CN105977138B - 生长在钇铝石榴石衬底上的GaN薄膜及其制备方法、应用 - Google Patents

生长在钇铝石榴石衬底上的GaN薄膜及其制备方法、应用 Download PDF

Info

Publication number
CN105977138B
CN105977138B CN201610553010.7A CN201610553010A CN105977138B CN 105977138 B CN105977138 B CN 105977138B CN 201610553010 A CN201610553010 A CN 201610553010A CN 105977138 B CN105977138 B CN 105977138B
Authority
CN
China
Prior art keywords
aluminium
yttrium
gan film
garnet substrate
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610553010.7A
Other languages
English (en)
Other versions
CN105977138A (zh
Inventor
李国强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heyuan Zhongtuo Photoelectric Technology Co Ltd
Original Assignee
Heyuan Zhongtuo Photoelectric Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heyuan Zhongtuo Photoelectric Technology Co Ltd filed Critical Heyuan Zhongtuo Photoelectric Technology Co Ltd
Priority to CN201610553010.7A priority Critical patent/CN105977138B/zh
Publication of CN105977138A publication Critical patent/CN105977138A/zh
Application granted granted Critical
Publication of CN105977138B publication Critical patent/CN105977138B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02694Controlling the interface between substrate and epitaxial layer, e.g. by ion implantation followed by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Ceramic Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Abstract

本发明公开了一种生长在钇铝石榴石衬底上的GaN薄膜,包括钇铝石榴石衬底和GaN薄膜;所述GaN薄膜外延生长在所述钇铝石榴石衬底上;所述钇铝石榴石衬底以(111)面偏(100)面0.5‑1°为外延面,所述钇铝石榴石衬底和所述GaN薄膜的取向关系为:GaN薄膜的(0001)面平行于钇铝石榴石衬底的(111)面。该GaN薄膜的晶体质量好。本发明还公开了所述生长在钇铝石榴石衬底上的GaN薄膜的制备方法,该制备方法工艺简单,制备成本低廉。另外,本发明还把所述生长在钇铝石榴石衬底上的GaN薄膜应用于LED器件、光电探测器、太阳能电池器件中。

