CN105944097B - 短肽作为疫苗佐剂的应用及疫苗 - Google Patents

短肽作为疫苗佐剂的应用及疫苗 Download PDF

Info

Publication number
CN105944097B
CN105944097B CN201610396554.7A CN201610396554A CN105944097B CN 105944097 B CN105944097 B CN 105944097B CN 201610396554 A CN201610396554 A CN 201610396554A CN 105944097 B CN105944097 B CN 105944097B
Authority
CN
China
Prior art keywords
short peptide
vaccine
hydrogel
adjuvant
protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610396554.7A
Other languages
English (en)
Other versions
CN105944097A (zh
Inventor
杨志谋
王玲
杨成彪
王怀民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201610396554.7A priority Critical patent/CN105944097B/zh
Publication of CN105944097A publication Critical patent/CN105944097A/zh
Application granted granted Critical
Publication of CN105944097B publication Critical patent/CN105944097B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5152Tumor cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55516Proteins; Peptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明提供了一种短肽作为疫苗佐剂的应用及以上述短肽作为疫苗佐剂的疫苗,该短肽制备简单、简便地与抗原物理混合后即可有效增强抗原免疫应答的能力。所述短肽作为疫苗佐剂的应用中,所述短肽以基团X封端,所述短肽序列为X‑GFF,或所述短肽包含序列FFY。优选的,所述包含序列FFY的短肽序列为X‑FFY、X‑GFFY、X‑GFFYK、X‑GFFYE或X‑GFFYG;优选的,所述短肽为D构型。上述短肽可以作为免疫佐剂来增强抗原的免疫原性,使得主体发生强烈的抗原特异性的细胞免疫和体液免疫应答,且所述短肽能适用于各类抗原;所述短肽易于制备、成份单一可控。

Description

短肽作为疫苗佐剂的应用及疫苗
技术领域
本发明涉及一种短肽作为疫苗佐剂的应用及疫苗。
背景技术
随着免疫学的不断深入研究、日益成熟的基因工程技术以及合成技术的飞速发展,人类已研制出多种DNA重组疫苗、短肽疫苗等新型疫苗。这些新兴的疫苗虽然有很多优点,例如易于合成、提纯、抗原特异性强,但其较弱的免疫原性却成为其致命的缺点,导致其不能诱发强有力的免疫反应,限制了其在临床上的使用。在实际应用中,其往往需用免疫佐剂来增强其免疫原性或增强宿主对抗原的特异性应答。截止到目前为止,铝佐剂是唯一通过FDA批准的能用于人的佐剂,然而它只能激发相应的体液免疫,不能诱导机体产生相应的细胞免疫,而细胞免疫在很多疾病(病毒感染、肿瘤等)的免疫治疗方面又是必不可少的,因此铝佐剂对许多病毒、疾病等抗原无免疫佐剂性效果,这就使得开发新型的能够用于人体的治疗性免疫佐剂显得迫在眉睫。
除了FDA批准的应用于人体的铝佐剂,现在研究中或者可以应用于动物的佐剂主要有弗氏佐剂、脂质体、单磷酰脂质A、细胞因子、CpG免疫调节序列等等。然而,这些免疫佐剂不是安全性差,就是造价太高、不易于合成纯化,或者增强抗原免疫应答的能力差,尚不能满足它们在临床使用的需求。
发明内容
发明目的
本发明的一个目的是提供一种短肽作为疫苗佐剂的应用,该短肽制备简单、简便地与抗原物理混合后即可有效增强抗原免疫应答的能力。
本发明的另一个目的是提供一种以上述短肽作为疫苗佐剂的疫苗。
发明概述
根据本发明的第一方面,本发明提供了一种短肽作为疫苗佐剂的应用,所述短肽以基团X封端,所述短肽序列为X-GFF,或所述短肽包含序列FFY。所述基团X可选择本领域常用的含芳香环封端基团,例如Nap。
“短肽”为本领域常用术语,指由3-9个氨基酸残基组成的短链肽。
优选的,所述包含序列FFY的短肽序列为X-FFY、X-GFFY、X-GFFYK、X-GFFYE或X-GFFYG。
优选的,所述短肽为D构型,例如所述短肽序列为X-GDFDF、X-DFDFDY、X-GDFDFDY、X-GDFDFDYDK、X-GDFDFDYDE或X-GDFDFDYDG。
优选的,X为Nap、PTZ、Bio或Fmoc,更优选为Nap。
进一步优选的,所述短肽序列为Nap-DFDFDY、Nap-GDFDFDY、Nap-GDFDFDYDK或Nap-GDFDFDYDG;最优选的,所述短肽序列为Nap-GDFDFDYDK。
以下为上述部分优选的短肽的结构式:
Figure BDA0001008999230000021
Figure BDA0001008999230000031
Figure BDA0001008999230000041
本发明中所述氨基酸序列如未特别说明,则对其构型无限制。
所述短肽可采用公知的FMOC-固相合成方法合成。
所述短肽作为疫苗佐剂应用时可选用多种物理形式,对其增强免疫应答的能力不会产生实质性影响,例如可以与水混合均匀后与抗原混合得到疫苗,或者,由于所述短肽具有良好的成胶性能,也可以以短肽水凝胶的形式进行应用,具体的,所述短肽的水混合物经加热冷却的方法形成短肽水凝胶,然后与抗原混合,静置后形成的水凝胶用作疫苗。作为本领域常识,所述短肽的水混合物应具备良好的生物相容性,因此,需要将短肽与具有良好生物相容性的水溶液混合得到所述短肽的水混合物。常见的,所述具有良好生物相容性的水溶液可以是生理盐水或PBS溶液。这种疫苗制备方法简单实用、成分可控。所述形成水凝胶的加热冷却方法为公知方法,具体为:使用电吹风或者油浴锅等加热装置加热短肽的水混合物至短肽完全溶解(一般需要加热到到90℃以上),冷却之后形成凝胶(一般冷却至20-40℃即可)。成胶与否通过倒置瓶子的方法判断,保留在瓶子底部为水凝胶,如果是流动的则为液体。
所述疫苗可以为蛋白疫苗、细胞疫苗或短肽疫苗。
所述短肽的用量可以由本领域技术人员经简单实验确定,一般用于蛋白疫苗和短肽疫苗时,所述短肽与抗原的质量比为5:1-30:1,更优选为5:1-20:1,用于细胞疫苗时,所述短肽的最终浓度为0.5-5mg/mL。
在本发明的第二方面,还提供了一种以上述短肽作为疫苗佐剂的疫苗。所述短肽可以方便地与抗原物理混合得到疫苗。
发明人发现,上述短肽可以作为免疫佐剂来增强抗原的免疫原性,使得主体发生强烈的抗原特异性的细胞免疫和体液免疫应答,且所述短肽能适用于各类抗原;所述短肽易于制备、成份单一可控。
本发明增加了免疫佐剂的种类,为开发能应用于人体的免疫佐剂提供了有价值的信息。
附图说明
图1:蛋白疫苗vac-1、vac-2、OVA、Alum-OVA引发免疫反应的抗体滴度;
图2:蛋白疫苗vac-2、vac-3、vac-4、vac-5、OVA、Alum-OVA引发免疫反应的抗体滴度;
图3:蛋白疫苗vac-2、vac-6、vac-7、vac-8、vac-9、OVA、Alum-OVA引发免疫反应的抗体滴度;
图4:蛋白疫苗vac-2、vac-10、vac-11、vac-12、OVA引发免疫反应的抗体滴度;
图5:细胞疫苗vac-13、vac-14、XTC、L-gel、D-gel刺激CD8+IFN-γ+T细胞增殖的效果(图5a))以及它们的肿瘤抑制效果(图5b));
图6:短肽疫苗vac-15、epitope、Alum-epitope引发免疫反应的抗体滴度。
具体实施方式
下面用实施例进一步描述本发明,但所述实施例仅用于本发明而不是限制本发明。
以下实施例中,通过本领域常用的倒置小瓶的方法检验水凝胶的形成与否。
以下实施例中所涉及制剂来源如下:
培养基,RMPI 1640,购自赛默飞世尔科技(ThermoFisher Scientific),无菌;
胎牛血清,购自赛默飞世尔科技(ThermoFisher Scientific),无菌;
2-cl-Trt树脂购自天津南开和成科技有限公司,活性1.2mmol/mL;
N,N-二异丙基乙胺(以下用DIEPA表示),购自西格马奥德里奇公司(Sigma-Aldrich),纯度99%;
苯并三氮唑-N,N,N',N'-四甲基脲六氟磷酸酯(以下用HBTU表示),购自吉尔生化(上海)有限公司,纯度98%;
三氟乙酸(以下用TFA表示),购自西格马奥德里奇公司(Sigma-Aldrich),纯度99%;
三异丙基硅烷(以下用TIS表示),购自西格马奥德里奇公司(Sigma-Aldrich),纯度99%;
L构型及D构型氨基酸购自吉尔生化(上海)有限公司,纯度98%;
无内毒素的鸡卵清蛋白(以下简称OVA蛋白)购自InvivoGen公司,纯度99%;
铝佐剂购自赛默飞世尔科技(ThermoFisher Scientific),纯度99%;
萘乙酸、氟代吩噻嗪、生物素购自西格马奥德里奇公司(Sigma-Aldrich,纯度99%;
短肽B+T epitope购自吉尔生化(上海)有限公司,纯度98%;
癌细胞EG7购自上海歌凡生物,并按以下步骤培养:
1)把水浴锅提前升温至37℃,将培养基(RPMI 1640)、胎牛血清等放入水浴锅预热,并且同时打开超净台紫外灯照射半小时;
2)从液氮罐中取出冻存的癌细胞EG7,迅速放置在37℃的水浴锅中使细胞解冻,之后迅速转移到超净台里进行如下操作:把含细胞的溶液用移液器小心地转移到含有培养基的离心管中,离心5分钟,去上清,用含有10%胎牛血清的培养基重悬,转移到含有10%胎牛血清的培养基的培养皿中,然后放入37℃培养箱中培养;
3)第二天观察细胞状态,待细胞状态良好后,传一代以后进行下面的实验;
4)收集细胞培养液,吸入到离心管中,1000rpm转速下离心4min,之后弃掉溶液,加入新鲜的培养基用枪吹打均匀,用细胞计数板计数为5×107个每毫升。
所述OVA蛋白溶液为自制,将OVA蛋白溶于PBS溶液(pH=7.0)得到5mg/mL的OVA蛋白溶液;
所述5×107个每毫升的X光辐照后的癌细胞为自制:取1.5毫升5×107个每毫升的癌细胞EG7,在辐照仪中以320伏电压、12.5安的电流辐照8.5分钟,辐照两次。
其余试剂均为市售分析纯试剂。
制备实施例1
pH 7.0和室温20℃下短肽水凝胶负载OVA蛋白的疫苗vac-1的制备
(1)用FMOC-固相合成方法合成L构型短肽Nap-GFFY,具体步骤如下:
1)称取0.5mmol 2-cl-Trt树脂于固相合成器中,加入10mL的无水二氯甲烷(以下用DCM表示),放置在摇床上摇晃5min,使2-cl-Trt树脂充分溶胀;
2)用洗耳球把DCM从装有2-cl-Trt树脂的固相合成器中压除干净;
3)将0.75mmol Fmoc保护的氨基酸溶解在10mL的无水DCM里,加入0.75mmol的DIEPA,然后转移到上述固相合成器中,再补加0.75mmol的DIEPA,在室温下反应1h;
4)封闭:用洗耳球除去固相合成器中的反应液,然后用无水DCM洗涤,每次DCM用量10mL、洗涤时间1min,共洗5次,加入配好的体积比为无水DCM∶DIEPA∶甲醇=17∶1∶2的溶液20mL,在室温下反应10min;
5)用洗耳球除去固相合成器中的反应液,先用无水DCM洗涤,每次DCM用量10mL、洗涤时间1min,共洗5次,再用N,N-二甲基甲酰胺(以下用DMF表示)洗涤,每次DMF用量10mL、洗涤时间1min,共洗5次,加入10mL含体积百分比为20%的哌啶的DMF,反应25min,再用10mL含体积百分比为20%的哌啶的DMF反应5min,然后用DMF洗涤,每次DMF用量10mL、洗涤时间1min,共洗5次,进行下一步反应;
6)加入第二个Fmoc保护的氨基酸1mmol、HBTU 1.5mmol、DIEPA 2mmol和10mlDMF,把配好的溶液加入到上述固相合成器中,反应2h;
7)重复步骤5)和6)的方法依次加入需要的氨基酸或封端基团;然后用DMF洗涤5遍,二氯甲烷洗5遍,进行下步反应;
8)按95%TFA,2.5%TIS,2.5%H2O体积百分比组成的溶液10mL加入到上述固相合成器中,反应半小时(或者TFA与DCM的体积比为1∶99,配制成体积百分比浓度为1%的TFA溶液,取该TFA溶液每次3mL加入到上述固相合成器中,共加十次,每次反应时间为1min),把产物从2-cl-Trt树脂上切下,真空浓缩,除去溶剂,得到粗品,之后用HPLC分离提纯。
它的结构表征数据如下:
1H NMR(400MHz,DMSO)δ8.29(d,J=7.3Hz,1H),8.23(t,J=5.7Hz,1H),8.17(d,J=7.9Hz,1H),8.02(d,J=8.6Hz,1H),7.89–7.79(m,3H),7.75(s,1H),7.49–7.39(m,3H),7.26–7.11(m,12H),7.08(d,J=7.9Hz,2H),4.60–4.40(m,4H),3.71(dd,J=16.9,4.9Hz,2H),3.57(dd,J=16.4,5.6Hz,3H),2.99-2.85(m,5H),2.81–2.74(m,1H),2.69–2.62(m,1H).
(2)取1mg L构型短肽Nap-GFFY置于1.5毫升的玻璃瓶中,加入400微升PBS溶液(pH=7.0),用碳酸钠溶液将其pH值调节至7.0,加热至沸腾使化合物完全溶解,冷却到室温之后即得短肽水凝胶。
(3)取5mg/mL的OVA蛋白溶液20微升加入到(2)中制得的水凝胶中,用PBS溶液(pH=7.0)定容于500微升,进行物理混合,静置10分钟后成胶,得到蛋白疫苗vac-1(最终短肽的浓度为2mg/mL,OVA蛋白浓度为0.2mg/mL)。
制备实施例2
pH 7.0和室温20℃下短肽水凝胶负载OVA蛋白的疫苗vac-2的制备
(1)用FMOC-固相合成方法合成Nap-GDFDFDY,具体步骤如下:
1)称取0.5mmol 2-cl-Trt树脂于固相合成器中,加入10mL的DCM,放置在摇床上摇晃5min,使2-cl-Trt树脂充分溶胀;
2)用洗耳球把DCM从装有2-cl-Trt树脂的固相合成器中压除干净;
3)将0.75mmol Fmoc保护的氨基酸溶解在10mL的无水DCM里,加入0.75mmol的DIEPA,然后转移到上述固相合成器中,再补加0.75mmol的DIEPA,在室温下反应1h;
4)封闭:用洗耳球除去固相合成器中的反应液,然后用无水DCM洗涤,每次DCM用量10mL、洗涤时间1min,共洗5次,加入配好的体积比为无水DCM∶DIEPA∶甲醇=17∶1∶2的溶液20mL,在室温下反应10min;
5)用洗耳球除去固相合成器中的反应液,先用无水DCM洗涤,每次DCM用量10mL、洗涤时间1min,共洗5次,再用DMF洗涤,每次DMF用量10mL、洗涤时间1min,共洗5次,加入10mL含体积百分比为20%的哌啶的DMF,反应25min,再用10mL含体积百分比为20%的哌啶的DMF反应5min,然后用DMF洗涤,每次DMF用量10mL、洗涤时间1min,共洗5次,进行下一步反应;
6)加入第二个Fmoc保护的氨基酸1mmol、HBTU 1.5mmol、DIEPA 2mmol和10mlDMF,把配好的溶液加入到上述固相合成器中,反应2h;
7)重复步骤5)和6)的方法依次加入需要的氨基酸或封端基团;然后用DMF洗涤5遍,二氯甲烷洗5遍,进行下步反应;
8)按95%TFA,2.5%TIS,2.5%H2O的体积比组成的溶液10mL加入到上述固相合成器中,反应半小时(或者TFA与DCM的体积比为1∶99,配制成体积百分比浓度为1%的TFA溶液,取该TFA溶液每次3mL加入到上述固相合成器中,共加十次,每次反应时间为1min),把产物从2-cl-Trt树脂上切下,真空浓缩,除去溶剂,得到粗品,之后用HPLC分离提纯。
它的结构表征数据如下:
1H NMR(400MHz,DMSO)δ8.29(d,J=7.3Hz,1H),8.23(t,J=5.7Hz,1H),8.17(d,J=7.9Hz,1H),8.02(d,J=8.6Hz,1H),7.89–7.79(m,3H),7.75(s,1H),7.49–7.39(m,3H),7.26–7.11(m,12H),7.08(d,J=7.9Hz,2H),4.60–4.40(m,4H),3.71(dd,J=16.9,4.9Hz,2H),3.57(dd,J=16.4,5.6Hz,3H),2.99-2.85(m,5H),2.81–2.74(m,1H),2.69–2.62(m,1H).
(2)取1mg Nap-GDFDFDY置于1.5毫升的玻璃瓶中,加入400微升PBS溶液(pH=7.0),用碳酸钠溶液将其pH值调节至7.0,加热至沸腾使化合物完全溶解,冷却到室温之后即得短肽水凝胶。
(3)取5mg/mL的OVA蛋白溶液20微升加入到(2)中制得的水凝胶中,用PBS溶液(pH=7.0)定容于500微升,进行物理混合,静置8分钟后成胶,得到蛋白疫苗vac-2(最终短肽的浓度为2mg/mL,OVA蛋白浓度为0.2mg/mL)。
以下制备实施例所制备的其余短肽采用与制备实施例1-2相同的合成方法,区别仅在于根据其序列选择相应的氨基酸原料和封端基团。
制备实施例3
pH 7.0和室温20℃下短肽水凝胶负载OVA蛋白的疫苗vac-3的制备
(1)用FMOC-固相合成方法合成PTZ-GDFDFDY,它的结构表征数据如下:
1H NMR(400MHz,DMSO)δ8.46(t,J=5.9Hz,1H),8.21(dd,J=15.7,8.0Hz,2H),8.11(d,J=8.4Hz,1H),7.30–7.06(m,13H),7.03(d,J=8.0Hz,2H),6.99–6.92(m,2H),6.74(d,J=8.5Hz,1H),6.66(d,J=7.8Hz,2H),4.60–4.51(m,4H),4.38(dd,J=14.2,7.3Hz,1H),3.81(dd,J=16.6,5.9Hz,1H),3.66(dd,J=17.5,5.0Hz,1H),3.05–2.64(m,8H),2.54(s,1H).
(2)取1mg PTZ-GDFDFDY置于1.5毫升的玻璃瓶中,加入400微升PBS溶液(pH=7.0),用碳酸钠溶液将其pH值调节至7.0,加热至沸腾使化合物完全溶解,冷却到室温之后即得短肽水凝胶。
(3)取5mg/mL的OVA蛋白溶液20微升加入到(2)中制得的水凝胶中,用PBS溶液(pH=7.0)定容于500微升,进行物理混合,静置15分钟后成胶,得到蛋白疫苗vac-3(最终短肽的浓度为2mg/mL,OVA蛋白浓度为0.2mg/mL)。
制备实施例4
pH 7.0和室温20℃下短肽水凝胶负载OVA蛋白的疫苗vac-4的制备
(1)用FMOC-固相合成方法合成Bio-GDFDFDY,它的结构表征数据如下:
1H NMR(400MHz,DMSO)δ8.17(dd,J=17.0,7.8Hz,2H),7.93(dd,J=14.4,6.9Hz,2H),7.19(dd,J=18.0,12.4Hz,9H),7.02(d,J=8.1Hz,2H),6.66(d,J=7.7Hz,2H),6.39(d,J=23.8Hz,2H),4.58–4.43(m,2H),4.37(dd,J=13.6,7.5Hz,1H),4.32–4.26(m,1H),4.14–4.07(m,1H),3.67(dd,J=16.1,5.4Hz,1H),3.52(dd,J=16.2,5.4Hz,1H),3.11–2.89(m,4H),2.88–2.63(m,4H),2.57(d,J=12.6Hz,1H),2.08(t,J=7.3Hz,2H),1.63–1.22(m,7H).
(2)取1mg Bio-GDFDFDY置于1.5毫升的玻璃瓶中,加入400微升PBS溶液(pH=7.0),用碳酸钠溶液将其pH值调节至7.0,加热至沸腾使化合物完全溶解,冷却到室温之后即得短肽水凝胶。
(3)取5mg/mL的OVA蛋白溶液20微升加入到(2)中制得的水凝胶中,用PBS溶液(pH=7.0)定容于500微升,进行物理混合,静置18分钟后成胶,得到蛋白疫苗vac-4(最终短肽的浓度为2mg/mL,OVA蛋白浓度为0.2mg/mL)。
制备实施例5
pH 7.0和室温20℃下短肽水凝胶负载OVA蛋白的疫苗vac-5的制备
(1)用FMOC-固相合成方法合成Fmoc-GDFDFDY,它的结构表征数据如下:
1H NMR(400MHz,DMSO)δ8.19(dd,J=13.8,8.3Hz,2H),7.90(t,J=8.0Hz,3H),7.69(d,J=7.5Hz,2H),7.47(t,J=6.5Hz,1H),7.41(t,J=7.3Hz,2H),7.31(t,J=7.6Hz,2H),7.27–7.10(m,9H),7.02(d,J=7.9Hz,2H),6.66(d,J=7.7Hz,2H),4.59–4.46(m,2H),4.37(dd,J=14.2,7.4Hz,1H),4.28–4.17(m,3H),3.59(dd,J=17.1,5.3Hz,1H),3.48(dd,J=17.2,5.9Hz,1H),3.05–2.88(m,3H),2.76(m,4H).
(2)取1mg Fmoc-GDFDFDY置于1.5毫升的玻璃瓶中,加入400微升PBS溶液(pH=7.0),用碳酸钠溶液将其pH值调节至7.0,加热至沸腾使化合物完全溶解,冷却到室温之后即得短肽水凝胶。
(3)取5mg/mL的OVA蛋白溶液20微升加入到(2)中制得的水凝胶中,用PBS溶液(pH=7.0)定容于500微升,进行物理混合,静置18分钟后成胶,得到蛋白疫苗vac-5(最终短肽的浓度为2mg/mL,OVA蛋白浓度为0.2mg/mL)。
制备实施例6
pH 7.0和室温20℃下短肽水凝胶负载OVA蛋白的疫苗vac-6的制备
(1)用FMOC-固相合成方法合成Nap-DF,结构式如下所示:
Figure BDA0001008999230000111
它的结构表征数据如下:
1H NMR(400MHz,DMSO)δ8.47(d,J=8.1Hz,1H),7.87(d,J=7.6Hz,1H),7.79(t,J=7.5Hz,2H),7.66(s,1H),7.51–7.43(m,2H),7.27(d,J=8.4Hz,1H),7.20(s,5H),4.45(dd,J=13.1,8.5Hz,1H),3.59(q,J=14.0Hz,2H),3.07(m,1H),2.88(m,1H).
(2)取1mg Nap-DF置于1.5毫升的玻璃瓶中,加入400微升PBS溶液(pH=7.0),用碳酸钠溶液将其pH值调节至7.0,加热至沸腾使化合物完全溶解,冷却到室温之后即得短肽水凝胶。
(3)取5mg/mL的OVA蛋白溶液20微升加入到(2)中制得的水凝胶中,用PBS溶液(pH=7.0)定容于500微升,进行物理混合,静置50分钟后成胶,得到蛋白疫苗vac-6(最终短肽的浓度为2mg/mL,OVA蛋白浓度为0.2mg/mL)。
制备实施例7
pH 7.0和室温20℃下短肽水凝胶负载OVA蛋白的疫苗vac-7的制备
(1)用FMOC-固相合成方法合成Nap-DFDF,结构式如下所示:
Figure BDA0001008999230000121
它的结构表征数据如下:
1H NMR(400MHz,DMSO)δ8.35(d,J=7.7Hz,1H),8.29(d,J=8.6Hz,1H),7.85(d,J=7.3Hz,1H),7.76(dd,J=13.8,8.1Hz,2H),7.58(s,1H),7.51–7.42(m,2H),7.28–7.11(m,11H),4.62–4.54(m,1H),4.45(dd,J=14.0,8.0Hz,1H),3.57(d,J=13.9Hz,1H),3.48(d,J=13.8Hz,1H),3.11–2.87(m,4H),2.73(m,1H).
(2)取1mg Nap-DFDF置于1.5毫升的玻璃瓶中,加入400微升PBS溶液(pH=7.0),用碳酸钠溶液将其pH值调节至7.0,加热至沸腾使化合物完全溶解,冷却到室温之后即得短肽水凝胶。
(3)取5mg/mL的OVA蛋白溶液20微升加入到(2)中制得的水凝胶中,用PBS溶液(pH=7.0)定容于500微升,进行物理混合,静置37分钟后成胶,得到蛋白疫苗vac-7(最终短肽的浓度为2mg/mL,OVA蛋白浓度为0.2mg/mL)。
制备实施例8
pH 7.0和室温20℃下短肽水凝胶负载OVA蛋白的疫苗vac-8的制备
(1)用FMOC-固相合成方法合成Nap-GDFDF,它的结构表征数据如下:
1H NMR(400MHz,DMSO)δ8.36(d,J=7.5Hz,1H),8.24(t,J=5.1Hz,1H),8.04(d,J=8.5Hz,1H),7.89–7.79(m,3H),7.75(s,1H),7.46(dt,J=21.4,8.3Hz,3H),7.29–7.13(m,10H),4.55(m,1H),4.43(dd,J=13.9,7.7Hz,1H),3.73(dd,J=16.5,5.7Hz,1H),3.64–3.53(m,3H),3.09–2.87(m,3H),2.68(dd,J=13.2,9.7Hz,1H).
(2)取1mg Nap-GDFDF置于1.5毫升的玻璃瓶中,加入400微升PBS溶液(pH=7.0),用碳酸钠溶液将其pH值调节至7.0,加热至沸腾使化合物完全溶解,冷却到室温之后即得短肽水凝胶。
(3)取5mg/mL的OVA蛋白溶液20微升加入到(2)中制得的水凝胶中,用PBS溶液(pH=7.0)定容于500微升,进行物理混合,静置23分钟后成胶,得到蛋白疫苗vac-8(最终短肽的浓度为2mg/mL,OVA蛋白浓度为0.2mg/mL)。
制备实施例9
pH 7.0和室温20℃下短肽水凝胶负载OVA蛋白的疫苗vac-9的制备
(1)用FMOC-固相合成方法合成Nap-DFDFDY,它的结构表征数据如下:
1H NMR(400MHz,DMSO)δ8.27(d,J=7.3Hz,1H),8.21(t,J=5.7Hz,1H),8.15(d,J=7.9Hz,1H),8.04(d,J=8.6Hz,1H),7.89–7.77(m,3H),7.74(s,1H),7.47–7.37(m,3H),7.26–7.11(m,11H),7.08(d,J=7.9Hz,2H),4.60–4.40(m,4H),3.71(dd,J=16.9,4.9Hz,2H),3.59(dd,J=16.4,5.6Hz,2H),2.99-2.83(m,4H),2.82–2.76(m,1H),2.73–2.67(m,1H).
(2)取1mg Nap-DFDFDY置于1.5毫升的玻璃瓶中,加入400微升PBS溶液(pH=7.0),用碳酸钠溶液将其pH值调节至7.0,加热至沸腾使化合物完全溶解,冷却到室温之后即得短肽水凝胶。
(3)取5mg/mL的OVA蛋白溶液20微升加入到(2)中制得的水凝胶中,用PBS溶液(pH=7.0)定容于500微升,进行物理混合,静置16分钟后成胶,得到蛋白疫苗vac-9(最终短肽的浓度为2mg/mL,OVA蛋白浓度为0.2mg/mL)。
制备实施例10
pH 7.0和室温20℃下短肽水凝胶负载OVA蛋白的疫苗vac-10的制备
(1)用FMOC-固相合成方法合成Nap-GDFDFDYDK,它的结构表征数据如下:
1H NMR(400MHz,DMSO)δ8.28(d,J=6.3Hz,2H),8.18(d,J=8.3Hz,1H),8.08(dd,J=8.0,4.0Hz,2H),7.89–7.72(m,7H),7.51–7.39(m,3H),7.24–7.05(m,13H),6.65(d,J=8.4Hz,2H),4.49(dt,J=21.4,10.8Hz,3H),3.72(dd,J=16.8,5.8Hz,1H),3.65–3.53(m,3H),3.01–2.88(m,3H),2.70(m,6H),1.66–1.49(m,3H),1.41–1.28(m,3H).
(2)取1mg Nap-GDFDFDYDK置于1.5毫升的玻璃瓶中,加入400微升PBS溶液(pH=7.0),用碳酸钠溶液将其pH值调节至7.0,加热至沸腾使化合物完全溶解,冷却到室温之后即得短肽水凝胶。
(3)取5mg/mL的OVA蛋白溶液20微升加入到(2)中制得的水凝胶中,用PBS溶液(pH=7.0)定容于500微升,进行物理混合,静置16分钟后成胶,得到蛋白疫苗vac-10(最终短肽的浓度为2mg/mL,OVA蛋白浓度为0.2mg/mL)。
制备实施例11
pH 7.0和室温20℃下短肽水凝胶负载OVA蛋白的疫苗vac-11的制备
(1)用FMOC-固相合成方法合成Nap-GDFDFDYDE,它的结构表征数据如下:
1H NMR(400MHz,DMSO)δ8.25(d,J=5.6Hz,2H),8.15–8.09(m,2H),8.01(d,J=8.9Hz,1H),7.89–7.80(m,3H),7.74(s,1H),7.50–7.45(m,2H),7.41(dd,J=8.5,1.6Hz,1H),7.25–7.10(m,9H),7.07(d,J=8.5Hz,2H),6.64(d,J=8.5Hz,2H),4.54–4.44(m,3H),3.70(dd,J=16.9,6.5Hz,1H),3.61(s,2H),3.01–2.89(m,3H),2.71(m,5H),2.34–2.25(m,2H),2.00(d,J=7.2Hz,3H).
(2)取1mg Nap-GDFDFDYDE置于1.5毫升的玻璃瓶中,加入400微升PBS溶液(pH=7.0),用碳酸钠溶液将其pH值调节至7.0,加热至沸腾使化合物完全溶解,冷却到室温之后即得短肽水凝胶。
(3)取5mg/mL的OVA蛋白溶液20微升加入到(2)中制得的水凝胶中,用PBS溶液(pH=7.0)定容于500微升,进行物理混合,静置40分钟后成胶,得到蛋白疫苗vac-11(最终短肽的浓度为2mg/mL,OVA蛋白浓度为0.2mg/mL)。
制备实施例12
pH 7.0和室温20℃下短肽水凝胶负载OVA蛋白的疫苗vac-12的制备
(1)用FMOC-固相合成方法合成Nap-GDFDFDYDG,它的结构表征数据如下:
1H NMR(400MHz,DMSO)δ8.25(dd,J=12.1,5.9Hz,2H),8.13(dd,J=21.0,8.2Hz,2H),8.04(d,J=8.3Hz,1H),7.89–7.80(m,3H),7.75(s,1H),7.52–7.39(m,3H),7.25–7.10(m,11H),7.05(d,J=8.4Hz,2H),6.64(d,J=8.4Hz,2H),4.54–4.45(m,3H),3.79–3.67(m,3H),3.64–3.56(m,3H),3.01–2.88(m,3H),2.80–2.61(m,4H).
(2)取1mg Nap-GDFDFDYDG置于1.5毫升的玻璃瓶中,加入400微升PBS溶液(pH=7.0),用碳酸钠溶液将其pH值调节至7.0,加热至沸腾使化合物完全溶解,冷却到室温之后即得短肽水凝胶。
(3)取5mg/mL的OVA蛋白溶液20微升加入到(2)中制得的水凝胶中,用PBS溶液(pH=7.0)定容于500微升,进行物理混合,静置18分钟后成胶,得到蛋白疫苗vac-12(最终短肽的浓度为2mg/mL,OVA蛋白浓度为0.2mg/mL)。
制备实施例13
pH 7.0和室温20℃下短肽水凝胶负载辐照后的癌细胞的疫苗vac-13的制备
(1)取1mg制备实施例1中制备的L构型Nap-GFFY置于1.5毫升的玻璃瓶中,加入400微升PBS溶液(pH=7.0),用碳酸钠溶液将其pH值调节至7.0,加热至沸腾使化合物完全溶解,冷却到室温之后即得短肽水凝胶。
(2)取100微升5×107个每毫升的X光辐照后的癌细胞加入到(1)中制得的水凝胶中,进行物理混合,静置13分钟后成胶,得到细胞疫苗vac-13(最终短肽的浓度为2mg/mL,辐照后的癌细胞的浓度为1×107个每毫升)。
制备实施例14
pH 7.0和室温20℃下短肽水凝胶负载辐照后的癌细胞的疫苗vac-14的制备
(1)取1mg制备实施例2中制备的Nap-GDFDFDY置于1.5毫升的玻璃瓶中,加入400微升PBS溶液(pH=7.0),用碳酸钠溶液将其pH值调节至7.0,加热至沸腾使化合物完全溶解,冷却到室温之后即得短肽水凝胶。
(2)取100微升5×107个每毫升的X光辐照后的癌细胞加入到(1)中制得的水凝胶中,进行物理混合,静置10分钟后成胶,得到细胞疫苗vac-14(最终短肽的浓度为2mg/mL,辐照后的癌细胞的浓度为1×107个每毫升)。
制备实施例15
pH 7.0和室温20℃下短肽水凝胶负载B+T epitope短肽的疫苗vac-15的制备
(1)取1mg制备实施例10中制备的Nap-GDFDFDYDK置于1.5毫升的玻璃瓶中,加入400微升PBS溶液(pH=7.0),用碳酸钠溶液将其pH值调节至7.0,加热至沸腾使化合物完全溶解,冷却到室温之后即得短肽水凝胶。
(2)取25微升20mg/mL B+T epitope短肽(500微克)的加入到(1)中制得的水凝胶中,进行物理混合,用PBS溶液(pH=7.0)定容于500微升,静置14分钟后成胶,得到短肽疫苗vac-15(最终短肽的浓度为2mg/mL,B+T epitope短肽的浓度为1mg/mL)。
B+T epitope短肽结构式如下所示:
Figure BDA0001008999230000161
对比制备例1
取5mg/mL的OVA蛋白溶液20微升,用PBS溶液(pH=7.0)定容至500微升,得到不含佐剂的蛋白疫苗OVA(最终OVA蛋白浓度为0.2mg/mL)。
对比制备例2
(1)取40mg/mL的铝佐剂62.5微升,用PBS溶液(pH=7.0)定容至250微升,得到铝佐剂分散液。
(2)取5mg/mL的OVA蛋白溶液20微升加入到(1)中制得的铝佐剂分散液,用PBS溶液(pH=7.0)定容于500微升,进行物理混合,得到的混合物为含铝佐剂的蛋白疫苗Alum-OVA(最终铝佐剂的浓度为5mg/mL,OVA蛋白浓度为0.2mg/mL)。
对比制备例3
取100微升5×107个每毫升的X光辐照后的细胞,用PBS溶液(pH=7.0)定容至500微升,得到不含佐剂的细胞疫苗XTC(最终辐照后的癌细胞的浓度为1×107个每毫升)。
对比制备例4
pH 7.0和室温20℃下短肽水凝胶L-gel的制备
取1mg制备实施例1制备的L构型短肽Nap-GFFY置于1.5毫升的玻璃瓶中,加入400微升PBS溶液(pH=7.0),用碳酸钠溶液将其pH值调节至7.0,加热至沸腾使化合物完全溶解,冷却到室温之后形成水凝胶,用PBS溶液(pH=7.0)定容于500微升,静置10分钟后成胶,即为水凝胶L-gel(最终短肽的浓度为2mg/mL)。
对比制备例5
pH 7.0和室温20℃下短肽水凝胶D-gel的制备
取1mg制备实施例2制备的Nap-GDFDFDY置于1.5毫升的玻璃瓶中,加入400微升PBS溶液(pH=7.0),用碳酸钠溶液将其pH值调节至7.0,加热至沸腾使化合物完全溶解,冷却到室温之后形成水凝胶,用PBS溶液(pH=7.0)定容于500微升,静置8分钟后成胶,即为水凝胶D-gel(最终短肽的浓度为2mg/mL)。
对比制备例6
取25微升20mg/mL B+T epitope短肽(500微克),用PBS溶液(pH=7.0)定容至500微升,得到不含佐剂的短肽疫苗epitope(最终B+T epitope短肽的浓度为1mg/mL)。
对比制备例7
(1)取40mg/mL的铝佐剂62.5微升,用PBS溶液(pH=7.0)定容至250微升,得到铝佐剂分散液。
(2)取25微升20mg/mL短肽B+T epitope(500微克)加入到(1)中制得的铝佐剂分散液,用PBS溶液(pH=7.0)定容于500微升,进行物理混合,得到的混合物为含铝佐剂的短肽疫苗Alum-epitope。
免疫实施例1
(1)小鼠第一次免疫
取6-8周的小鼠,以第一次注射时间记为0天,取制备实施例1、制备实施例2、对比制备例1、对比制备例2中制得的蛋白疫苗以涡旋仪将水凝胶打散成粘稠溶液后分别以每只老鼠100微升的剂量在小鼠腹股沟处进行皮下注射。
(2)小鼠第二次免疫
在第14天的时间点,取制备实施例1、制备实施例2、对比制备例1、对比制备例2中制得的蛋白疫苗以涡旋仪将水凝胶打散成粘稠溶液后分别以每只老鼠100微升的剂量在小鼠腹股沟处进行皮下注射。
(3)抗体滴度的测量
在第21天的时候取小鼠血清,使用BioTek酶标仪,用Elisa的方法进行相应抗体滴度的测量。结果如图1所示。
从图1中的结果看出:其中IgG代表总的抗体滴度;IgG1是其中一个表型,表示体液免疫应答;IgG2a和IgG2b也是其中一个表型,表示细胞免疫水平。与不含佐剂的OVA蛋白组(对比制备例1)对比,使用L构型多肽水凝胶和OVA蛋白的组(制备实施例1)可提高IgG抗体滴度60倍,使用D构型多肽水凝胶和OVA蛋白的组(制备实施例2)可提高580倍,而使用铝佐剂和OVA蛋白的组(对比制备例2)仅可提高165倍;与不含佐剂的OVA蛋白组(对比制备例1)对比,使用L构型多肽水凝胶和OVA蛋白的组(制备实施例1)可提高IgG1抗体滴度167倍,使用D构型多肽水凝胶和OVA蛋制备2)仅可提高135倍;与不含佐剂的OVA蛋白组(对比制备例1)对比,使用L构型多肽水凝胶和OVA蛋白的组(制备实施例1)可提高IgG2a抗体滴度10倍,使用D构型多肽水凝胶和OVA蛋白的组(制备实施例2)可提高60倍,而使用铝佐剂和OVA蛋白的组(对比制备例2)仅可提高12倍;与不含佐剂的OVA蛋白组(对比制备例1)对比,使用L构型多肽水凝胶和OVA蛋白的组(制备实施例1)可提高IgG2b抗体滴度30倍,使用D构型多肽水凝胶和OVA蛋白的组(制备实施例2)可提高90倍,而使用铝佐剂和OVA蛋白的组(对比制备例2)仅可提高60倍。
免疫实施例2
(1)小鼠第一次免疫
取6-8周的小鼠,以第一次注射时间记为0天,取制备实施例2-5、对比制备例1、对比制备例2中制得的蛋白疫苗以涡旋仪将水凝胶打散成粘稠溶液后分别以每只老鼠100微升的剂量在小鼠腹股沟处进行皮下注射。
(2)小鼠第二次免疫
在第14天的时间点,取制备实施例2-5、对比制备例1、对比制备例2中制得的蛋白疫苗以涡旋仪将水凝胶打散成粘稠溶液后分别以每只老鼠100微升的剂量在小鼠腹股沟处进行皮下注射。
(3)抗体滴度的测量
在第21天的时候取小鼠血清,使用BioTek酶标仪,用Elisa的方法进行相应抗体滴度的测量。结果如图2所示。
从图2中的结果看出:与不含佐剂的OVA蛋白组(对比制备例1)对比,使用D构型多肽水凝胶和OVA蛋白的组(制备实施例2)可提高IgG抗体滴度141倍,而制备实施例3,4,5分别提高了70.5,35,70.5倍,而使用铝佐剂和OVA蛋白的组(对比制备例2)仅可提高64倍。
免疫实施例3
(1)小鼠第一次免疫
取6-8周的小鼠,以第一次注射时间记为0天,取制备实施例2、制备实施例6-9、对比制备例1、对比制备例2中制得的蛋白疫苗以涡旋仪将水凝胶打散成粘稠溶液后分别以每只老鼠100微升的剂量在小鼠腹股沟处进行皮下注射。
(2)小鼠第二次免疫
在第14天的时间点,取制备实施例2、制备实施例6-9、对比制备例1、对比制备例2中制得的蛋白疫苗以涡旋仪将水凝胶打散成粘稠溶液后分别以每只老鼠100微升的剂量在小鼠腹股沟处进行皮下注射。
(3)抗体滴度的测量
在第21天的时候取小鼠血清,使用BioTek酶标仪,用Elisa的方法进行相应抗体滴度的测量。结果如图3所示。
从图3中的结果看出:与不含佐剂的OVA蛋白组(对比制备例1)对比,使用D构型多肽水凝胶和OVA蛋白的组(制备实施例2)可提高IgG抗体滴度273倍,而制备实施例6,7,8,9分别提高了0.32,0.63,64,284倍,而使用铝佐剂和OVA蛋白的组(对比制备例2)仅可提高100倍。
免疫实施例4
(1)小鼠第一次免疫
取6-8周的小鼠,以第一次注射时间记为0天,取制备实施例2、制备实施例10-12、对比制备例1、对比制备例2中制得的蛋白疫苗以涡旋仪将水凝胶打散成粘稠溶液后分别以每只老鼠100微升的剂量在小鼠腹股沟处进行皮下注射。
(2)小鼠第二次免疫
在第14天的时间点,取制备实施例2、制备实施例10-12、对比制备例1、对比制备例2中制得的蛋白疫苗以涡旋仪将水凝胶打散成粘稠溶液后分别以每只老鼠100微升的剂量在小鼠腹股沟处进行皮下注射。
(3)抗体滴度的测量
在第21天的时候取小鼠血清,使用BioTek酶标仪,用Elisa的方法进行相应抗体滴度的测量。结果如图4所示。
从图4中的结果看出:与不含佐剂的OVA蛋白组(对比制备例1)对比,使用D构型多肽水凝胶和OVA蛋白的组(制备实施例2)可提高IgG抗体滴度126倍,而实施例10,11,12分别提高了233,49,150倍。
免疫实施例5
(1)小鼠第一次免疫
取6-8周的小鼠,以第一次注射时间记为0天,取无内毒素、无菌的PBS溶液以及制备实施例13-14、对比制备例3-5中制得的细胞疫苗以涡旋仪将水凝胶打散成粘稠溶液后分别以每只老鼠100微升的剂量在小鼠背部进行皮下注射。
(2)小鼠第二次免疫
在第14天的时间点,取无内毒素、无菌的PBS溶液以及制备实施例13-14、对比制备例3-5中制得的细胞疫苗以涡旋仪将水凝胶打散成粘稠溶液后分别以每只老鼠100微升的剂量在小鼠背部进行皮下注射。
(3)小鼠第三次免疫
在第21天的时间点,取无内毒素、无菌的PBS溶液以及制备实施例13-14、对比制备例3-5中制得的细胞疫苗以涡旋仪将水凝胶打散成粘稠溶液后分别以每只老鼠100微升的剂量在小鼠背部进行皮下注射。
(4)小鼠刺激CD8+IFN-γ+T细胞增殖的测试
在第28天取小鼠脾细胞,通过使用BD FACS Calibur流式细胞仪进行流式检测。结果如图5a)所示。
(5)小鼠肿瘤抑制实验
在第28天用未辐照的癌细胞接种小鼠背部,接种量1×106个癌细胞,随着肿瘤生长,在小鼠背部出现肉眼可见的肿瘤,定期测试肿瘤大小,以此评价肿瘤抑制效果。测试方法如下:用游标卡尺测量小鼠肿瘤的长(最长径)和宽(垂直于最长径方向的宽度),肿瘤体积按照公式【长×宽×(长+宽)/2】计算。结果如图5b)所示。
细胞免疫应答对于肿瘤的治疗相当关键。实验结果显示,被Nap-GDFDFDY水凝胶负载辐照后癌细胞免疫的小鼠相比于其他实验组展示出了更强的CD8+IFN-γ+增强效果(如图5a)),这表明它能提高细胞毒性T淋巴细胞(CTL)的表达,CTL有利于肿瘤抑制。如图5b),在PBS组和水凝胶组D-gel、L-gel,肿瘤生长曲线没有明显差别,但是在接种细胞疫苗XTC(图中实心正方形表示)、vac-5(图中实心菱形表示)、vac-6(图中空心三角形表示)的实验组肿瘤生长得到抑制并且延长了小鼠的生存周期。其中D构型水凝胶负载辐照后的癌细胞(vac-6)的免疫效果最为明显。这些结果与之前的蛋白疫苗的实验结果一致。
免疫实施例6
(1)小鼠第一次免疫
取6-8周的小鼠,以第一次注射时间记为0天,取制备实施例15、对比制备例6、对比制备例7中制得的短肽疫苗以涡旋仪将水凝胶打散成粘稠溶液后分别以每只老鼠100微升的剂量在小鼠腹股沟处进行皮下注射。
(2)小鼠第二次免疫
在第14天的时间点,取制备实施例15、对比制备例6、对比制备例7中制得的短肽疫苗以涡旋仪将水凝胶打散成粘稠溶液后分别以每只老鼠100微升的剂量在小鼠腹股沟处进行皮下注射。
(3)抗体滴度的测量
在第21天的时候取小鼠血清,使用BioTek酶标仪,用Elisa的方法进行相应抗体滴度的测量。结果如图6所示。
从图6中的结果看出:与不含佐剂的短肽疫苗组(对比制备例6)对比,以D构型多肽水凝胶Nap-GDFDFDYDK负载短肽B+T epitope组(制备实施例15)可提高IgG抗体滴度26倍,而含铝佐剂的短肽疫苗组(对比制备例7)没有提高。

Claims (4)

1.一种短肽作为疫苗佐剂的应用,其特征在于,所述短肽序列为Nap-GDFDFDYDK,所述疫苗为B+T epitope短肽疫苗。
2.如权利要求1所述的应用,其特征在于,所述作为疫苗佐剂的短肽的水混合物经加热冷却的方法形成短肽水凝胶,然后与抗原混合,静置后形成的水凝胶用作疫苗。
3.以权利要求1或2所述应用中短肽作为疫苗佐剂的短肽疫苗。
4.如权利要求3所述的短肽疫苗,其特征在于,所述作为疫苗佐剂的短肽与抗原物理混合得到疫苗。
CN201610396554.7A 2016-06-03 2016-06-03 短肽作为疫苗佐剂的应用及疫苗 Active CN105944097B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610396554.7A CN105944097B (zh) 2016-06-03 2016-06-03 短肽作为疫苗佐剂的应用及疫苗

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610396554.7A CN105944097B (zh) 2016-06-03 2016-06-03 短肽作为疫苗佐剂的应用及疫苗

Publications (2)

Publication Number Publication Date
CN105944097A CN105944097A (zh) 2016-09-21
CN105944097B true CN105944097B (zh) 2020-05-19

Family

ID=56907811

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610396554.7A Active CN105944097B (zh) 2016-06-03 2016-06-03 短肽作为疫苗佐剂的应用及疫苗

Country Status (1)

Country Link
CN (1) CN105944097B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107522772B (zh) * 2017-08-07 2020-05-19 南开大学 短肽、其作为疫苗佐剂的应用及以所述短肽作为疫苗佐剂的疫苗
CN108912348B (zh) * 2018-07-28 2021-07-02 邹立人 含有蛋白的短肽水凝胶和提高蛋白储存稳定性的方法
CN109111504A (zh) * 2018-07-28 2019-01-01 邹立人 短肽、水凝胶及其应用、和包含所述水凝胶的敷料
CN110204593A (zh) * 2019-05-17 2019-09-06 高邮市宇航化工机械厂 一种生物制药用多肽化合物的制备工艺
CN111647626B (zh) * 2020-06-08 2022-07-22 中国石油大学(华东) 多巯基肽自组装及其基因载体应用
CN112494644B (zh) * 2020-12-28 2024-02-06 中国医学科学院医学生物学研究所 一种复合佐剂、含有所述复合佐剂的疫苗及应用
CN113004372B (zh) * 2021-03-15 2022-08-05 南开大学 一种免疫多肽及其应用
CN113527417B (zh) * 2021-07-05 2022-09-27 中国医学科学院放射医学研究所 一种含氟基团的自组装多肽纳米佐剂及其制备方法与应用
CN114788875B (zh) * 2022-05-25 2023-05-30 中国医学科学院放射医学研究所 一种激活Hippo通路的超分子纳米药物及其制备方法与应用
CN115417915B (zh) * 2022-11-03 2023-02-24 北京引正基因科技有限公司 多肽载体及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104274839A (zh) * 2013-07-01 2015-01-14 国家纳米科学中心 一种基因疫苗载体、其制备方法及应用
CN105497891A (zh) * 2015-12-23 2016-04-20 南开大学 一种多肽水凝胶作为蛋白疫苗佐剂的应用及蛋白疫苗

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104274839A (zh) * 2013-07-01 2015-01-14 国家纳米科学中心 一种基因疫苗载体、其制备方法及应用
CN105497891A (zh) * 2015-12-23 2016-04-20 南开大学 一种多肽水凝胶作为蛋白疫苗佐剂的应用及蛋白疫苗

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A Peptide-Based Nanofibrous Hydrogel as a Promising DNA Nanovector for Optimizing the Efficacy of HIV Vaccine;Yue Tian 等;《Nano Letters》;20140224;第14卷;第1440页图1 *
Chengbiao Yang 等.Enzymatic induction of supramolecular order and bioactivity.《Nanoscale》.2016,第8卷(第20期),第10768页摘要、第10769页左栏第5-7、11段. *
Enzymatic induction of supramolecular order and bioactivity;Chengbiao Yang 等;《Nanoscale》;20160426;第8卷(第20期);第10768页摘要、第10769页左栏第5-7、11段 *
Nanostructured Hydrogels for Three-Dimensional Cell Culture Through Self-Assembly of Fluorenylmethoxycarbonyl–Dipeptides;Vineetha Jayawarna 等;《Adv. Mater.》;20061231;第18卷;第611-614页 *
Rigid, Self-Assembled Hydrogel Composed of a Modified Aromatic Dipeptide;Assaf Mahler 等;《Adv. Mater.》;20060425;第18卷;第1365-1370页 *
Switchable Catalytic Activity: Selenium-Containing Peptides with Redox-Controllable Self-Assembly Properties;Xiaoming Miao 等;《Angew. Chem. Int. Ed.》;20130619;第52卷;第7781-7785页 *

Also Published As

Publication number Publication date
CN105944097A (zh) 2016-09-21

Similar Documents

Publication Publication Date Title
CN105944097B (zh) 短肽作为疫苗佐剂的应用及疫苗
CN107522772B (zh) 短肽、其作为疫苗佐剂的应用及以所述短肽作为疫苗佐剂的疫苗
CN106008667B (zh) 短肽、其作为疫苗佐剂的应用及疫苗
JP5800928B2 (ja) 新規ペプチド化合物
JP2011520783A5 (zh)
CN113329762A (zh) 用于合成肽免疫原作为免疫刺激剂的人工混杂t辅助细胞表位
WO2015002134A1 (ja) 細胞性免疫誘導ワクチン
Gupta et al. A bioorthogonal chemoenzymatic strategy for defined protein dendrimer assembly
EP2442825B1 (en) Method for the purification of protein complexes
TWI754817B (zh) 以人工混雜t輔助細胞抗原決定位以有限度的t細胞發炎反應促進目標抗體的生產
IT9019914A1 (it) Composti immunogenici, il procedimento per la loro sintesi e loro impiego per la preparazione di vaccini antimalaria
JP2019501964A (ja) ポリペプチド化合物、並びにその調製方法及び適用
CN105367662B (zh) 一种hbv相关的融合蛋白、其制备方法及其应用
KR20230088750A (ko) 면역 반응을 조절할 수 있는 금속 이온과 sting 작용제의 결정질 다형 형태
JPH02223594A (ja) ヒトライノウイルスペプチド
EP3517542B1 (en) Dendritic-cell-targeted peptide, fusion peptide utilizing said peptide, and vaccine utilizing said fusion peptide
EP4112636A1 (en) Tumor immune enhancer, and preparation method therefor and application thereof
EP1292330A1 (en) Immunostimulating properties of a fragment of tgf- beta
CN117599162A (zh) 一种基于锰离子的自组装多肽水凝胶佐剂及其制备方法与应用
CN111053895B (zh) 抗原及其制备方法和应用
WO2013149974A1 (en) Peptide vaccines for the prevention of foot-and-mouth disease
WO2020072428A1 (en) Peptide immunogen constructs directed against dipeptide repeat proteins from c9orf72

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant