CN105956565A - 一种考虑量测信号丢失的动态振荡信号参数辨识方法 - Google Patents

一种考虑量测信号丢失的动态振荡信号参数辨识方法 Download PDF

Info

Publication number
CN105956565A
CN105956565A CN201610302188.4A CN201610302188A CN105956565A CN 105956565 A CN105956565 A CN 105956565A CN 201610302188 A CN201610302188 A CN 201610302188A CN 105956565 A CN105956565 A CN 105956565A
Authority
CN
China
Prior art keywords
moment
covariance
formula
measurement
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610302188.4A
Other languages
English (en)
Other versions
CN105956565B (zh
Inventor
王�义
孙永辉
卫志农
孙国强
张世达
郭敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201610302188.4A priority Critical patent/CN105956565B/zh
Publication of CN105956565A publication Critical patent/CN105956565A/zh
Application granted granted Critical
Publication of CN105956565B publication Critical patent/CN105956565B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2218/00Aspects of pattern recognition specially adapted for signal processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Complex Calculations (AREA)

Abstract

本发明公开了一种考虑量测信号丢失的动态振荡信号参数辨识方法。该方法首先采用二项分布建立了量测信号丢失的数学模型;然后,在此基础上设计出了适用于量测信号丢失情形下动态振荡信号参数辨识的方法,即改进的扩展卡尔曼滤波算法。该算法在设计时不仅考虑了量测信号丢失的情况,而且引入了系统噪声和量测噪声协方差矩阵的动态计算方法,可以有效的避免因噪声协方差矩阵设置不当而引起的算法失效,提高了算法的效率。该算法因考虑了实际工程背景,且简单方便,具有较高的工程应用价值。

Description

一种考虑量测信号丢失的动态振荡信号参数辨识方法
技术领域
本发明涉及一种考虑量测信号丢失的动态振荡信号参数辨识方法,属于信号分析与参数辨识技术领域。
背景技术
近年来,随着现代电网规模不断扩大,电网互联程度的日益提高,系统受到大、小扰动后产生的动态振荡已经成为制约电网安全稳定运行的最主要的因素之一。由于这些动态振荡信号可以提供关于电力系统运行模式的重要信息,所以发现并准确掌握这些振荡信号特征对于电力系统安全稳定运行具有重要意义。
鉴于动态振荡信号辨识的重要性,研究人员提出许多辨识方法,如最大似然法、普龙尼法,卡尔曼滤波方法等。但是,这些方法在设计时未考虑量测信号发生数据丢包情况。因此,在量测信号发生丢包时,这些方法无法有效的对动态振荡信号的参数进行有效的辨识。所以,研究量测信号丢包的动态振荡信号参数辨识方法具有重要现实意义和工程应用价值。
发明内容
发明目的:针对现有技术中存在的问题,为了有效地解决量测信号丢包时动态振荡信号的参数辨识,克服已有辨识算法的缺点,本发明设计了一种考虑量测信号丢失的动态振荡信号参数辨识方法,有效的实现了量测信号丢包情况下的动态振荡信号参数辨识。
技术方案:一种考虑量测信号丢失的动态振荡信号参数辨识方法,该方法在计算机中是依次按照如下步骤实现的:
(1)、获取量测信号丢失的离散状态空间表达式,模型公式为:
x ( k + 1 ) = f ( x ( k ) ) + w ( k ) y ( k ) = Ξ ( k ) h ( x ( k ) ) + v ( k )
式中,x(k)表示k时刻的状态向量,y(k)表示k时刻的输出量测向量,f(·)和h(·)是对应于具体问题中的非线性函数,w(k)和v(k)分别是系统噪声和量测噪声,Ξ(k)是符合二项分布的白噪声随机序列,即,Ξ(k)=diag{γ1(k),γ2(k),…,γm(k)},γi(k)(i=1...m)是不相关的随机变量,且与w(k)和v(k),x(0)不相关。
(2)、γi(k)的取值为0或者1,且满足如下计算公式:
prob(γi(k)=0)=1-μi(k)
prob(γi(k)=1)=μi(k)
式中,prob(γi(k)=0)=1-μi(k)表示的是第i个量测量的丢失率。
(3)、初始化,包括:设定参数辨识的初值初始参数辨识误差协方差以及过程噪声和量测噪声所满足的初始协方差矩阵Q0和R0,整体算法迭代次数最大值S;
(4)、获取量测数据丢包情况下的量测数据y(k);
(5)、由已知条件,计算k时刻的系统噪声和量测噪声所满足的动态协方差矩阵Q(k)和R(k),计算公式为:
s ( k ) = y ( k ) - Ξ ‾ ( k ) h ( x ~ ( k ) )
C v k = 1 N Σ i = k - N + 1 k s ( k ) s ( k ) T
Q(k)=G(k)CvkK(k)T
R ( k ) = C v k + ( Ξ ‾ ( k ) · H ( k ) ) · P ^ ( k ) · ( Ξ ‾ ( k ) · H ( k ) ) T
式中k代表第k时刻迭代,N是动态估计窗口值,其是一个常数,G(k)是k时刻的卡尔曼滤波增益,是k时刻的状态估计协方差,表示非线性函数h(·)在处的雅克比矩阵,其中h(·)对应具体问题输出方程中的非线性函数,上标T表示矩阵的装置。系数的计算公式如下:
Ξ ‾ ( k ) = E { Ξ ( k ) } = d i a g μ 1 ( k ) μ 2 ( k ) ... μ m ( k )
(6)、由已经得到的k-1时刻的状态估计值和状态估计误差协方差,利用本发明算法的预测步,得到k时刻的状态预测值和状态预测误差协方差,计算公式为:
x ~ ( k ) = f ( x ^ ( k - 1 ) )
P ~ ( k ) = F k - 1 P ^ ( k - 1 ) F k - 1 T + Q ( k - 1 )
式中,表示k时刻的状态预测值,f(·)表示非线性函数,表示k-1时刻的状态估计向量。表示k时刻的状态预测误差协方差,表示非线性函数f(x)在处的雅克比矩阵,表示k-1时刻的状态估计误差协方差,上标T表示转置,Q(k-1)是系统噪声k-1时刻所满足的动态协方差矩阵。
(7)、由已知条件计算k时刻的中间迭代变量M(k),其计算公式为:
式中ο符号表示Hadamard乘积,其定义为[AοB]ij=[Aij×Bij],式中系数的取值计算规则为:
Ξ ~ ( k ) = d i a g { μ ~ 1 ( k ) , μ ~ 2 ( k ) , ... , μ ~ m ( k ) }
μ ~ i ( k ) = μ i ( k ) ( 1 - μ i ( k ) ) , ( i = 1 , 2 , ... m )
(8)、利用k时刻的中间迭代值M(k)和k时刻的预测误差协方差计算k时刻的最优滤波增益,计算步骤为:
G ( k ) = P ~ ( k ) H T ( k ) Ξ ‾ ( k ) M - 1 ( K )
式中,G(k)表示k时刻的最优滤波增益,表示k时刻的状态预测误差协方差,上标T表示转置,表示非线性函数h(x)在处的雅克比矩阵。
(9)、利用k时刻的最优滤波增益和k时刻的预测误差协方差计算k时刻的估计误差协方差,计算步骤为:
P ^ ( k ) = ( I - G ( k ) Ξ ‾ ( k ) H ( k ) ) P ~ ( k )
(10)、结合已得到的k时刻的最优滤波增益和k时刻的状态预测值计算k时刻的状态估计值,计算步骤为:
x ^ ( k ) = x ~ ( k ) + G ( k ) [ y ( k ) - Ξ ‾ ( k ) h ( x ~ ( k ) ) ]
(11)、按照上述步骤,进行多次迭代辨识,若k≤S,则迭代继续,若k>S,则迭代结束,输出辨识结果。
附图说明
图1为本发明实施例的方法流程图;
图2实施例的动态振荡信号;
图3为实施例采用本发明方法以及EKF算法的信号频率辨识结果对比;
图4为实施例采用本发明方法以及EKF算法的信号阻尼因子辨识结果对比;
图5为实施例采用本发明方法信号频率和阻尼因子的辨识误差。
具体实施方式
下面结合具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
如图1所示,动态振荡信号参数辨识方法,其包含如下步骤:
(1)、获取量测信号丢失的离散状态空间表达式;
(2)、初始化,包括:设定参数辨识的初值初始参数辨识误差协方差以及过程噪声和量测噪声所满足的初始协方差矩阵Q0和R0,整体算法迭代次数最大值S;
(3)、获取量测数据丢包情况下的量测数据y(k);
(4)、由已知条件,计算k时刻的系统噪声和量测噪声所满足的协方差矩阵Q(k)和R(k);
(5)、由已经得到的k-1时刻的状态估计值和状态估计误差协方差,利用本发明算法的预测步,得到k时刻的状态预测值和状态预测误差协方差;
(6)、由已知条件计算k时刻的中间迭代变量M(k);
(7)、利用k时刻的中间迭代值M(k)和k时刻的预测误差协方差计算k时刻的最优滤波增益;
(8)、利用k时刻的最优滤波增益和k时刻的预测误差协方差计算k时刻的估计误差协方差;
(9)、结合已得到的k时刻的最优滤波增益和k时刻的状态预测值计算k时刻的状态估计值;
(10)、按照上述步骤,进行多次迭代辨识,若k≤S,则迭代继续,若k>S,则迭代结束,输出辨识结果。
一般情况下动态振荡信号可以表示为多个指数衰减的正弦信号的之和,可以描述为如下形式:
y ( t ) = Σ i = 1 N A i e - δ i t cos ( w i t + φ i ) + n ( t )