Description

生长在钇铝石榴石衬底上的GaN薄膜及其制备方法、应用
技术领域
本发明涉及GaN薄膜技术领域,尤其涉及生长在钇铝石榴石衬底上的GaN薄膜及其制备方法、应用。
背景技术
发光二极管(LED)作为一种新型固态照明光源,以其发热量低、耗电量少、反应速度快、寿命长、体积小等优点,被认为是21世纪的绿色照明光源。面对未来大功率照明的市场需求,LED要真正实现大规模广泛应用,其发光效率仍需要进一步提高。目前,LED芯片主要是由生长在蓝宝石衬底上GaN材料体系所制备的。但是,由于蓝宝石与GaN之间的晶格失配高达13.3%,导致外延GaN薄膜过程中产生了密度为~109cm-2的位错缺陷,从而降低了材料的载流子迁移率,缩短了载流子寿命,进而影响了GaN基器件的性能。其次,由于蓝宝石的热导率低(100℃时为25W/m·K),很难将芯片内产生的热量及时排出,导致热量积累,使器件的内量子效率降低,最终影响器件的性能。
因此,寻找一种与GaN材料晶格匹配且导热性良好的衬底材料,以用于GaN薄膜的外延生长显得十分重要。
发明内容
为了克服现有技术的不足,本发明的第一个目的在于提供一种生长在钇铝石榴石衬底上的GaN薄膜,该GaN薄膜的晶体质量好。
本发明的第二个目的在于提供所述生长在钇铝石榴石衬底上的GaN薄膜的制备方法,该制备方法工艺简单,制备成本低廉。
本发明的第三个目的在于把所述生长在钇铝石榴石衬底上的GaN薄膜应用于LED器件、光电探测器、太阳能电池器件中。
本发明的第一个目的采用以下技术方案实现:
生长在钇铝石榴石衬底上的GaN薄膜,包括钇铝石榴石衬底和GaN薄膜;所述GaN薄膜外延生长在所述钇铝石榴石衬底上;所述钇铝石榴石衬底以(111)面偏(100)面0.5-1°为外延面,所述钇铝石榴石衬底和所述GaN薄膜的取向关系为:GaN薄膜的(0001)面平行于钇铝石榴石衬底的(111)面。
优选的,所述GaN薄膜的厚度为100-1000nm。其中,钇铝石榴石又称为Y3Al5O12,即GaN(0001)//Y3Al5O12(111)。
本发明的第二个目的采用以下技术方案实现:
一种生长在钇铝石榴石衬底上的GaN薄膜的制备方法,包括以下步骤:采用钇铝石榴石衬底,以钇铝石榴石衬底的(111)面偏(100)面0.5-1°为外延面,外延生长GaN薄膜;其中,钇铝石榴石衬底和GaN薄膜的取向关系为:GaN薄膜的(0001)面平行于钇铝石榴石衬底的(111)面。
优选的,在外延生长GaN薄膜前,对钇铝石榴石衬底进行表面退火处理,具体操作如下:将钇铝石榴石衬底放入反应室内,在800-900℃下,氮气氛围中进行原位退火处理1-2h。
优选的,外延生长GaN薄膜的工艺条件为:采用脉冲激光沉积工艺,将钇铝石榴石衬底保持在400-600℃,控制反应室的压力为1.0-6.0×10-3Torr、激光能量为220-300mJ、激光频率为10-30Hz、生长速度为50-300nm/h。
优选的,所述GaN薄膜的厚度为100-1000nm。
相比现有技术,本发明的有益效果在于:
(1)本发明所提供的生长在钇铝石榴石衬底上的GaN薄膜,采用与GaN晶格失配度低的钇铝石榴石作为衬底,能够有效减少位错的形成,半峰宽数值小,位错密度低,制备出的GaN薄膜质量高,制备得到的GaN基光电材料器件的载流子辐射复合效率高,可大幅度提高氮化物器件如半导体激光器、发光二极管及太阳能电池的效率。
(2)本发明所提供的生长在钇铝石榴石衬底上的GaN薄膜,钇铝石榴石衬底以(111)面偏(100)面0.5-1°为外延面,其与GaN薄膜的外延取向关系为:GaN的(0001)面平行于Y3Al5O12的(111)面,即GaN(0001)//Y3Al5O12(111)。Y3Al5O12(111)具有与GaN(0001)相同的六方对称性,立方相的Y3Al5O12(111)的晶格参数为因而六方相的Y3Al5O12(111)晶格参数非常接近于GaN(111)晶格参数的两倍,两者的晶格失配度小,保证了Y3Al5O12衬底与GaN薄膜之间的晶格匹配,有助于外延生长高质量GaN薄膜。
(3)本发明所提供的生长在钇铝石榴石衬底上的GaN薄膜的制备方法,在外延生长GaN薄膜前,对钇铝石榴石衬底进行表面退火处理,退火处理可使衬底获得原子级平整的表面。
(4)本发明所提供的生长在钇铝石榴石衬底上的GaN薄膜的制备方法,采用脉冲激光沉积工艺制备GaN薄膜,能够为GaN在钇铝石榴石衬底上的外延生长提供足够的能量,有利于提高GaN薄膜的质量。
(5)本发明所提供的生长在钇铝石榴石衬底上的GaN薄膜的制备方法,生长工艺独特且简单易行,具有可重复性。
附图说明
图1为本发明所提供的生长在钇铝石榴石衬底上的GaN薄膜的截面示意图;
图2为本发明实施例1制备的GaN薄膜(GaN(0002))的高分辨X射线衍射(HRXRD)图谱;
图3为本发明实施例1制备的GaN薄膜(GaN(10-12))的高分辨X射线衍射(HRXRD)图谱。
具体实施方式
下面,结合附图以及具体实施方式,对本发明做进一步描述:
