CN105944761B - 一种磺胺喹恶啉钴镍纳米复合材料及其制备方法 - Google Patents

一种磺胺喹恶啉钴镍纳米复合材料及其制备方法 Download PDF

Info

Publication number
CN105944761B
CN105944761B CN201610281164.5A CN201610281164A CN105944761B CN 105944761 B CN105944761 B CN 105944761B CN 201610281164 A CN201610281164 A CN 201610281164A CN 105944761 B CN105944761 B CN 105944761B
Authority
CN
China
Prior art keywords
cobalt
sulfaquinoxaline
nickel
salt
nanocomposite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610281164.5A
Other languages
English (en)
Other versions
CN105944761A (zh
Inventor
邢方园
李星
赵亚云
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huzhou You Yan Intellectual Property Service Co.,Ltd.
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201610281164.5A priority Critical patent/CN105944761B/zh
Publication of CN105944761A publication Critical patent/CN105944761A/zh
Application granted granted Critical
Publication of CN105944761B publication Critical patent/CN105944761B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/226Sulfur, e.g. thiocarbamates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B37/00Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms
    • C07B37/04Substitution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/32Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by introduction of halogenated alkyl groups into ring compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4211Suzuki-type, i.e. RY + R'B(OR)2, in which R, R' are optionally substituted alkyl, alkenyl, aryl, acyl and Y is the leaving group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/845Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/84Metals of the iron group
    • B01J2531/847Nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

本发明公开了一种磺胺喹恶啉钴镍纳米复合材料及其制备方法,本发明中将一定量的金属盐溶液加入到含有的磺胺喹恶啉有机配体中,在一定温度下搅拌,微波反应,超声分散经离心分离,洗涤,干燥制得相应的金属‑配体纳米复合材料,制备过程简单,成本低,适合大量生产;通过选用不同的溶剂,控制反应物的用量、反应时间和反应温度,实现磺胺喹恶啉钴镍纳米复合材料粒径的大小及分散性的有效调控。本发明制备的磺胺喹恶啉钴镍纳米复合材料是一种含有钴和镍的功能化复合材料,性能稳定,可用于催化C‑C键偶联反应,催化效率高,因此该磺胺喹恶啉钴镍纳米复合材料在催化领域具有广阔的应用前景。

Description

一种磺胺喹恶啉钴镍纳米复合材料及其制备方法
技术领域
本发明属于金属有机纳米复合材料催化应用领域,具体涉及到一种用于催化偶联反应的磺胺喹恶啉钴镍纳米复合材料及其制备方法。
背景技术
纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。纳米材料以其所具有物理和化学方面特殊的性能,而引起人们的兴趣,并成为材料科学中的“明星”。另一方面,由于纳米微粒粒径减小、比表面积增大、表面原子数增多及表面原子配位不饱和性导致大量的悬键和不饱键等,使得纳米微粒具有高的表面活性和优良的催化性能。
目前,关于碳碳偶联反应的催化剂大多是钯纳米催化剂,贵金属纳米催化剂以及纳米分子筛催化剂。近年来,关于纳米镍催化剂的研究不断深化,纳米镍催化剂的应用也更加广泛。例如,Inada以Ni(PPh3)2Cl2为催化剂,对氯苯氰、对甲基苯硼酸、K3PO4·nH2O为底物,甲苯为溶剂,在100℃下反应,产率为87%,但这样的镍催化剂很容易被杂原子配位,导致催化活性降低,产率降低。关于镍合金型纳米材料的制备,目前制备步骤较繁琐,且价格昂贵。而本发明制作了一种磺胺喹恶啉钴镍纳米复合材料,且条件温和,操作简便,成本低廉,在催化剂在催化领域有广阔的应用前景。
发明内容
本发明所要解决的技术问题是,针对现有技术的不足,提供一种制备过程简单且成本低的可作为高效催化剂的磺胺喹恶啉钴镍纳米复合材料及其制备方法。
本发明为解决上述技术问题所采用的技术方案为:一种可作为高效催剂化的磺胺喹恶啉钴镍纳米复合材料的制备方法,包括以下步骤:
将磺胺喹恶啉溶于乙醇中,搅拌15min,配制成磺胺喹恶啉有机配体溶液;
将钴盐溶于水中,搅拌15min,配制成钴盐水溶液;
将镍盐溶于水中,搅拌15min,配制成镍盐水溶液;
将钴盐溶液与镍盐溶液混合,形成金属盐水溶液,将金属盐水溶液逐滴加入所述有机配体溶液中,在溶液中钴、镍离子金属物质的量之和与有机配体的物质的量比为1:2~1:4,其中在钴、镍离子总量中钴离子所占比例为10%~90%,在室温下搅拌15~30min后,再微波反应15~30min,超声分散15min,得沉淀产物,将沉淀产物离心分离,并用去离子水和乙醇洗涤所述沉淀物,干燥,即获得所述磺胺喹恶啉钴镍纳米复合材料。
优选的,所述的镍盐为氯化镍,硝酸镍,硫酸镍中的任意一种;
优选的,所述的钴盐为氯化钴,硝酸钴,硫酸钴中的任意一种。
本发明提供一种磺胺喹恶啉钴镍纳米复合材料,所述磺胺喹恶啉钴镍纳米复合材料是根据上述磺胺喹恶啉钴镍纳米复合材料的制备方法制备得到。
优选地,所述磺胺喹恶啉钴复合材料作为高效催化剂,用于催化碳-碳键偶联反应。
与现有技术相比,本方法的优点如下,
(1)磺胺喹恶啉配体具有独特的不对称结构。
(2)所制备的磺胺喹恶啉钴镍纳米复合材料性能稳定,在催化碳-碳键偶联反应中,显示了较高的反应活性,产率可达76%~100%。
(3)所述磺胺喹恶啉钴镍纳米复合材料制备的过程简单,成本低,适合大量生产。
(4)本发明通过选用不同的金属盐,控制反应时间、反应温度,实现磺胺喹恶啉钴镍纳米复合材料粒径的大小及分散性的有效调控,获得粒径不同的磺胺喹恶啉钴镍纳米复合材料,其在催化领域有广阔的应用前景。
附图说明
图1为本发明磺胺喹恶啉钴镍纳米复合材料的扫描电镜图。
具体实施方式
以下结合实施例对本发明作进一步详细描述。
实施例1
称取0.1mmol的CoCl2·6H2O和0.9mmol的NiCl2·6H2O溶于10mL水中,快速搅拌15min;称取2.0mmol磺胺喹恶啉溶于10mL乙醇中,快速搅拌15min;在搅拌状态下,将钴盐和镍盐水溶液混合,形成混合溶液,将该混合溶液逐滴加入到磺胺喹恶啉配体的乙醇溶液中,室温搅拌15min后,再微波反应15min,超声分散15min,得沉淀产物。将沉淀产物离心分离,并用去离子水和乙醇洗涤所述沉淀物3次,干燥,即获得所述磺胺喹恶啉钴镍纳米复合材料。用扫描电镜观察所述纳米复合材料的形貌,如图1所示。
实施例2
称取0.9mmol的Co(NO3)2·6H2O和0.1mmol的Ni(NO3)2·6H2O溶于10mL水中,快速搅拌15min;称取4.0mmol磺胺喹恶啉溶于20mL乙醇中,快速搅拌15min;在搅拌状态下,将钴盐和镍盐水溶液混合,形成混合溶液,将该混合溶液逐滴加入到磺胺喹恶啉配体的乙醇溶液中,室温搅拌30min后,再微波反应15min,超声分散15min,得沉淀产物。将沉淀产物离心分离,并用去离子水和乙醇洗涤所述沉淀物3次,干燥,即获得所述磺胺喹恶啉钴镍纳米复合材料。
实施例3
称取0.3mmol的CoSO4·6H2O和0.7mmol的NiSO4·6H2O溶于10mL水中,快速搅拌15min;称取2.0mmol磺胺喹恶啉溶于20mL乙醇中,快速搅拌15min;在搅拌状态下,将钴盐和镍盐水溶液混合,形成混合溶液,将该混合溶液逐滴加入到磺胺喹恶啉配体的乙醇溶液中,室温搅拌30min后,再微波反应30min,超声分散15min,得沉淀产物。将沉淀产物离心分离,并用去离子水和乙醇洗涤所述沉淀物3次,干燥,即获得所述磺胺喹恶啉钴镍纳米复合材料。
以实施例1,实施例2和实施例3制备的磺胺喹恶啉钴镍纳米复合材料为例,进行催化反应:
使用上述实施例1制备的磺胺喹恶啉钴镍纳米复合材料作为催化剂进行催化反应,反应条件为:将1.0mmol对碘苯乙醚、1.2mmol对甲基苯硼酸和3.0mmol K2CO3,在空气氛围中于H2O/EtOH混合溶剂中反应,该混合溶剂由4mL水和3mL乙醇(EtOH)组成,反应温度为90℃,反应时间为10h,采用柱色谱法分离产物,产率为100%。反应方程式如下:
使用上述实施例2制备的磺胺喹恶啉钴镍纳米复合材料作为催化剂进行催化反应,反应条件为:将1.0mmol 4-三氟甲基溴苯、1.2mmol苯硼酸和3.0mmol K2CO3,在空气氛围中于H2O/EtOH混合溶剂中反应,该混合溶剂由4mL水和3mL乙醇(EtOH)组成,反应温度为90℃,反应时间为10h,采用柱色谱法分离产物,产率为76%。反应方程式如下:
使用上述实施例3制备的磺胺喹恶啉钴镍纳米复合材料作为催化剂进行催化反应,反应条件为:将1.0mmol溴苯甲腈、1.2mmol苯硼酸和3.0mmol K2CO3,在空气氛围中于H2O/EtOH混合溶剂中反应,该混合溶剂由4mL水和3mL乙醇(EtOH)组成,反应温度为50℃,反应时间为2h,采用柱色谱法分离产物,产率为91%。反应方程式如下:

Claims (2)

1.一种磺胺喹恶啉钴镍纳米复合材料的制备方法,其特征在于所述制备方法包括以下步骤:
将磺胺喹恶啉有机配体溶于乙醇中,配制成磺胺喹恶啉有机配体溶液;
将钴盐溶于水中,搅拌15min,配制成钴盐水溶液;
将镍盐溶于水中,搅拌15min,配制成镍盐水溶液;
将钴盐溶液与镍盐溶液混合,形成金属盐水溶液,将金属盐水溶液逐滴加入所述磺胺喹恶啉有机配体溶液中,在溶液中钴、镍离子金属物质的量之和与有机配体的物质的量比为1:2~1:4,其中在钴、镍离子总量中钴离子所占比例为10%~90%,在室温下搅拌15~30min后,再微波反应15~30min,超声分散15min,得沉淀产物,将沉淀产物离心分离,并用去离子水和乙醇洗涤所述沉淀物,干燥,即获得所述磺胺喹恶啉钴镍纳米复合材料;
所述镍盐为氯化镍、硝酸镍、硫酸镍中的任意一种;
所述钴盐为氯化钴、硝酸钴、硫酸钴中的任意一种。
2.一种如权利要求1所述的制备方法制备得到的磺胺喹恶啉钴镍纳米复合材料,其特征在于,所述磺胺喹恶啉钴复合材料作为高效催化剂,用于催化碳-碳键偶联反应。
CN201610281164.5A 2016-04-29 2016-04-29 一种磺胺喹恶啉钴镍纳米复合材料及其制备方法 Active CN105944761B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610281164.5A CN105944761B (zh) 2016-04-29 2016-04-29 一种磺胺喹恶啉钴镍纳米复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610281164.5A CN105944761B (zh) 2016-04-29 2016-04-29 一种磺胺喹恶啉钴镍纳米复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN105944761A CN105944761A (zh) 2016-09-21
CN105944761B true CN105944761B (zh) 2018-06-15

Family

ID=56912981

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610281164.5A Active CN105944761B (zh) 2016-04-29 2016-04-29 一种磺胺喹恶啉钴镍纳米复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105944761B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104668577A (zh) * 2015-02-05 2015-06-03 宁波大学 一种镍微纳米粒子及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2585216T3 (pl) * 2010-06-23 2020-06-01 Johnson Matthey Plc Kompleksy pi-allilopalladowe i pi-alliloniklowe do zastosowania jako katalizatory w reakcjach sprzęgania węgiel-azot

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104668577A (zh) * 2015-02-05 2015-06-03 宁波大学 一种镍微纳米粒子及其制备方法

Also Published As

Publication number Publication date
CN105944761A (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
CN102407147B (zh) ZnIn2S4-石墨烯复合光催化剂的制备方法与应用
CN104028269B (zh) 一种石墨烯负载金属纳米复合材料、制备方法及应用
Xu et al. Catalytic reduction of 4-nitrophenol over graphene supported Cu@ Ni bimetallic nanowires
Zheng et al. Growth of Prussian blue microcubes under a hydrothermal condition: possible nonclassical crystallization by a mesoscale self-assembly
CN107469855A (zh) 一种氮掺杂石墨烯负载金属单原子催化剂的制备方法
CN105397103A (zh) 一种纳米银/石墨烯复合材料及其制备方法
Wen et al. Heterometal modified Fe3O4 hollow nanospheres as efficient catalysts for organic transformations
CN105399152B (zh) 一种钴酸镍纳米材料的溶剂热制备方法
Kaboudin et al. Polymer supported gold nanoparticles: synthesis and characterization of functionalized polystyrene-supported gold nanoparticles and their application in catalytic oxidation of alcohols in water
CN108465472A (zh) 一种水滑石负载钯基合金催化剂及其制备方法
CN101690977B (zh) 一种空心结构纳米贵金属粒子的制备方法
CN105452156A (zh) 制备碳载体-金属纳米粒子复合物的方法以及由该方法制备的碳载体-金属纳米粒子复合物
CN107954483A (zh) 一种α相氢氧化镍超薄纳米片及其制备方法
CN103263921A (zh) 一种金属/石墨烯催化剂及制备方法
CN101838391B (zh) 一种聚苯胺/银导电纳米复合材料及其制备方法
Li et al. General surface modification method for nanospheres via tannic acid-Fe layer-by-layer deposition: preparation of a magnetic nanocatalyst
CN104538648B (zh) 一种石墨烯负载铂钴合金纳米粒子复合催化剂及其制备方法
CN102847533A (zh) 微波法合成凹土/钯纳米复合材料催化剂的方法
CN107252685A (zh) 一种含羟基胺类化合物功能化磁性氧化石墨烯催化材料及其制备方法和应用
CN101693557A (zh) 一种制备钨酸铋空心球的新方法
CN102921419B (zh) 一种用于苯直接羟基化制备苯酚的纳米铜—石墨烯复合催化剂及其制备方法
Zhang et al. Tunable metal/silicon hybrid dots catalysts for hydrocarbon selective oxidation
CN106669737B (zh) 一种磁性核壳结构的碳/钯-钴多相催化剂的制备方法
CN108855212A (zh) 一种高活性氢化反应催化剂的制备方法及用途
CN106040307A (zh) 一步水热法合成Fe3O4(PAA)@C‑Au核壳结构微球的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201209

Address after: 313000 room 1020, science and Technology Pioneer Park, 666 Chaoyang Road, Nanxun Town, Nanxun District, Huzhou, Zhejiang.

Patentee after: Huzhou You Yan Intellectual Property Service Co.,Ltd.

Address before: 315211, Fenghua Road, Jiangbei District, Zhejiang, Ningbo 818

Patentee before: Ningbo University