CN105988096A - 射频接收单元以及包括该射频接收单元的磁共振成像设备 - Google Patents

射频接收单元以及包括该射频接收单元的磁共振成像设备 Download PDF

Info

Publication number
CN105988096A
CN105988096A CN201510074033.5A CN201510074033A CN105988096A CN 105988096 A CN105988096 A CN 105988096A CN 201510074033 A CN201510074033 A CN 201510074033A CN 105988096 A CN105988096 A CN 105988096A
Authority
CN
China
Prior art keywords
receiver unit
frequency
signal
amplifier
frequency mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510074033.5A
Other languages
English (en)
Inventor
关晓磊
周建帆
夏翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai United Imaging Healthcare Co Ltd
Original Assignee
Shanghai United Imaging Healthcare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai United Imaging Healthcare Co Ltd filed Critical Shanghai United Imaging Healthcare Co Ltd
Priority to CN201510074033.5A priority Critical patent/CN105988096A/zh
Publication of CN105988096A publication Critical patent/CN105988096A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Abstract

本发明提供了一种射频接收单元和包括该射频接收单元的磁共振成像设备,其中,前述射频接收单元包括混频器、变压器和模拟运算放大器。混频器将射频信号下变频到中频,得到中频信号。变压器连接所述混频器,放大所述中频信号的电压。模拟运算放大器连接所述变压器,且放大所述中频信号。所述射频接收单元可用更低的功耗实现所需的高动态范围。