如图1所示,生长在钇铝石榴石衬底上的GaN薄膜,包括钇铝石榴石衬底11和GaN薄膜12;GaN薄膜12外延生长在钇铝石榴石衬底11上;所述钇铝石榴石衬底以(111)面偏(100)面0.5-1°为外延面,钇铝石榴石衬底11和GaN薄膜12的取向关系为:GaN薄膜的(0001)面平行于钇铝石榴石衬底的(111)面。
其中,钇铝石榴石又称为Y3Al5O12,即GaN(0001)//Y3Al5O12(111)。所述GaN薄膜的厚度优选为100-1000nm。
实施例1
生长在钇铝石榴石衬底上的GaN薄膜,其制备方法包括以下步骤:
(1)衬底以及其晶向的选取:采用Y3Al5O12衬底,以(111)面偏(100)面0.5°为外延面,晶体外延取向关系为:GaN的(0001)面平行于Y3Al5O12的(111)面;
(2)Y3Al5O12衬底表面退火处理,具体过程为:将Y3Al5O12衬底放入反应室内,在800℃下氮气氛围中进行原位退火处理2h,退火处理可使Y3Al5O12衬底获得原子级平整的表面;
(3)GaN薄膜的外延生长:采用脉冲激光沉积工艺,将Y3Al5O12衬底保持在400℃,在反应室的压力为1.0×10-3Torr、激光能量为220mJ、激光频率为10Hz、生长速度为50nm/h条件下生长厚度为100nm的GaN薄膜。
图2-3是本实施例制备的GaN薄膜的HRXRD图谱,从X射线回摆曲线中可以看到,GaN(0002)的X射线回摆曲线的半峰宽(FWHM)值低于220arcsec,GaN(10-12)的半峰宽值为231arcsec;表明在Y3Al5O12(111)衬底上外延生长出了高质量的GaN薄膜。
另外,对本实施例制备的GaN薄膜进行电镜扫描(SEM),结果显示,GaN薄膜表面整体光滑且平整,表明外延生长得到的GaN已经进入二维横向生长。
将实施例1制备的生长在钇铝石榴石衬底上的GaN薄膜用于制备LED器件:取实施例1制备的生长在钇铝石榴石衬底上的GaN薄膜,在其上依次外延生长Si掺杂的n型GaN、InxGa1-xN多量子阱层、Mg掺杂的p型GaN层,最后电子束蒸发形成欧姆接触。在Y3Al5O12衬底上制备得到的GaN基LED器件,其n型GaN的厚度约为3μm,其载流子的浓度为2.0×1019cm-3;InxGa1-xN/GaN多量子阱层的厚度约为150nm,周期数为10,其中InxGa1-xN阱层的厚度为3nm,GaN垒层的厚度为12nm;p型GaN层的厚度约为300nm,其载流子的浓度为5.0×1017cm-3。在20mA的工作电流下,LED器件的光输出功率为4.1mW,开启电压值为2.95V,表明该LED器件性能优异。
将实施例1制备的生长在钇铝石榴石衬底上的GaN薄膜用于制备光电探测器:取实施例1制备的生长在钇铝石榴石衬底上的GaN薄膜,在其上依次外延生长n型掺硅GaN、非掺杂GaN、p型掺镁GaN,最后电子束蒸发形成欧姆接触和肖特基结。其中n型掺硅GaN厚度约为4μm,其载流子的浓度为1.0×1019cm-3;非掺杂GaN厚度约为300nm,其载流子浓度为2.0×1016cm-3;p型掺镁GaN厚度约为1μm。所制备得的光电探测器在1V偏压下,暗电流仅为60pA,并且器件在1V偏压下,在360nm处响应度的最大值达到了0.95A/W,表明该光电探测器性能优异。
将实施例1制备的生长在钇铝石榴石衬底上的GaN薄膜用于制备InGaN太阳能电池:取实施例1制备的生长在钇铝石榴石衬底上的GaN薄膜,在其上依次外延生长具有成分梯度的InxGa1-xN缓冲层,n型掺硅InxGa1-xN,InxGa1-xN多量子阱层,p型掺镁InxGa1-xN层,最后电子束蒸发形成欧姆接触,其中0<x≤0.2。其中,n型掺硅InxGa1-xN厚度约为4μm,其载流子的浓度为2.5×1019cm-3;InxGa1-xN多量子阱层的厚度约为300nm,周期数为20,其中In0.2Ga0.8N阱层为3nm,In0.08Ga0.92N垒层为12nm。本工艺制备得到的太阳能电池室温下的光电转化效率为9.5%,短路光电流密度为35mA/cm2,表明该太阳能电池性能优异。
实施例2
生长在钇铝石榴石衬底上的GaN薄膜,其制备方法包括以下步骤:
(1)衬底以及其晶向的选取:采用Y3Al5O12衬底,以(111)面偏(100)面1°为外延面,晶体外延取向关系为:GaN的(0001)面平行于Y3Al5O12的(111)面;
(2)Y3Al5O12衬底表面退火处理,具体过程为:将Y3Al5O12衬底放入反应室内,在900℃下氮气氛围中对Y3Al5O12衬底进行原位退火处理1h,退火处理可使Y3Al5O12衬底获得原子级平整的表面;
(3)GaN薄膜的外延生长:采用脉冲激光沉积工艺,将Y3Al5O12衬底保持在600℃,在反应室的压力为6.0×10-3Torr、激光能量为300mJ、激光频率为30Hz、生长速度为300nm/h条件下生长厚度为1000nm的GaN薄膜。
本实施例制备的生长在Y3Al5O12衬底上的GaN薄膜具有非常好的晶体质量及光学性能,测试数据与实施例1相近,在此不再赘述。
对本领域的技术人员来说,可根据以上描述的技术方案以及构思,做出其它各种相应的改变以及形变,而所有的这些改变以及形变都应该属于本发明权利要求的保护范围之内。

Claims (4)

1.生长在钇铝石榴石衬底上的GaN薄膜,其特征在于,包括钇铝石榴石衬底和GaN薄膜;所述GaN薄膜外延生长在所述钇铝石榴石衬底上;所述钇铝石榴石衬底以(111)面偏(100)面0.5-1°为外延面,所述钇铝石榴石衬底和所述GaN薄膜的取向关系为:GaN薄膜的(0001)面平行于钇铝石榴石衬底的(111)面;
所述生长在钇铝石榴石衬底上的GaN薄膜的制备方法包括以下步骤:采用钇铝石榴石衬底,以钇铝石榴石衬底的(111)面偏(100)面0.5-1°为外延面,外延生长GaN薄膜;其中,钇铝石榴石衬底和GaN薄膜的取向关系为:GaN薄膜的(0001)面平行于钇铝石榴石衬底的(111)面;
外延生长GaN薄膜的工艺条件为:采用脉冲激光沉积工艺,将钇铝石榴石衬底保持在400-600℃,控制反应室的压力为1.0-6.0×10-3Torr、激光能量为220-300mJ、激光频率为10-30Hz、生长速度为50-300nm/h。
2.根据权利要求1所述的生长在钇铝石榴石衬底上的GaN薄膜,其特征在于,在外延生长GaN薄膜前,对钇铝石榴石衬底进行表面退火处理,具体操作如下:将钇铝石榴石衬底放入反应室内,在800-900℃下,氮气氛围中进行原位退火处理1-2h。
3.根据权利要求1所述的生长在钇铝石榴石衬底上的GaN薄膜,其特征在于,所述GaN薄膜的厚度为100-1000nm。
4.权利要求1所述的生长在钇铝石榴石衬底上的GaN薄膜在LED器件、光电探测器、太阳能电池器件中的应用。
CN201610553010.7A 2016-07-12 2016-07-12 生长在钇铝石榴石衬底上的GaN薄膜及其制备方法、应用 Active CN105977138B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610553010.7A CN105977138B (zh) 2016-07-12 2016-07-12 生长在钇铝石榴石衬底上的GaN薄膜及其制备方法、应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610553010.7A CN105977138B (zh) 2016-07-12 2016-07-12 生长在钇铝石榴石衬底上的GaN薄膜及其制备方法、应用

Publications (2)

Publication Number Publication Date
CN105977138A CN105977138A (zh) 2016-09-28
CN105977138B true CN105977138B (zh) 2018-09-28

Family

ID=56951783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610553010.7A Active CN105977138B (zh) 2016-07-12 2016-07-12 生长在钇铝石榴石衬底上的GaN薄膜及其制备方法、应用

Country Status (1)

Country Link
CN (1) CN105977138B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108269889A (zh) * 2017-12-11 2018-07-10 温州大学 一种生长在Ce:YAG单晶衬底上的GaN薄膜及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249684A (ja) * 2002-02-26 2003-09-05 Nichia Chem Ind Ltd 窒化物半導体用成長基板及び窒化物半導体発光素子並びにその製造方法
CN103296066A (zh) * 2013-05-31 2013-09-11 华南理工大学 生长在铝酸锶钽镧衬底上的GaN薄膜及其制备方法、应用
CN104040039A (zh) * 2012-01-11 2014-09-10 国立大学法人大阪大学 Iii族氮化物结晶的制造方法、iii族氮化物结晶及半导体装置
CN104332539A (zh) * 2013-07-22 2015-02-04 中国科学院福建物质结构研究所 GaN基LED外延结构及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003249684A (ja) * 2002-02-26 2003-09-05 Nichia Chem Ind Ltd 窒化物半導体用成長基板及び窒化物半導体発光素子並びにその製造方法
CN104040039A (zh) * 2012-01-11 2014-09-10 国立大学法人大阪大学 Iii族氮化物结晶的制造方法、iii族氮化物结晶及半导体装置
CN103296066A (zh) * 2013-05-31 2013-09-11 华南理工大学 生长在铝酸锶钽镧衬底上的GaN薄膜及其制备方法、应用
CN104332539A (zh) * 2013-07-22 2015-02-04 中国科学院福建物质结构研究所 GaN基LED外延结构及其制造方法

Also Published As

Publication number Publication date
CN105977138A (zh) 2016-09-28

Similar Documents

Publication Publication Date Title
US20120061660A1 (en) ZnO NANOSTRUCTURE-BASED LIGHT EMITTING DEVICE
WO2018040124A1 (zh) 生长在r面蓝宝石衬底上的非极性LED外延片的制备方法及应用
CN103296066B (zh) 生长在铝酸锶钽镧衬底上的GaN薄膜及其制备方法、应用
CN109830581A (zh) 一种高质量半极性铟镓氮二维超薄层结构及其制备方法
CN103441197B (zh) 一种GaN基发光二极管外延片及其制作方法
CN103996764B (zh) 生长在Ag衬底的LED外延片及其制备方法和应用
CN103996611B (zh) 一种生长在金属Al衬底上的GaN薄膜及其制备方法和应用
CN102544276A (zh) 生长在LiGaO2衬底上的非极性GaN薄膜及其制备方法、应用
CN103996610A (zh) 一种生长在金属铝衬底上的AlN薄膜及其制备方法和应用
CN203950831U (zh) 生长在Cu衬底的LED外延片
CN111354629B (zh) 一种用于紫外LED的AlN缓冲层结构及其制作方法
CN105977138B (zh) 生长在钇铝石榴石衬底上的GaN薄膜及其制备方法、应用
CN106328774A (zh) 一种GaN薄膜的外延生长方法及应用
CN106158592A (zh) 生长在铝酸镁钪衬底上的GaN薄膜及其制备方法和应用
CN206225325U (zh) 生长在铝酸镁钪衬底上的GaN薄膜
CN202454605U (zh) 生长在LiGaO2衬底上的非极性GaN薄膜
CN206422089U (zh) 生长在玻璃衬底上的GaN薄膜
CN103996758A (zh) 生长在Cu衬底的LED外延片及其制备方法和应用
CN203983318U (zh) 生长在Cu衬底的AlN薄膜
CN204257684U (zh) 一种生长在金属铝衬底上的AlN薄膜
CN203895486U (zh) 生长在Ag衬底上的LED外延片
CN204067411U (zh) 生长在W衬底上的GaN薄膜
CN204067412U (zh) 生长在W衬底上的AlN薄膜
CN204130574U (zh) 一种生长在金属Al衬底上的GaN薄膜
CN213816182U (zh) Si衬底的AlGaN基深紫外LED外延片

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant