CN105970146A - 塔式太阳能光热电站吸热器选择性吸收涂层、其制备方法及吸热器 - Google Patents

塔式太阳能光热电站吸热器选择性吸收涂层、其制备方法及吸热器 Download PDF

Info

Publication number
CN105970146A
CN105970146A CN201610334330.3A CN201610334330A CN105970146A CN 105970146 A CN105970146 A CN 105970146A CN 201610334330 A CN201610334330 A CN 201610334330A CN 105970146 A CN105970146 A CN 105970146A
Authority
CN
China
Prior art keywords
power station
coating
tower type
preparation
type solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610334330.3A
Other languages
English (en)
Other versions
CN105970146B (zh
Inventor
卢鹏荐
胡涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Tuocai Technology Co ltd
Original Assignee
Wuhan Polytron Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Polytron Technologies Inc filed Critical Wuhan Polytron Technologies Inc
Priority to CN201610334330.3A priority Critical patent/CN105970146B/zh
Publication of CN105970146A publication Critical patent/CN105970146A/zh
Application granted granted Critical
Publication of CN105970146B publication Critical patent/CN105970146B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/20Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption
    • F24S70/225Details of absorbing elements characterised by absorbing coatings; characterised by surface treatment for increasing absorption for spectrally selective absorption
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明属于太阳能光热发电技术领域,具体涉及一种塔式太阳能光热电站吸热器选择性吸收涂层、其制备方法及吸热器。选择性吸收涂层包括Mo和Co惨杂的Ni‑Cr尖晶石型氧化物层高吸收底层和Ni‑Cu‑Al2O3高透过低发射表层。选择性吸收涂层的制备方法包括:1)高吸收粉末材料的制备;2)底层涂层的制备;3)Ni‑Cu‑Al2O3溶胶凝胶的制备;4)Ni‑Cu‑Al2O3薄膜的制备。本发明所提供的选择性吸收涂层,在可见光和近红外区域的都具有很高的吸收率,同时具有很低的红外发射率。在高温老化试验和盐雾酸碱试验中,涂层都有很稳定的表现,可以满足塔式吸热器的高温、热循环次数多的恶劣环境。

Description

塔式太阳能光热电站吸热器选择性吸收涂层、其制备方法及吸热器
技术领域
本发明属于太阳能光热发电技术领域,具体涉及一种塔式太阳能光热电站吸热器选择性吸收涂层、其制备方法及吸热器。
背景技术
光热发电是继风电、光伏发电之后新能源领域中可再生能源的发展方向,被列入国家《可再生能源发展“十二五”规划》,中国是世界上最大太阳能热水器生产和使用大国,目前主要为低温应用。新型非真空集热器系统填补国内太阳能光热非真空集热管的市场空白,用于太阳能中高温光热发电。太阳能中高温光热发电被称为工业绿色动力,全国工业中、高温热能市场具有30万亿。
太阳能选择性吸收涂层是太阳能光热利用的核心技术之一,它的发展经历了单层金属材料涂覆到多层材料复合等阶段,限于太阳能吸热涂层的应用要求和技术条件,目前多集中在真空太阳能吸热管领域。但塔式太阳能电站目前也是光热发电的主要技术之一,塔式太阳能吸热器表面的选择性涂层是目前的难题,世界上目前使用的也是美国一家公司的高吸收的涂层,但是仍然存在使用寿命短,发射率高等问题。
发明内容
本发明针对目前塔式光热电站吸热器难以制备选择性吸收涂层或涂层寿命短的问题,本发明提供了一种塔式太阳能光热电站吸热器选择性吸收涂层、其制备方法及吸热器。本发明所提供的塔式太阳能光热电站吸热器选择性吸收涂层,具有多层复合的金属陶瓷结构,底层基于尖晶石复合吸收粉末,用热喷涂制备耐高温吸收涂层,再在外层采用溶胶凝胶的形式制备低发射涂层,通过底层高吸收—表层高透过低发射的多层复合涂层来实现高吸收低发射的高温选择性涂层。
一种塔式太阳能光热电站吸热器选择性吸收涂层,包括高吸收底层和高透过低发射表层,其中,所述高吸收底层为Mo和Co惨杂的Ni-Cr尖晶石型氧化物层,所述高透过低发射表层为Ni-Cu-Al2O3层。
具体的,所述高吸收底层中,Mo和Co的质量比为1:1~2,Mo和Co的总质量与Ni-Cr尖晶石型氧化物的质量比为1:10~15。
具体的,所述高透过低发射表层中,Ni的含量为5~10wt%,Cu的含量为10~25wt%。
具体的,所述高吸收底层的厚度小于等于50微米,所述高透过低发射表层的厚度小于等于150纳米。
本发明还提供了一种塔式太阳能光热电站吸热器选择性吸收涂层的制备方法,包括以下步骤:
1)将Mo粉、Co粉和Ni-Cr尖晶石型氧化物粉末混合,经过球磨和过筛,得到粒度为10~20μm的初混粉末,将所述初混粉末依次经过干燥、成型、造粒和烧成,得到复合粉末。
具体的,步骤1)中,Mo和Co的质量比为1:1~2,Mo和Co的总质量与Ni-Cr尖晶石型氧化物的质量比为1:10~15。
2)对不锈钢底层表面进行喷砂处理,得到洁净和多微孔的不锈钢底层,再通过等离子喷涂将步骤1)得到的复合粉末熔融喷涂到不锈钢底层表面,得到高吸收底层。
3)将异丙醇铝缓慢地加入到80~90℃的去离子水中,高速搅拌至充分溶解后,再依次加入CuCl2、硝酸镍、柠檬酸、正硅酸四乙酯和无水乙醇,制备得到复合溶胶。
4)将步骤2)得到的高吸收底层在步骤3)得到的复合溶胶进行浸渍,浸渍后以0.8~1.2mm/s的速度进行提拉镀膜,先将制得的湿膜在常温下自然干燥,再在110~130℃干燥,最后进行热处理,在高吸收底层上形成作为高透过低发射表层的Ni-Cu-Al2O3薄膜,得到塔式太阳能光热电站吸热器选择性吸收涂层。
具体的,步骤4)中的热处理方法为:在箱式电阻炉中以0.8~1.2℃/min的速率缓慢升温至380~420℃,保温1.5~2.5h以后随炉冷却,形成Ni-Cu-Al2O3薄膜。
具体的,步骤4)中形成的Ni-Cu-Al2O3薄膜中,Ni的含量为5~10wt%,Cu的含量为10~25wt%。
本发明还提供了一种塔式太阳能光热电站吸热器,其设置有本发明所提供的上述塔式太阳能光热电站吸热器选择性吸收涂层。
本发明所提供的选择性吸收涂层,在可见光和近红外区域的都具有很高的吸收率,同时具有很低的红外发射率。在高温老化试验和盐雾酸碱试验中,涂层都有很稳定的表现,可以满足塔式吸热器的高温、热循环次数多的恶劣环境。
附图说明
图1是本发明所提供的制备方法中等离子喷涂后的高吸收底层的形貌图。
具体实施方式
以下对本发明的原理和特征进行描述,所举实施例只用于解释本发明,并非用于限定本发明的范围。
实施例1
在不锈钢基片上采用超音速火焰喷涂制备厚度为25μm的吸收底层,将制备好底层吸收层的不锈钢片缓慢地浸入溶胶凝胶中,浸渍40s以后以1mm/s的速度对其进行提拉镀膜,先让制得的湿膜在常温下自然干燥3h,再使其在120℃干燥60min,最后放入箱式电阻炉中进行热处理,先以1℃/min的速率缓慢升温至400℃,保温2h以后随炉冷却,即制得Ni-Cu-Al2O3薄膜。Mo与Co的质量比为1:2,Mo和Co的总质量与Ni-Cr尖晶石型氧化物的质量比为1:10。Ni-Cu-Al2O3薄膜中,Ni的含量为10wt%,Cu的含量为20wt%。
经分光光度计测试得到吸收率0.90,发射率0.22。
实施例2
在不锈钢基片上采用超音速制备40μm的吸收底层,然后在制备好的溶胶中浸渍40s以后以1mm/s的速度对其进行提拉镀膜,提拉3次,先让制得的湿膜在常温下自然干燥3h,再使其在120℃干燥60min,最后放入箱式电阻炉中进行热处理,先以1.2℃/min的速率缓慢升温至380℃,保温2h以后随炉冷却,即制得Ni-Cu-Al2O3薄膜。Mo与Co的质量比为1:1,Mo和Co的总质量与Ni-Cr尖晶石型氧化物的质量比为1:15。Ni-Cu-Al2O3薄膜中,Ni的含量为10wt%,Cu的含量为15wt%。
经分光光度计测试得到吸收率0.96,发射率0.11。经过XRD分析,全部是Cu尖晶石结构,可以看出吸收层厚度增加,吸收率增加,同时,将提拉次数增加,其发射率也会降低。
实施例3。
在不锈钢基片上采用超音速制备50μm的吸收底层,然后在制备好的溶胶中浸渍40s以后以0.8mm/s的速度对其进行提拉镀膜,提拉4次,先让制得的湿膜在常温下自然干燥3h,再使其在110℃干燥60min,最后放入箱式电阻炉中进行热处理,先以0.8℃/min的速率缓慢升温至420℃,保温2h以后随炉冷却,即制得Ni-Cu-Al2O3薄膜。Mo与Co的质量比为1:1.5,Mo和Co的总质量与Ni-Cr尖晶石型氧化物的质量比为1:12。Ni-Cu-Al2O3薄膜中,Ni的含量为5wt%,Cu的含量为25wt%
经分光光度计测试得到吸收率0.90,发射率0.15。经过XRD分析,全部是Cu尖晶石结构,吸收层厚度增加,吸收率增加,同时,将提拉次数增加,其发射率也会降低。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种塔式太阳能光热电站吸热器选择性吸收涂层,其特征在于:包括高吸收底层和高透过低发射表层,其中,所述高吸收底层为Mo和Co惨杂的Ni-Cr尖晶石型氧化物层,所述高透过低发射表层为Ni-Cu-Al2O3层。
2.根据权利要求1所述的塔式太阳能光热电站吸热器选择性吸收涂层,其特征在于:所述高吸收底层中,Mo和Co的质量比为1:1~2,Mo和Co的总质量与Ni-Cr尖晶石型氧化物的质量比为1:10~15。
3.根据权利要求1所述的塔式太阳能光热电站吸热器选择性吸收涂层,其特征在于:所述高透过低发射表层中,Ni的含量为5~10wt%,Cu的含量为10~25wt%。
4.根据权利要求1所述的塔式太阳能光热电站吸热器选择性吸收涂层,其特征在于:所述高吸收底层的厚度小于等于50微米,所述高透过低发射表层的厚度小于等于150纳米。
5.一种塔式太阳能光热电站吸热器选择性吸收涂层的制备方法,其特征在于,包括以下步骤:
1)将Mo粉、Co粉和Ni-Cr尖晶石型氧化物粉末混合,经过球磨和过筛,得到粒度为10~20μm的初混粉末,将所述初混粉末依次经过干燥、成型、造粒和烧成,得到复合粉末;
2)对不锈钢底层表面进行喷砂处理,得到洁净和多微孔的不锈钢底层,再通过等离子喷涂将步骤1)得到的复合粉末熔融喷涂到不锈钢底层表面,得到高吸收底层;
3)将异丙醇铝缓慢地加入到80~90℃的去离子水中,高速搅拌至充分溶解后,再依次加入CuCl2、硝酸镍、柠檬酸、正硅酸四乙酯和无水乙醇,制备得到复合溶胶;
4)将步骤2)得到的高吸收底层在步骤3)得到的复合溶胶进行浸渍,浸渍后以0.8~1.2mm/s的速度进行提拉镀膜,先将制得的湿膜在常温下自然干燥,再在110~130℃干燥,最后进行热处理,在高吸收底层上形成作为高透过低发射表层的Ni-Cu-Al2O3薄膜,得到塔式太阳能光热电站吸热器选择性吸收涂层。
6.根据权利要求5所述的塔式太阳能光热电站吸热器选择性吸收涂层的制备方法,其特征在于,步骤4)中的热处理方法为:在箱式电阻炉中以0.8~1.2℃/min的速率缓慢升温至380~420℃,保温1.5~2.5h以后随炉冷却,形成Ni-Cu-Al2O3薄膜。
7.根据权利要求5所述的塔式太阳能光热电站吸热器选择性吸收涂层的制备方法,其特征在于:步骤1)中,Mo和Co的质量比为1:1~2,Mo和Co的总质量与Ni-Cr尖晶石型氧化物的质量比为1:10~15。
8.根据权利要求5所述的塔式太阳能光热电站吸热器选择性吸收涂层的制备方法,其特征在于:步骤4)中形成的Ni-Cu-Al2O3薄膜中,Ni的含量为5~10wt%,Cu的含量为10~25wt%。
9.一种根据权利要求5至8任一所述的制备方法制备得到的塔式太阳能光热电站吸热器选择性吸收涂层。
10.一种塔式太阳能光热电站吸热器,其特征在于:设置有权利要求1至4任一所述的塔式太阳能光热电站吸热器选择性吸收涂层或权利要求9所述的塔式太阳能光热电站吸热器选择性吸收涂层。
CN201610334330.3A 2016-05-19 2016-05-19 塔式太阳能光热电站吸热器选择性吸收涂层、其制备方法及吸热器 Active CN105970146B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610334330.3A CN105970146B (zh) 2016-05-19 2016-05-19 塔式太阳能光热电站吸热器选择性吸收涂层、其制备方法及吸热器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610334330.3A CN105970146B (zh) 2016-05-19 2016-05-19 塔式太阳能光热电站吸热器选择性吸收涂层、其制备方法及吸热器

Publications (2)

Publication Number Publication Date
CN105970146A true CN105970146A (zh) 2016-09-28
CN105970146B CN105970146B (zh) 2018-09-14

Family

ID=56955381

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610334330.3A Active CN105970146B (zh) 2016-05-19 2016-05-19 塔式太阳能光热电站吸热器选择性吸收涂层、其制备方法及吸热器

Country Status (1)

Country Link
CN (1) CN105970146B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107367080A (zh) * 2017-06-26 2017-11-21 湖北工业大学 一种FeMnCuO4太阳能选择性吸收涂层的制备方法
CN112609148A (zh) * 2020-12-09 2021-04-06 中国南方电网有限责任公司超高压输电公司柳州局 一种新型输电铁塔用材Ni-Cu-AT13涂层的制备方法及Ni-Cu-AT13涂层

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102286243A (zh) * 2011-09-05 2011-12-21 中国科学院兰州化学物理研究所 以尖晶石型颜料为吸光剂制备太阳能选择性吸热涂料的方法
CN102357658A (zh) * 2011-04-29 2012-02-22 福州大学 一种用于制备太阳光热转换吸收薄膜的水溶胶
CN102514280A (zh) * 2011-12-12 2012-06-27 武汉理工大学 一种太阳能选择性吸收涂层及其制备方法
WO2015097333A1 (es) * 2013-12-27 2015-07-02 Abengoa Solar New Technologies, S.A. Recubrimientos absorbentes para receptores solares centrales y procedimiento para la preparación in situ de dichos recubrimientos

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102357658A (zh) * 2011-04-29 2012-02-22 福州大学 一种用于制备太阳光热转换吸收薄膜的水溶胶
CN102286243A (zh) * 2011-09-05 2011-12-21 中国科学院兰州化学物理研究所 以尖晶石型颜料为吸光剂制备太阳能选择性吸热涂料的方法
CN102514280A (zh) * 2011-12-12 2012-06-27 武汉理工大学 一种太阳能选择性吸收涂层及其制备方法
WO2015097333A1 (es) * 2013-12-27 2015-07-02 Abengoa Solar New Technologies, S.A. Recubrimientos absorbentes para receptores solares centrales y procedimiento para la preparación in situ de dichos recubrimientos

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
熊德华 等: "太阳能光热转化选择性吸收涂层研究进展", 《科技导报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107367080A (zh) * 2017-06-26 2017-11-21 湖北工业大学 一种FeMnCuO4太阳能选择性吸收涂层的制备方法
CN107367080B (zh) * 2017-06-26 2019-02-26 湖北工业大学 一种FeMnCuO4太阳能选择性吸收涂层的制备方法
CN112609148A (zh) * 2020-12-09 2021-04-06 中国南方电网有限责任公司超高压输电公司柳州局 一种新型输电铁塔用材Ni-Cu-AT13涂层的制备方法及Ni-Cu-AT13涂层
CN112609148B (zh) * 2020-12-09 2022-11-01 中国南方电网有限责任公司超高压输电公司柳州局 一种新型输电铁塔用材Ni-Cu-AT13涂层的制备方法及Ni-Cu-AT13涂层

Also Published As

Publication number Publication date
CN105970146B (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
CN102964067B (zh) 用于太阳能光伏玻璃的SiO2增透薄膜及其制备方法
CN105131741A (zh) 一种体吸收型太阳能选择性吸热涂料及其制备方法与应用
CN104151880A (zh) 一种纳米碳粉改性的太阳能吸热涂料
CN103984046B (zh) 太阳能光伏玻璃双面单层增透膜的溶胶液及制备方法和镀膜方法
CN107523827A (zh) 一种中高温太阳选择性吸收复合涂层及其制备方法
CN105970146A (zh) 塔式太阳能光热电站吸热器选择性吸收涂层、其制备方法及吸热器
CN103320776B (zh) 一种非真空中高温太阳能选择性吸收涂层复合减反膜及其制备方法
CN104121709B (zh) 一种具有膜孔结构的太阳能集热器
CN101409158B (zh) 染料敏化太阳电池分级微纳结构ZnO电极材料及电极的制备方法
CN104862687A (zh) 一种金属防热结构表面涂层的制备方法
CN202943944U (zh) 一种用于太阳能光伏玻璃的SiO2增透薄膜
CN106187198A (zh) 耐热震基底材料及其用作太阳能热发电吸热材料的用途
CN105489381B (zh) 染料敏化太阳能电池光散射层及其制备方法
CN105568238A (zh) 具有太阳能选择性吸收薄膜膜系的制备方法
CN107400848B (zh) 一种多层结构的太阳能选择性吸收涂层及其制备方法
CN109651853B (zh) 一种高温空气中稳定的MoSi2-SiO2复合物光热涂层及其制备方法
CN108122996B (zh) 一种适用于中高温太阳能选择性吸收的热喷涂涂层减反保护层及其制备方法
CN105402903A (zh) 多用途平板式太阳能装置制作方法及其制品
CN106968561A (zh) 一种改进的太阳能窗户
CN109282505B (zh) 一种保温隔热太阳能光伏一体板
CN202066240U (zh) 一种真空集热管涂层结构
CN206593320U (zh) 一种碟式斯特林光热发电集热器及系统
CN109631370A (zh) 中高温太阳能吸收涂层及其制备方法
CN109373618A (zh) 一种选择性太阳能吸收复合涂层的制备方法
CN107620104A (zh) Aao基光子晶体太阳光谱选择性吸收涂层的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: No. 03, 4th Floor, Building 3, International Enterprise Center, No. 1, Optics Valley Avenue, Donghu New Technology Development Zone, Wuhan City, Hubei Province 430000

Patentee after: Wuhan source pulse technology Co.,Ltd.

Address before: No. 03, 4th Floor, Building 3, International Enterprise Center, No. 1, Optics Valley Avenue, Donghu New Technology Development Zone, Wuhan City, Hubei Province 430000

Patentee before: WUHAN YUANMAI TECHNOLOGY CO.,LTD.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220826

Address after: 433-6000 Gezhou Guangcheng Technology Development Zone, Hubei Province

Patentee after: WUHAN TUOCAI TECHNOLOGY CO.,LTD.

Address before: No. 03, 4th Floor, Building 3, International Enterprise Center, No. 1, Optics Valley Avenue, Donghu New Technology Development Zone, Wuhan City, Hubei Province 430000

Patentee before: Wuhan source pulse technology Co.,Ltd.