水和乙醇洗涤,回收催化剂。亚甲基蓝的降解率能达到99.8%。
实施例11:在50 mL的石英管中加入25 mL新配置的 10 mg/L的亚甲基蓝水溶液和0.09g的CoPc-PGMA/SiO2,将石英管置于光催化反应装置中,石英管距离光源约15 cm,以500 W的氙灯(在氙灯外面使用滤光片滤掉紫外光)为光源,在磁力搅拌下常温进行光催化降解反应40min,过滤,水和乙醇洗涤,回收催化剂。亚甲基蓝的降解率能达到95.8%。

Claims (4)

1.一种同步合成与固载法制备的固载化金属酞菁催化剂,其结构如通式(I)所示,聚甲基丙烯酸缩水甘油酯/硅胶PGMA/SiO2固载化金属酞菁MPc催化剂MPc-PGMA/SiO2,由微米级二氧化硅和具有催化活性的金属酞菁功能化聚合物组成,其二氧化硅粒子尺寸为90~125μm,金属酞菁功能化聚合物的键合量为0.12~0.15mmol/g,金属酞菁的固载量可达11%,
2.一种如权利要求1所述的同步合成与固载法制备的固载化金属酞菁催化剂的制备方法,其步骤如下:
第一步,将1.0-1.2 g杂化材料PGMA/SiO2置于35-40 mL的溶剂中浸泡,充分溶胀后,加入0.30-0.35g 4-(4-羧基苯氧基)邻苯二甲腈(CPPN)和催化剂,在氮气保护下升温至90-110℃,恒温反应8-10h,过滤,无水乙醇和蒸馏水充分洗涤微球,真空干燥,得键合有邻苯二腈的改性微粒CPPN-PGMA/SiO2,第一步中所述的溶剂为N,N-二甲基甲酰胺或二甲基亚砜,催化剂为NaOH、NaHCO3、Na2CO3或三乙胺,催化剂的用量为CPPN的摩尔量的5-10倍;
第二步,将1.0-1.2 g CPPN-PGMA/SiO2置于25-30 mL溶剂中浸泡使微粒充分溶胀,然后加入0.5-0.6 g 取代邻苯二甲腈和金属盐,并加入催化剂,氮气保护下回流反应11-13 h,冷却过滤,并用甲醇反复冲洗产物微粒,再依次分别用浓硫酸浸泡和蒸馏水洗至中性,最后用N,N-二甲基甲酰胺微沸,乙醇洗涤,真空干燥,得键合有金属酞菁的固载化金属酞菁催化剂MPc-PGMA/SiO2(M=Co、Fe、Cu或Mn),第二步中所述的溶剂为正戊醇,金属盐为水合乙酸钴、乙酸亚铁、水合乙酸铜或水合乙酸锰,取代邻苯二甲腈为4-硝基邻苯二甲腈或CPPN,取代邻苯二甲腈和金属盐的摩尔比为2.4-2.7:1,催化剂为1, 8-二氮杂环[5, 4, 0]十一碳-7-烯DBU,取代邻苯二甲腈和催化剂的比例为0.5-0.6g:2.4-2.6mL。
3.一种如权利要求1所述的同步合成与固载法制备的固载化金属酞菁催化剂的应用方法,其步骤如下:在反应釜中,加入苯乙烯2 mL、N,N-二甲基甲酰胺30 mL和固载化金属酞菁催化剂MPc-PGMA/SiO2(M=Co、Fe、Cu或Mn),苯乙烯与固载化金属酞菁催化剂中所含金属酞菁的摩尔比为1195~1330,常压下通入氧气,于95~105℃反应5.5~6.5h,过滤,乙醇洗涤,回收固载化金属酞菁催化剂。
4.一种如权利要求1所述的同步合成与固载法制备的固载化金属酞菁催化剂的应用方法,其步骤如下:在50 mL的石英管中加入25 mL的 10 mg/L的亚甲基蓝水溶液和0.09-0.1g的CoPc-PGMA/SiO2,将石英管置于光催化反应装置中,石英管距离光源约15 cm,分别以500W的汞灯和氙灯为光源,在氙灯外面使用滤光片滤掉紫外光,在磁力搅拌下常温进行光催化降解反应30-60min,过滤,水和乙醇洗涤,回收固载化金属酞菁催化剂。
CN201610334170.2A 2016-05-19 2016-05-19 同步合成与固载法制备的固载化金属酞菁催化剂及其制备和应用方法 Expired - Fee Related CN106000466B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610334170.2A CN106000466B (zh) 2016-05-19 2016-05-19 同步合成与固载法制备的固载化金属酞菁催化剂及其制备和应用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610334170.2A CN106000466B (zh) 2016-05-19 2016-05-19 同步合成与固载法制备的固载化金属酞菁催化剂及其制备和应用方法

Publications (2)

Publication Number Publication Date
CN106000466A CN106000466A (zh) 2016-10-12
CN106000466B true CN106000466B (zh) 2019-01-22

Family

ID=57094958

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610334170.2A Expired - Fee Related CN106000466B (zh) 2016-05-19 2016-05-19 同步合成与固载法制备的固载化金属酞菁催化剂及其制备和应用方法

Country Status (1)

Country Link
CN (1) CN106000466B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108822260B (zh) * 2018-04-27 2019-12-31 江西理工大学 一种无聚集酞菁接枝ma-va聚合物光限幅材料及其制备方法
CN110713597B (zh) * 2018-07-11 2020-12-15 中国科学院化学研究所 一种邻苯二甲腈基固化物微球及其制备方法和应用
CN110227521A (zh) * 2019-06-19 2019-09-13 中北大学 共价负载化Dawson型磷钨酸盐催化剂及其制备方法和应用
CN111362952A (zh) * 2020-02-13 2020-07-03 中南大学 单一取代基金属酞菁衍生物的制备和应用
CN115069305B (zh) * 2022-07-06 2023-05-26 中钢集团鞍山热能研究院有限公司 一种固载化的金属酞菁催化剂及其制备方法与应用
CN115337963B (zh) * 2022-08-16 2024-03-15 常州大学 四取代3-(4-氨基)苯氧基酞菁铜/多壁碳纳米管复合催化剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986054A (zh) * 2006-12-11 2007-06-27 南京大学 一种负载金属酞菁光催化剂及其制备方法
CN101559384A (zh) * 2009-05-26 2009-10-21 中北大学 一种硅胶固载化金属卟啉化合物的制备及其应用方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1986054A (zh) * 2006-12-11 2007-06-27 南京大学 一种负载金属酞菁光催化剂及其制备方法
CN101559384A (zh) * 2009-05-26 2009-10-21 中北大学 一种硅胶固载化金属卟啉化合物的制备及其应用方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"固载MnP-PGMA/SiO2催化剂的制备及其对乙苯氧化反应的催化性能";章艳等;《催化学报》;20080331;第29卷(第3期);摘要、第249页左栏第1段-右栏第1段
"酞菁钴/SnO2纳米复合材料的原位及可见光光催化";王芳等;《应用化学》;20060331;第26卷(第3期);第247页第2段

Also Published As

Publication number Publication date
CN106000466A (zh) 2016-10-12

Similar Documents

Publication Publication Date Title
CN106000466B (zh) 同步合成与固载法制备的固载化金属酞菁催化剂及其制备和应用方法
US9433926B2 (en) Platinum/carbon nanotube catalyst, the preparation process and use thereof
Baleizão et al. Vanadyl salen complexes covalently anchored to single-wall carbon nanotubes as heterogeneous catalysts for the cyanosilylation of aldehydes
Barroso-Bogeat et al. FT-IR analysis of pyrone and chromene structures in activated carbon
Farokhi et al. Highly efficient asymmetric epoxidation of olefins with a chiral manganese-porphyrin covalently bound to mesoporous SBA-15: Support effect
CN105597827B (zh) 一种木糖水热碳化微球负载钯催化剂及制备与应用
CN114381006B (zh) 一种具有酸碱双功能的共价有机框架材料bm-so3h及其制备方法和应用
González-Muñoz et al. Anchoring of 10-phenylphenothiazine to mesoporous silica materials: A water compatible organic photocatalyst for the degradation of pollutants
CN105195233A (zh) 一种富勒烯掺杂二氧化钛可见光催化剂的制备方法
CN106881150B (zh) 一种负载化4-(n,n-二甲基)氨基吡啶催化剂的制备方法
CN103008013A (zh) 一种负载型磺酸金属酞菁光催化剂及其制备方法和应用
CN103638970B (zh) 一种在固定床中沼气净化的方法
Wang et al. Dual‐Function Near‐Infrared Emitting Aerogel‐Based Device for Detection and Sunlight‐Driven Photodegradation of Antibiotics: Realizing the Processability of Silsesquioxane‐Based Fluorescent Porous Materials
Li et al. Benzothiadiazole covalent organic framework photocatalysis with an electron transfer mediator for selective aerobic sulfoxidation
CN113546683B (zh) 基于卟啉的共价有机框架材料在光催化氧化环化反应中的应用
Nie et al. Enhanced Photocatalytic Activity of Hyper‐Cross‐Linked Polymers Toward Amines Oxidation Coupled with H2O2 Generation through Extending Monomer's Conjugation Degree
CN104475159B (zh) 1‑3代芳醚树枝状酞菁配合物负载SiO2可见光光催化剂的制备方法及其应用
CN101786016B (zh) 一种固载化Lewis酸催化剂的制备及其应用方法
Cai et al. Silica microspheres functionalized with porphyrin as a reusable and efficient catalyst for the photooxidation of 1, 5-dihydroxynaphthalene in aerated aqueous solution
Shiraishi et al. Selective photooxidation of chlorophenols with molecularly imprinted polymers containing a photosensitizer
CN113976181B (zh) 一种钴基金属有机框架固载有机催化剂的制备及在燃油脱硫领域的应用
Chen et al. Visible-light-induced sulfoxidation using chitosan-supported organic dyes photocatalyst
KR102290946B1 (ko) 아민기 및 설폰기가 도입된 산-염기 이중 관능성 zif의 제조 및 이의 용도
CN109988306B (zh) 苯并噁唑连接三苯基咪唑的聚合物及其制备方法和用途
CN105801410A (zh) 一种双催化剂体系可见光催化合成苯丙烯酸酯衍生物的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190122

Termination date: 20200519