式中,Aii,wii是实数的未知参数,n(t)是一个零均值白噪声。其中,δi称为动态信号的阻尼因子,wi是动态信号的频率,其中wi,δi为待估参数。经过推理可以得到动态信号的状态变量分量中包含待估参数的离散状态空间模型。考虑由N个指数衰减的正弦信号总和组成的动态信号,其4N个状态变量形式可以表达如下:
x 4 i - 3 , k = A i e - δ i k f s c o s ( w i k f s )
x 4 i - 2 , k = A i e - δ i k f s s i n ( w i k f s )
x4i-1,k=wi
x4i,k=δi
式中i代表这些变量和参数是属于动态信号的第i个衰减正弦信号。k代表时刻,fs代表采样频率。根据推理可得到k+1时刻的状态分量:
x 4 i - 3 , k + 1 = e - x 4 i , k f s [ x 4 i - 3 , k c o s ( x 4 i - 1 , k f s ) - x 4 i - 2 , k s i n ( x 4 i - 1 , k f s ) ] + w 4 i - 3 , k
x 4 i - 2 , k + 1 = e - x 4 i , k f s [ x 4 i - 3 , k s i n ( x 4 i - 1 , k f s ) + x 4 i - 2 , k c o s ( x 4 i - 1 , k f s ) ] + w 4 i - 2 , k
x4i-1,k+1=x4i-1,k+w4i-1,k
x4i,k+1=x4i,k+w4i,k
则考虑量测数据丢包的输出方程为:
y k = Ξ ( k ) ( Σ i = 1 N k 2 i - 1 x 4 i - 3 , k + k 2 i x 4 i - 2 , k ) + n k
式中,k2i-1=cos(φi),k2i=-sin(φi),nk为均值为零的白噪声,Ξ(k)为对应维度的二项分布随机序列。
所以,考虑量测数据丢包的动态振荡信号的状态空间模型一般可以表示为:
x k + 1 = f ( x k ) + w ( k ) y ( k ) = Ξ ( k ) h ( x k ) + v ( k )
式中,f(·)和h(·)代表可以根据泰勒级数展开进行线性化的非线性函数,w(k)和v(k)是均值为零的高斯白噪声序列,分别满足动态协方差矩阵Q(k)和R(k)。具体而言:
f ( x k ) = M 1 M 2 . . . M i . . . M N , M i = x 4 i - 3 , k x 4 i - 2 , k x 4 i - 1 , k x 4 i , k
而函数h(xk)可以表示为如下形式:
H=(k1k200…,k2i-1k2i00…,k2N-1k2N00)
h(xk)=Hxk
至此,考虑量测数据丢包的动态振荡信号状态空间表达式已建立。在此基础上,则可以运用本发明所介绍的方法,进行量测信号丢包情况下的动态振荡信号参数辨识,得到辨识结果。
下面介绍本发明的一个实施例:
考虑动态振荡信号为:
y(k)=Ξ(k)e-0.01k sin(0.4k)+nk,0≤k≤300
式中k是信号采样时刻,nk是高斯白噪声。如图2所示,该动态信号是由一个指数衰减的正弦信号组成,该动态振荡信号的频率为w=0.4,阻尼因子为δ=0.01。在运用本发明所提出的方法进行动态信号参数辨识时,所采用的相关初始参数值为:
R0=10-4
x ^ 0 = 0.1 0 0.3 0.004 T
在对本算例进行辨识时,假设量测信号的丢包率u=0.1,在计算噪声所满足的动态误差协方差矩阵时,动态估计窗口值N=2。
图1为实施例所用的算法流程图,图2为实施例的动态振荡信号,图3为实施例采用本发明方法以及EKF算法的信号频率w辨识结果对比,图4为实施例采用本发明方法以及EKF算法的信号阻尼因子δ辨识结果对比,图5为实施例采用本发明方法信号频率和阻尼因子的辨识误差。对比结果表明,本发明所提的方法有效的实现了量测信号丢失情形下的动态振荡信号参数辨识,且较EKF算法具有更好的收敛性和精度。

Claims (5)

1.一种考虑量测信号丢失的动态振荡信号参数辨识方法,其特征在于,包含如下步骤:
(1)、获取量测信号丢失的离散状态空间表达式;
(2)、初始化,包括:设定参数辨识的初值初始参数辨识误差协方差以及过程噪声和量测噪声所满足的初始协方差矩阵Q0和R0,整体算法迭代次数最大值S;
(3)、获取量测数据丢包情况下的量测数据y(k);
(4)、由已知条件,计算k时刻的系统噪声和量测噪声所满足的协方差矩阵Q(k)和R(k);
(5)、由已经得到的k-1时刻的状态估计值和状态估计误差协方差,利用本发明算法的预测步,得到k时刻的状态预测值和状态预测误差协方差;
(6)、由已知条件计算k时刻的中间迭代变量M(k);
(7)、利用k时刻的中间迭代值M(k)和k时刻的预测误差协方差计算k时刻的最优滤波增益;
(8)、利用k时刻的最优滤波增益和k时刻的预测误差协方差计算k时刻的估计误差协方差;
(9)、结合已得到的k时刻的最优滤波增益和k时刻的状态预测值计算k时刻的状态估计值;
(10)、按照上述步骤,进行多次迭代辨识,若k≤S,则迭代继续,若k>S,则迭代结束,输出辨识结果。
2.如权利要求1所述的考虑量测信号丢失的动态振荡信号参数辨识方法,其特征在于,获取量测信号丢失的离散状态空间表达式,模型公式为:
x ( k + 1 ) = f ( x ( k ) ) + w ( k ) y ( k ) = Ξ ( k ) h ( x ( k ) ) + v ( k )
式中,x(k)表示k时刻的状态向量,y(k)表示k时刻的输出量测向量,f(·)和h(·)是对应于具体问题中的非线性函数,w(k)和v(k)分别是系统噪声和量测噪声,Ξ(k)是符合二项分布的白噪声随机序列,即,Ξ(k)=diag{γ1(k),γ2(k),…,γm(k)},γi(k)(i=1...m)是不相关的随机变量,且与w(k)和v(k),x(0)不相关。
(2)、γi(k)的取值为0或者1,且满足如下计算公式:
prob(γi(k)=0)=1-μi(k)
prob(γi(k)=1)=μi(k)
式中,prob(γi(k)=0)=1-μi(k)表示的是第i个量测量的丢失率。
3.如权利要求2所述的考虑量测信号丢失的动态振荡信号参数辨识方法,其特征在于,由已知条件,计算k时刻的系统噪声和量测噪声所满足的动态协方差矩阵Q(k)和R(k),计算公式为:
s ( k ) = y ( k ) - Ξ ‾ ( k ) h ( x ~ ( k ) )
C v k = 1 N Σ i = k - N + 1 k s ( k ) s ( k ) T
Q(k)=G(k)CvkG(k)T
R ( k ) = C v k + ( Ξ ‾ ( k ) · H ( k ) ) · P ^ ( k ) · ( Ξ ‾ ( k ) · H ( k ) ) T
式中k代表第k时刻迭代,N是动态估计窗口值,其是一个常数,G(k)是k时刻的卡尔曼滤波增益,是k时刻的状态估计协方差,表示非线性函数h(·)在处的雅克比矩阵,其中h(·)对应具体问题输出方程中的非线性函数,上标T表示矩阵的装置。系数的计算公式如下:
Ξ ‾ ( k ) = E { Ξ ( k ) } = d i a g μ 1 ( k ) μ 2 ( k ) ... μ m ( k ) .
4.如权利要求3所述的考虑量测信号丢失的动态振荡信号参数辨识方法,其特征在于,由已经得到的k-1时刻的状态估计值和状态估计误差协方差,利用本发明算法的预测步,得到k时刻的状态预测值和状态预测误差协方差,计算公式为:
x ~ ( k ) = f ( x ^ ( k - 1 ) )
P ~ ( k ) = F k - 1 P ^ ( k - 1 ) F k - 1 T + Q ( k - 1 )
式中,表示k时刻的状态预测值,f(·)表示非线性函数,表示k-1时刻的状态估计向量;表示k时刻的状态预测误差协方差,表示非线性函数f(x)在处的雅克比矩阵,表示k-1时刻的状态估计误差协方差,上标T表示转置,Q(k-1)是系统噪声k-1时刻所满足的动态协方差矩阵;
由已知条件计算k时刻的中间迭代变量M(k),其计算公式为:
式中о符号表示Hadamard乘积,其定义为[AоB]ij=[Aij×Bij],式中系数的取值计算规则为:
Ξ ~ ( k ) = d i a g { μ ~ 1 ( k ) , μ ~ 2 ( k ) , ... , μ ~ m ( k ) }
μ ~ i ( k ) = μ i ( k ) ( 1 - μ i ( k ) ) , ( i = 1 , 2 , ... m ) .
5.如权利要求4所述的考虑量测信号丢失的动态振荡信号参数辨识方法,其特征在于,利用k时刻的中间迭代值M(k)和k时刻的预测误差协方差计算k时刻的最优滤波增益,计算步骤为:
G ( k ) = P ~ ( k ) H T ( k ) Ξ ‾ ( k ) M - 1 ( K )
式中,G(k)表示k时刻的最优滤波增益,表示k时刻的状态预测误差协方差,上标T表示转置,表示非线性函数h(x)在处的雅克比矩阵;
利用k时刻的最优滤波增益和k时刻的预测误差协方差计算k时刻的估计误差协方差,计算步骤为:
P ^ ( k ) = ( I - G ( k ) Ξ ‾ ( k ) H ( k ) ) P ~ ( k )
结合已得到的k时刻的最优滤波增益和k时刻的状态预测值计算k时刻的状态估计值,计算步骤为:
x ^ ( k ) = x ~ ( k ) + G ( k ) [ y ( k ) - Ξ ‾ ( k ) h ( x ~ ( k ) ) ] .
CN201610302188.4A 2016-05-09 2016-05-09 一种考虑量测信号丢失的动态振荡信号参数辨识方法 Active CN105956565B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610302188.4A CN105956565B (zh) 2016-05-09 2016-05-09 一种考虑量测信号丢失的动态振荡信号参数辨识方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610302188.4A CN105956565B (zh) 2016-05-09 2016-05-09 一种考虑量测信号丢失的动态振荡信号参数辨识方法