Description

射频接收单元以及包括该射频接收单元的磁共振成像设备
技术领域
本发明主要涉及信号处理领域,尤其涉及一种射频接收单元,本发明还涉及一种磁共振成像设备,其包括前述的射频接收单元。
背景技术
磁共振成像(MRI,Magnetic Resonance Imaging)是核磁共振的重要应用领域,如今磁共振成像设备已成为医学临床诊断和基础科学研究的主要工具之一。磁共振成像仪的基本原理是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经计算机处理获得图像。
磁共振成像设备中,射频系统是实施射频激励并接收和处理射频信号的功能单元。射频系统包括射频发射单元和射频接收单元。射频发射单元在时序控制器的作用下,产生各种符合序列要求的射频脉冲的系统。射频接收单元在时序控制器的作用下,接收人体产生的磁共振信号。
磁共振成像设备中的射频接收单元借鉴了通信领域的射频接收单元基本结构,一般地包括模拟混频、射频放大器等结构。由于从射频接收单元最前端的射频接收线圈感应得到的信号都极其微弱,为了将信号放大到适应后端的模数转换器的动态范围,至少需要两级放大。射频接收单元将接收的射频信号模拟混频至相对低一些的频段(例如大约50MHz)之后用射频放大器进行放大以及隔离跟随。但射频放大器属于高功耗器件(工作电流达到一百mA左右),因而会造成接收电路功耗整体较高。同时一方面可能增加额外的散热结构件的成本,另一方面带来的发热问题会降低电路板的稳定性和寿命。
在仪器仪表领域以及某些通信领域的射频接收单元中,同样存在降低接收电路功耗的需求。
发明内容
本发明要解决的技术问题是提供一种射频接收单元,可用更低的功耗实现所需的高动态范围。
为解决上述技术问题,本发明提供了一种射频接收单元,包括混频器、变压器和模拟运算放大器。混频器将射频信号下变频到中频,得到中频信号。变压器连接所述混频器,放大所述中频信号的电压。模拟运算放大器连接所述变压器,且放大所述中频信号。
可选地,所述射频信号的载波频率为50-300MHz,所述中频信号的频率为0.5-20MHz。可选地,所述中频信号的频率为0.5-10MHz。
可选地,射频接收单元还包括窄带滤波器,其连接于所述混频器的输入端,用于抑制杂散和噪声。
可选地,射频接收单元还包括匹配网络,连接于所述混频器和所述变压器之间。匹配网络可以将功率最大效率地从所述混频器传输到所述变压器。
可选地,射频接收单元还包括初级低噪声放大器,连接在所述射频接收单元的射频接收线圈和所述混频器之间。
可选地,射频接收单元还包括次级放大器,连接在所述初级低噪声放大器和所述混频器之间。
可选地,所述模拟运算放大器被配置成在数据采集时设定为打开状态以及在未进行数据采集时设定为关断状态。
可选地,所述混频器为无源混频器。
可选地,所述变压器的数量为一个或多个。
可选地,所述模拟运算放大器的数量为一个。
可选地,所述射频信号为单端信号或差分信号。
本发明还提出一种磁共振成像设备,包括一射频系统,所述射频系统包括如上所述的射频接收单元。
与现有技术相比,本发明具有以下优点:
1)显著降低电路功耗,进而提升电路硬件的可靠性,包含稳定性和寿命;
2)节约额外的用于散热的结构件成本,至少可以降低接收电路硬件散热措施的难度;
3)可以通过单电源对模拟运算放大器进行供电,降低系统设计的外部供电要求,降低设计复杂度以及多电源供电带来的额外成本;
4)由于工作电路热耗越小,工作温度越低,模拟器件的性能越好,因此低功耗的电路结构也有助于提升射频接收电路的噪声系数指标,进而提高整体动态范围。
附图说明
图1示出本发明第一实施例的射频接收单元。
图2是本发明一实施例的模拟接收电路的结构框图。
图3是本发明一实施例的模拟接收电路的电路图。
图4是本发明一实施例的变压器组合结构图。
图5是本发明另一实施例的模拟接收电路的电路图。
图6是本发明第二实施例的射频接收单元。
具体实施方式
为让本发明的上述目的、特征和优点能更明显易懂,以下结合附图对本发明的具体实施方式作详细说明。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其它不同于在此描述的其它方式来实施,因此本发明不受下面公开的具体实施例的限制。
通常而言,模拟混频器下变频后的中频(IF)的频率在仍高达几十MHz,由于射频(RF)放大器可以适应较高频率范围的信号放大,一直作为射频接收的基本部件。因此传统射频接收单元中模拟混频器和射频放大器组合的基本结构能够有效放大信号,满足后级模数转换器大动态范围的要求,但其代价是功耗也较高。本发明的实施例描述一种射频接收单元,它可以不必使用大功耗的射频放大器。
第一实施例
图1示出本发明第一实施例的磁共振成像设备的射频接收单元。参考图1所示,射频接收单元100将放在磁共振成像设备射频接收链中描述。射频接收单元100包括射频接收线圈101、低噪声放大器102、窄带滤波器103以及模拟接收电路104。射频接收单元100通过射频接收线圈101接收射频信号,经过处理后传输给后级的数字处理及控制电路200。在射频接收单元100中进行的是混频及信号放大。低噪声放大器102进行初级放大,然后在模拟接收电路104进行混频及进一步放大。在模拟接收电路104之前设置窄带滤波器,以抑制杂散和噪声。举例来说,比如,射频信号的频率为64MHz,模拟接收电路104中混频的本地振荡信号的频率为65MHz,经过混频之后会有1MHz的目标中频信号。不过,频率66MHz处的噪声/干扰/杂散也会被本地振荡信号混频到1MHz,因此需要在混频之前通过一个窄带滤波器104使得64MHz信号通过而将66MHz过滤。窄带滤波器104的带宽可以根据具体情形设置。
图2是本发明一实施例的模拟接收电路的结构框图。参考图2所示,模拟接收电路104主要包括混频器201、变压器202以及模拟运算放大器203,三者依次连接。混频器201负责将射频信号下变频至中频,中频IF=|LO-RF|),LO为本地振荡信号的频率。混频器201的本地振荡信号由外部输入。可以理解,混频器201同时会产生额外的高频镜像(HF=LO+RF),这部分不是所需的信号。
混频器201输出的中频信号将被进行放大。传统射频接收单元通常使用射频放大器,但是,如果选择合适的本地振荡信号,将经过混频器201后的中频的频率控制在合适的频率,就可以避免使用大功耗射频放大器,而可以改用本实施例的模拟运算放大器203。具体来说,可以设置合适的本地振荡信号,以将经过混频器201后的中频(IF)的频率控制在合适的低频率。一方面,这一低频率需要适应模拟运算放大器中对大信号摆率的限制。另一方面,由于模拟运算放大器203都有自身引入的低频1/f噪声,且频率越低该噪声越严重,因此中频的频率受到低频1/f噪声拐角频率的限制又不能过低。
混频器201接收的射频信号,频率通常在50-300MHz之间。相应地,混频后的中频可以在0.5MHz-20MHz之间选取。较佳地,混频后的中频在0.5MHz-10MHz之间选取。
不同模拟运算放大器能够工作的最高频率有所不同,因此可以根据具体模拟运算放大器203来选取合适的中频。举例来说,模拟运算放大器203的低频1/f噪声的边界频率小于1kHz。根据输入射频频段的上下限RFmin/RFmax,(其中,RFmin为下限,RFmax为上限)选择合适的本振频率LO,得到输出中频频段的上限IFmax
若LO<RFmin,IFmax=RFmax–LO;
若LO>RFmax,IFmax=LO-RFmin
IFmax要求大于模拟运算放大器的低频1/f噪声边界频率;
IFmax要求小于由于模拟运算放大器自身摆率(SR),以及输入信号s(t)峰峰值(Vpp)的限制带来的大信号上限频率fmax要求:
S ( t ) = V pp 2 sin ( 2 &pi; &CenterDot; f max &CenterDot; t )
SR = ds dt | t = 0 = V pp 2 &CenterDot; 2 &pi; &CenterDot; f max
IF max < f max = SR &pi; &CenterDot; V pp
举例:若SR=100V/us,Vpp=2.7V,则得出:IFmax<11.8MHz。
模拟运算放大器203可以放大中频信号的功率。不过需要指出的是,由于后级电路中的模数转换器只识别电压,而不是功率,因此不用消耗额外的静态功耗进行功率放大,而使用变压器202来放大电压,也可以达到很高的电压增益和较小的等效输入电压噪声。
本实施例中,变压器202设置在混频器201和模拟运算放大器203之间。变压器202在最大信号输入的情况下最好可以将电压放大到后级电路中模数转换器的模拟输入满量程附近。同时鉴于模拟运算放大器203的噪声系数普遍差于射频放大器,变压器202的另外一个作用是降低模拟运算放大器203带来的等效输入噪声,即从变压器202源端输入口向后看,理论上的等效输入噪声电压为模拟运算放大器203输入端噪声电压的1/M。而假若将变压器202置于模拟运算放大器203输出之后,则模拟运算放大器203引入的噪声功率电压会被放大M倍,进而恶化整个链路的噪声系数。本实施例变压器202与模拟运算放大器203的组合在小于10MHz的中低频段的噪声系数可以不差于射频放大器。
作为示例,图3是本发明一实施例的模拟接收电路的电路图。参考图3所示,U1为混频器201,L1,C1,C2组成匹配网络,T1为变压器202,U2为模拟运算放大器203。这一电路适应于射频信号为单端信号的情形。
由于混频器201为射频器件,其输出源阻抗为Z0(Z0一般为50ohm),因此为了与后端的模拟器件衔接需要配备匹配网络,目的是从IF处向后看的等效阻抗也为Z0。
此外,电容C3用于隔离直流信号。C4为旁路电容,置于U2的供电电源口。
电阻R1,R2,R3为U2的输入提供合适的直流偏置电压,即U2正负供电电压差的一半附近。其中R1和R2类似于分压电阻,R3则用于补偿U2正输入端的静态偏置电流带来的偏置电压的偏差。R1和R2的并联R1//R2等效到T1的源级输入处为Reff=R1//R2/M2,若T1为理想则Reff=Z0,若非理想,则需要L1,C1,C2组成的LC匹配网络将非理想性补偿回来,最终是要保证从U1的IF输出向后看时,在IF频段的S参数中的S11能得到良好匹配,即将反射功率降到最低。
模拟运算放大器U2与反馈电阻R4以及补偿电容C5一起形成了闭环增益为1的跟随级,同时由于U2的极高输入阻抗和极低的输出阻抗,它同时也起到信号隔离的作用。另外,由于该级为射频接收单元100的末级,对于其自身引入的附加噪声要求并不苛刻,因此模拟运算放大器可以被列入末级放大的选择范畴。但U2的噪声仍需要尽量的低。
电容C6作为隔直电容,防止U2会被负载带走一部分静态功耗。电阻R4作为U2输出的串联电阻可以增加U2电路的闭环稳定性,同时也可以在U2输出峰值电压较大的情况下将ADC输入峰值电压调整到合适的范围内,使其不至溢出。
在电路中还包括与模数转换器(ADC)衔接的电路T2和F1。T2为巴伦电路,可以是电流型的,也可以是如图中所示电压型的。T2起到将单端信号转为差分的作用,与后端的抗混叠滤波器(为低通滤波器)F1用于和高速ADC模拟差分输入进行匹配。
在图3中,变压器T1的数量既可以是一个,也可以是如图4所示的多个变压器的组合。
图5是本发明另一实施例的模拟接收电路的电路图。参考图5所示,U1为混频器,L1,C1,L2和C2组成匹配网络,T1为变压器,U2为模拟运算放大器。本实施例与图3所示实施例的主要不同之处在于,L1,L2,C1,C2,与T1共同组成了匹配/滤波网路。这一电路适应于输入的射频信号为差分信号的情形。
模拟运算放大器203较佳地被配置成在数据采集时设定为打开状态,以及在未进行数据采集时设定为关断状态,以便进一步降低功耗。举例来说,可以使用外部的控制信号进行这一配置。回到图1所示,数字信号处理及控制电路200可以根据重建软件对于采集数据的需求,在不采集数据时发出控制信号关断模拟运算放大器203,仅在采集数据时发出控制信号打开模拟运算放大器203。
因此总结本发明的独创性为:设置合适的本振(LO)频率,通过无源衰减器将射频信号降至相对较低的频段,再通过变压器阵列进行电压放大,最后由单电源供电的带关断模式的低噪声模拟运算放大器进行跟随和隔离,以适应ADC的动态范围以及显著降低功耗。混频器和变压器阵列之间通过LC匹配网络进行匹配,最终实现镜像抑制,以及等效噪声抑制。
在本实施例中,混频器201的实施方式包括模拟混频器和数字的硬核乘法器。模拟混频器进一步包括无源混频器和有源混频器。为了降低功耗,较佳地选择无源混频器。
在本实施例中,模拟运算放大器203较佳地使用低噪声模拟运算放大器。举例来说,可以选择ADI公司的ADA4898-1,或者TI公司的LMH6624。
在本实施例中,变压器202较佳地选择射频变压器。
本实施例的射频接收单元将普遍应用于射频电路的混频器与普遍应用于模拟宽度小信号检测电路的模拟运算放大器进行巧妙的衔接,这样就可以实现极低的功耗。同时,模拟运算放大器与变压器合用之后就可以实现与射频放大器相当的动态范围。
第二实施例
图6示出本发明第二实施例的磁共振成像设备的射频接收单元。参考图6所示,射频接收单元300包括射频接收线圈301、低噪声放大器302、窄带滤波器303、模拟接收电路304、射频开关矩阵305以及次级放大器306。射频接收单元300通过射频接收线圈301接收射频信号,经过处理后传输给后级的数字处理及控制电路200。在射频接收单元100中进行的是混频及信号放大。低噪声放大器302进行初级放大,在次级放大器306中进行次级放大。窄带滤波器303在混频前过滤杂散和噪声。在模拟接收电路304中进行混频及进一步放大。在射频开关矩阵305选择所需的射频通道。
本实施例与第一实施例的主要区别在于增加了射频开关矩阵305以及次级放大器306,其他细节与第一实施例相同,在此不再赘述。
本发明的上述实施例的射频接收单元,与已知射频接收单元相比具有如下优点:
1)显著降低电路功耗,进而提升电路硬件的可靠性,包含稳定性和寿命;
2)节约额外的用于散热的结构件成本,至少可以降低接收电路硬件散热措施的难度;
3)可以通过单电源对模拟运算放大器进行供电,降低系统设计的外部供电要求,降低设计复杂度以及多电源供电带来的额外成本;
4)由于工作电路热耗越小,工作温度越低,模拟器件的性能越好,因此低功耗的电路结构也有助于提升射频接收电路的噪声系数指标,进而提高整体动态范围;
5)若选用带关断功能的模拟运算放大器,则可以数据采集以外的空闲时间控制模拟运算放大器,使其处于断电状态,这样就可以实现接收电路的低功耗。这对于真正采集数据的时间相对于空闲时间比例极小的应用场景十分有利,可以实现微功耗。
本发明的射频接收单元可以用于磁共振领域、仪器仪表领域(例如示波器)、通讯领域以及其他合适的领域。
虽然本发明已参照当前的具体实施例来描述,但是本技术领域中的普通技术人员应当认识到,以上的实施例仅是用来说明本发明,在没有脱离本发明精神的情况下还可作出各种等效的变化或替换,因此,只要在本发明的实质精神范围内对上述实施例的变化、变型都将落在本申请的权利要求书的范围内。

Claims (13)

1.一种射频接收单元,包括:
混频器,将射频信号下变频到中频,得到中频信号;
变压器,连接所述混频器,放大所述中频信号的电压;以及
模拟运算放大器,连接所述变压器,放大所述中频信号。
2.如权利要求1所述的射频接收单元,其特征在于,所述射频信号的载波频率为50-300MHz,所述中频信号的频率为0.5-20MHz。
3.如权利要求2所述的射频接收单元,其特征在于,所述中频信号的频率为0.5-10MHz。
4.如权利要求1所述的射频接收单元,其特征在于,还包括窄带滤波器,其连接于所述混频器的输入端,用于抑制杂散和噪声。
5.如权利要求1所述的射频接收单元,其特征在于,还包括匹配网络,其连接于所述混频器和所述变压器之间。
6.如权利要求1所述的射频接收单元,其特征在于,还包括初级低噪声放大器,连接在所述射频接收单元的射频接收线圈和所述混频器之间。
7.如权利要求6所述的射频接收单元,其特征在于,还包括次级放大器,连接在所述初级低噪声放大器和所述混频器之间。
8.如权利要求1所述的射频接收单元,其特征在于,所述模拟运算放大器被配置成在数据采集时设定为打开状态以及在未进行数据采集时设定为关断状态。
9.如权利要求1所述的射频接收单元,其特征在于,所述混频器为无源混频器。
10.如权利要求1所述的射频接收单元,其特征在于,所述变压器的数量为一个或多个。
11.如权利要求1所述的射频接收单元,其特征在于,所述模拟运算放大器的数量为一个。
12.如权利要求1所述的射频接收单元,其特征在于,所述射频信号为单端信号或差分信号。
13.一种磁共振成像设备,包括一射频系统,所述射频系统包括如权利要求1-12任一项所述的射频接收单元。
CN201510074033.5A 2015-02-12 2015-02-12 射频接收单元以及包括该射频接收单元的磁共振成像设备 Pending CN105988096A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510074033.5A CN105988096A (zh) 2015-02-12 2015-02-12 射频接收单元以及包括该射频接收单元的磁共振成像设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510074033.5A CN105988096A (zh) 2015-02-12 2015-02-12 射频接收单元以及包括该射频接收单元的磁共振成像设备

Publications (1)

Publication Number Publication Date
CN105988096A true CN105988096A (zh) 2016-10-05

Family

ID=57041932

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510074033.5A Pending CN105988096A (zh) 2015-02-12 2015-02-12 射频接收单元以及包括该射频接收单元的磁共振成像设备

Country Status (1)

Country Link
CN (1) CN105988096A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106707013A (zh) * 2017-02-08 2017-05-24 深圳市硕亚科技有限公司 分布式小电流检测系统
EP3151026A4 (en) * 2014-05-27 2017-12-20 Shanghai Chenguang Medical Technologies Co., Ltd. Pre-amplifier for magnetic resonance imaging radio-frequency coil
CN112767703A (zh) * 2019-11-01 2021-05-07 杭州海康威视数字技术股份有限公司 电子车牌的识别设备
WO2023174412A1 (en) * 2022-03-17 2023-09-21 Shanghai United Imaging Healthcare Co., Ltd. Devices for processing magnetic resonance signals

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101183878A (zh) * 2007-12-20 2008-05-21 复旦大学 一种低功耗无线接收机射频前端电路
CN101202533A (zh) * 2007-12-20 2008-06-18 复旦大学 一种低功耗高性能正交下混频器
CN102201798A (zh) * 2011-04-06 2011-09-28 北京大学 一种适于纳米尺度工艺的高线性度射频前端
CN203643599U (zh) * 2013-12-25 2014-06-11 四川九洲电器集团有限责任公司 一种二次雷达高中频数字接收机
CN104104400A (zh) * 2014-07-16 2014-10-15 中国人民解放军国防科学技术大学 高灵敏度星载ads-b信号接收机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101183878A (zh) * 2007-12-20 2008-05-21 复旦大学 一种低功耗无线接收机射频前端电路
CN101202533A (zh) * 2007-12-20 2008-06-18 复旦大学 一种低功耗高性能正交下混频器
CN102201798A (zh) * 2011-04-06 2011-09-28 北京大学 一种适于纳米尺度工艺的高线性度射频前端
CN203643599U (zh) * 2013-12-25 2014-06-11 四川九洲电器集团有限责任公司 一种二次雷达高中频数字接收机
CN104104400A (zh) * 2014-07-16 2014-10-15 中国人民解放军国防科学技术大学 高灵敏度星载ads-b信号接收机

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3151026A4 (en) * 2014-05-27 2017-12-20 Shanghai Chenguang Medical Technologies Co., Ltd. Pre-amplifier for magnetic resonance imaging radio-frequency coil
CN106707013A (zh) * 2017-02-08 2017-05-24 深圳市硕亚科技有限公司 分布式小电流检测系统
CN112767703A (zh) * 2019-11-01 2021-05-07 杭州海康威视数字技术股份有限公司 电子车牌的识别设备
CN112767703B (zh) * 2019-11-01 2022-08-02 杭州海康威视数字技术股份有限公司 电子车牌的识别设备
WO2023174412A1 (en) * 2022-03-17 2023-09-21 Shanghai United Imaging Healthcare Co., Ltd. Devices for processing magnetic resonance signals

Similar Documents

Publication Publication Date Title
CN101151547B (zh) 磁共振系统中使用的介入设备
CN101836358B (zh) 集成电路低噪声放大器
CN105988096A (zh) 射频接收单元以及包括该射频接收单元的磁共振成像设备
US8638102B2 (en) Parametric amplifier device
US8421460B2 (en) Upconverter
US8294465B2 (en) Switched mode pre-amplification and am feedback for on-coil switched mode amplifiers in parallel transmission MRI
CN101403715B (zh) 纳升级样品核磁共振检测数字接收机
CN102484460A (zh) 上变频器
CN107290697B (zh) 磁共振射频线圈和磁共振系统
CN104055516A (zh) 一种多通道射频信号控制系统
US8324901B2 (en) Upconverter
US8283927B2 (en) Amplifier
EP3356838A2 (en) A doherty-type rf power amplifier for magnetic resonance imaging
CN107561464B (zh) 磁共振射频线圈和磁共振系统
US20150204954A1 (en) System and method for a mode balanced parametric amplifier
CN101599779B (zh) 中频信号损耗补偿电路
CN106990372B (zh) 一种核磁共振射频天线电路及其阻抗匹配方法
CN103457623A (zh) 一种零中频直流对消的电路及方法
CN219372394U (zh) 一种基于多级功率放大器的射频能量传输装置
WO2023124446A1 (zh) 一种磁共振系统和电路
JP2018524111A (ja) 磁気共鳴検査システム用の局所フィールド監視ユニットを有するrf送信モジュール
US11519984B2 (en) Local-coil apparatus for a magnetic resonance tomography unit and systems and methods thereof
Kim et al. A low power CMOS receiver for a tissue monitoring NMR spectrometer
US20230243905A1 (en) Adaptable dual-tuned optically controlled on-coil amplifer for high-field magnetic resonance imaging systems
Reintsema et al. A tdma hybrid squid multiplexer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 201807 2258 Chengbei Road, Jiading District, Shanghai

Applicant after: Shanghai Lianying Medical Technology Co., Ltd

Address before: 201807 2258 Chengbei Road, Jiading District, Shanghai

Applicant before: SHANGHAI UNITED IMAGING HEALTHCARE Co.,Ltd.

RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20161005