Publications (2)

Publication Number Publication Date
CN105956565A true CN105956565A (zh) 2016-09-21
CN105956565B CN105956565B (zh) 2019-03-12

Family

ID=56913912

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610302188.4A Active CN105956565B (zh) 2016-05-09 2016-05-09 一种考虑量测信号丢失的动态振荡信号参数辨识方法

Country Status (1)

Country Link
CN (1) CN105956565B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107807278A (zh) * 2017-12-06 2018-03-16 河海大学 基于h∞扩展卡尔曼滤波的低频振荡信号参数辨识方法
CN108281961A (zh) * 2018-01-09 2018-07-13 河海大学 一种自适应鲁棒扩展卡尔曼的参数辨识方法
CN113591801A (zh) * 2021-08-30 2021-11-02 广东电网有限责任公司 一种电力信号参数估计方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130259342A1 (en) * 2012-03-28 2013-10-03 Siemens Aktiengesellschaft Method for iterative image reconstruction for bi-modal ct data
CN104992164A (zh) * 2015-07-23 2015-10-21 河海大学 一种动态振荡信号模型参数辨识方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130259342A1 (en) * 2012-03-28 2013-10-03 Siemens Aktiengesellschaft Method for iterative image reconstruction for bi-modal ct data
CN104992164A (zh) * 2015-07-23 2015-10-21 河海大学 一种动态振荡信号模型参数辨识方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
万雄波: ""不完整量测下网络化系统故障检测与控制"", 《中国博士学位论文全文数据库 信息科技辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107807278A (zh) * 2017-12-06 2018-03-16 河海大学 基于h∞扩展卡尔曼滤波的低频振荡信号参数辨识方法
CN108281961A (zh) * 2018-01-09 2018-07-13 河海大学 一种自适应鲁棒扩展卡尔曼的参数辨识方法
CN108281961B (zh) * 2018-01-09 2020-11-03 河海大学 一种自适应鲁棒扩展卡尔曼的参数辨识方法
CN113591801A (zh) * 2021-08-30 2021-11-02 广东电网有限责任公司 一种电力信号参数估计方法和装置

Also Published As

Publication number Publication date
CN105956565B (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
CN104992164B (zh) 一种动态振荡信号模型参数辨识方法
CN104809333A (zh) 基于Kalman滤波器的容量预测方法和系统
CN109345875B (zh) 一种提高船舶自动识别系统测量精度的估计方法
CN107133195A (zh) 一种工程结构模态识别的模型定阶方法
CN107807278A (zh) 基于h∞扩展卡尔曼滤波的低频振荡信号参数辨识方法
CN105956565A (zh) 一种考虑量测信号丢失的动态振荡信号参数辨识方法
CN105931130A (zh) 一种考虑量测信号丢失的改进集合卡尔曼滤波估计方法
CN106786561A (zh) 一种基于自适应卡尔曼滤波的低频振荡模态参数辨识方法
CN108281961B (zh) 一种自适应鲁棒扩展卡尔曼的参数辨识方法
CN106972949B (zh) 一种基于自适应补偿技术的分数阶网络系统状态估计方法
CN104283529A (zh) 未知测量噪声方差的平方根高阶容积卡尔曼滤波方法
CN103684349B (zh) 一种基于递推协方差阵估计的卡尔曼滤波方法
CN105654053B (zh) 基于改进约束ekf算法的动态振荡信号参数辨识方法
Horvath et al. Sensor fault diagnosis of inland navigation system using physical model and pattern recognition approach
CN105044531B (zh) 一种基于ekf和fsa的动态信号参数辨识方法
Uyanık et al. Parametric identification of hybrid linear-time-periodic systems
CN106599541A (zh) 一种动态电力负荷模型的结构和参数在线辨识方法
Garrido et al. A heuristic approach to output-only system identification under transient excitation
CN109274107B (zh) 一种计及奇异值的低频振荡信号参数辨识方法
Zhang et al. Set-membership filtering approach for fault detection of systems with unknown-but-bounded noises
CN104202019A (zh) 带有未知过程噪声协方差阵递推估计的卡尔曼滤波方法
CN104868876A (zh) 一种针对过程噪声协方差矩阵Q未知情况下的Kalman滤波方法
Pazera et al. Simultaneous estimation of multiple actuator anc sensor faults for takagi-sugeno fuzzy systems
Pazera et al. Towards robust process fault estimation for uncertain dynamic systems
Lenzen et al. Damage localization of mechanical structures considering environmental and operational conditions based on output-only system identification and H∞-estimation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant