CN105906345A - 一种具有TiB2表层的AlMgB14-TiB2超硬复合材料及其制备方法 - Google Patents
一种具有TiB2表层的AlMgB14-TiB2超硬复合材料及其制备方法 Download PDFInfo
- Publication number
- CN105906345A CN105906345A CN201610209639.XA CN201610209639A CN105906345A CN 105906345 A CN105906345 A CN 105906345A CN 201610209639 A CN201610209639 A CN 201610209639A CN 105906345 A CN105906345 A CN 105906345A
- Authority
- CN
- China
- Prior art keywords
- tib
- almgb
- layer
- sintering
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/5805—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3804—Borides
- C04B2235/3813—Refractory metal borides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5427—Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Powder Metallurgy (AREA)
- Ceramic Products (AREA)
Abstract
本发明涉及一种具有TiB2表层的AlMgB14‑TiB2超硬复合材料的制备方法,具体步骤如下:在下石墨电极和上石墨电极之间依次铺设一层AlMgB14粉体和一层TiB2粉体,采用放电等离子烧结。本发明制备的复合材料硬度达到25‑30GPa,抗弯强度2000‑2100MPa,500℃高温时具有优良的抗氧化性能,表面摩擦系数0.2‑0.3。
Description
技术领域
本发明涉及特种陶瓷材料制备的技术领域,特别涉及一种具有TiB2表层的AlMgB14-TiB2超硬复合材料及其制备方法。
背景技术
近年来发展起来的一类新型AlMgB14金属陶瓷材料具有超高硬度和抗磨性能及其良好的化学稳定性,可适用于军事装备和在极端力学条件下的机械装备及刀具。
但由于AlMgB14金属陶瓷材料的高温抗氧化性能较低,限制了其应用范围。为了提高该复合材料的在高温磨蚀工况条件下的服役寿命,必需提高其表面抗磨蚀性能,同时保持其超高硬度的特性。
发明内容
针对现有技术中存在的问题,本发明的目的在于提供一种具有TiB2表层的AlMgB14-TiB2超硬复合材料的制备方法。
一种具有TiB2表层的AlMgB14-TiB2超硬复合材料的制备方法,具体步骤如下:
在石墨模具内,下石墨电极和上石墨电极之间由下到上依次铺设一层AlMgB14粉体和一层TiB2粉体,其中,所述AlMgB14层的厚度为2-10mm,所述TiB2层的厚度为0.5-1.0mm;所述AlMgB14和TiB2的颗粒尺寸为100-150μm;采用放电等离子烧结,烧结是在真空度10-3~10-4Pa条件下进行的,放电等离子烧结条件是:电流I=1000-1500A,脉冲频率20-50Hz,通电时间t=10-15min,压力P=50-70MPa;当温度值达到1400-1500℃后保持5-10min,之后将电流缓慢减小至零,温度冷却至室温。
本发明的有益效果:
本发明利用TiB2与AlMgB14的物理化学性质相似,热膨胀系数相近,二者具有良好的亲和性的优点。在烧结过程AlMgB14和TiB2陶瓷颗粒的连接界面具有较好的化合及润湿性,形成AlMgB14-TiB2过渡层(图2)保证相间界面的良好结合。界面粉体在瞬间强脉冲电场的作用下快速产生的反应热使结合界面区加热和局部熔化,形成元素互扩散和化合,在压力的辅助作用下快速形成固相烧结。TiB2具有高硬度、高温化学稳定性和减摩性等优点,使AlMgB14-TiB2复合材料不但具有超高硬度,且其强韧性和抗磨蚀性能得到显著提高。本发明的复合材料硬度达到25-30GPa,抗弯强度2000-2100MPa,500℃高温时具有优良的抗氧化性能,表面摩擦系数0.2-0.3。
附图说明:
图1为本发明超硬复合材料制备方法的原理图;
其中:1、AlMgB14层 2、TiB2层 3、石墨模具 4、下石墨电极 5、上石墨电极 6、下压头 7、上压头;
图2为超硬复合材料示意图;
其中:1、AlMgB14层 8、AlMgB14-TiB2层 2、TiB2层
图3为实施例2所得的复合材料金相照片。
其中:1、AlMgB14层 8、AlMgB14-TiB2层 2、TiB2层。
具体实施方式
实施例1
在下石墨电极和上石墨电极之间依次铺设一层AlMgB14粉体和一层TiB2粉体,其中,所述AlMgB14层的厚度为2mm,所述TiB2层的厚度为0.3mm;所述AlMgB14和TiB2的颗粒尺寸为120μm;采用放电等离子烧结,烧结是在真空度10-3Pa条件下进行的,放电等离子烧结条件是:电流I=1000A,脉冲频率50Hz,通电时间t=10min,压力P=50MPa;当温度值达到1400℃后保持5min,之后将电流缓慢减小至零,温度冷却至室温。
制备的复合材料硬度为25GPa,抗弯强度2000MPa,500℃高温时具有优良的抗氧化性能,表面摩擦系数0.21。
实施例2
在下石墨电极和上石墨电极之间依次铺设一层AlMgB14粉体和一层TiB2粉体,其中,所述AlMgB14层的厚度为5mm,所述TiB2层的厚度为0.4mm;所述AlMgB14和TiB2的颗粒尺寸为120μm;采用放电等离子烧结,烧结是在真空度10-3Pa条件下进行的,放电等离子烧结条件是:电流I=1200A,脉冲频率50Hz,通电时间t=15min,压力P=60MPa;当温度值达到1400℃后保持8min,之后将电流缓慢减小至零,温度冷却至室温。
制备的复合材料硬度为28GPa,抗弯强度2100MPa,500℃高温时具有优良的抗氧化性能,表面摩擦系数0.23。
实施例3
在下石墨电极和上石墨电极之间依次铺设一层AlMgB14粉体和一层TiB2粉体,其中,所述AlMgB14层的厚度为8mm,所述TiB2层的厚度为0.5mm;所述AlMgB14和TiB2的颗粒尺寸为100μm;采用放电等离子烧结,烧结是在真空度10-4Pa条件下进行的,放电等离子烧结条件是:电流I=1300A,脉冲频率40Hz,通电时间t=15min,压力P=60MPa;当温度值达到1500℃后保持8min,之后将电流缓慢减小至零,温度冷却至室温。
制备的复合材料硬度为30GPa,抗弯强度2100MPa,500℃高温时具有优良的抗氧化性能,表面摩擦系数0.25。
实施例4
在下石墨电极和上石墨电极之间依次铺设一层AlMgB14粉体和一层TiB2粉体,其中,所述AlMgB14层的厚度为10mm,所述TiB2层的厚度为0.5mm;所述AlMgB14和TiB2的颗粒尺寸为100μm;采用放电等离子烧结,烧结是在真空度10-4Pa条件下进行的,放电等离子烧结条件是:电流I=1500A,脉冲频率50Hz,通电时间t=15min,压力P=70MPa;当温度值达到1500℃后保持10min,之后将电流缓慢减小至零,温度冷却至室温。
制备的复合材料硬度为27GPa,抗弯强度2100MPa,500℃高温时具有优良的抗氧化性能,表面摩擦系数0.22。
上述实施方案为本发明最佳的实施方案,但本发明的实施方案并不受上述实施方案的限制,其他的任何不违背本发明原理的条件下,可以通过改变参数的形式所产生的实施例,都包含于本发明的保护范围之内。
Claims (7)
1.一种具有TiB2表层的AlMgB14-TiB2超硬复合材料,其特征在于,由一层AlMgB14粉体和一层TiB2粉体通过放电等离子烧结而成。
2.根据权利要求1所述的具有TiB2表层的AlMgB14-TiB2超硬复合材料,其特征在于,烧结条件是:电流I=1000-1500A,脉冲频率20-50Hz,通电时间t=10-15min,压力P=50-70MPa。
3.根据权利要求1或2所述的具有TiB2表层的AlMgB14-TiB2超硬复合材料,其特征在于,烧结是在真空度10-3~10-4Pa条件下进行的。
4.根据权利要求3所述的具有TiB2表层的AlMgB14-TiB2超硬复合材料,其特征在于,烧结温度为1400-1500℃,维持5-10min。
5.根据权利要求4所述的具有TiB2表层的AlMgB14-TiB2超硬复合材料,其特征在于,所述AlMgB14层的厚度为2-10mm,所述TiB2层的厚度为0.3-0.5mm;烧结过程在AlMgB14与TiB2之间形成AlMgB14-TiB2复合过渡层,厚度为0.1-0.3mm。
6.根据权利要求5所述的具有TiB2表层的AlMgB14-TiB2超硬复合材料,其特征在于,所述AlMgB14和TiB2的颗粒尺寸为100-150μm。
7.一种根据权利要求1-6任一项所述的具有TiB2表层的AlMgB14-TiB2超硬复合材料的制备方法,其特征在于,具体步骤如下:
在石墨模具内,下石墨电极和上石墨电极之间由下到上依次铺设一层AlMgB14粉体和一层TiB2粉体,其中,所述AlMgB14层的厚度为2-10mm,所述TiB2层的厚度为0.5-1.0mm;所述AlMgB14和TiB2的颗粒尺寸为100-150μm;采用放电等离子烧结,烧结是在真空度10-3~10-4Pa条件下进行的,放电等离子烧结条件是:电流I=1000-1500A,脉冲频率20-50Hz,通电时间t=10-15min,压力P=50-70MPa;当温度值达到1400-1500℃后保持5-10min,之后将电流缓慢减小至零,温度冷却至室温。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610209639.XA CN105906345A (zh) | 2016-03-30 | 2016-03-30 | 一种具有TiB2表层的AlMgB14-TiB2超硬复合材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610209639.XA CN105906345A (zh) | 2016-03-30 | 2016-03-30 | 一种具有TiB2表层的AlMgB14-TiB2超硬复合材料及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105906345A true CN105906345A (zh) | 2016-08-31 |
Family
ID=56745472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610209639.XA Pending CN105906345A (zh) | 2016-03-30 | 2016-03-30 | 一种具有TiB2表层的AlMgB14-TiB2超硬复合材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105906345A (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106800419A (zh) * | 2017-01-18 | 2017-06-06 | 太原科技大学 | 一种单壁碳纳米管增强型铝镁硼陶瓷材料的制备方法 |
CN108129152A (zh) * | 2017-12-01 | 2018-06-08 | 高昕文 | 一种耐磨耐高温TiSiN涂层陶瓷铣刀的制备方法 |
CN111302805A (zh) * | 2020-03-13 | 2020-06-19 | 中国科学院兰州化学物理研究所 | 一种三元硼化物-硼化锆复合材料及其制备方法 |
CN112358905A (zh) * | 2020-11-09 | 2021-02-12 | 扬州工业职业技术学院 | 一种三元硼化物固体润滑梯度涂层及其制备方法 |
CN115872778A (zh) * | 2022-12-14 | 2023-03-31 | 中国科学院兰州化学物理研究所 | 一种实现900℃以上高温优良润滑和超低磨损的方法 |
-
2016
- 2016-03-30 CN CN201610209639.XA patent/CN105906345A/zh active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106800419A (zh) * | 2017-01-18 | 2017-06-06 | 太原科技大学 | 一种单壁碳纳米管增强型铝镁硼陶瓷材料的制备方法 |
CN106800419B (zh) * | 2017-01-18 | 2018-01-23 | 太原科技大学 | 一种单壁碳纳米管增强型铝镁硼陶瓷材料的制备方法 |
CN108129152A (zh) * | 2017-12-01 | 2018-06-08 | 高昕文 | 一种耐磨耐高温TiSiN涂层陶瓷铣刀的制备方法 |
CN111302805A (zh) * | 2020-03-13 | 2020-06-19 | 中国科学院兰州化学物理研究所 | 一种三元硼化物-硼化锆复合材料及其制备方法 |
CN112358905A (zh) * | 2020-11-09 | 2021-02-12 | 扬州工业职业技术学院 | 一种三元硼化物固体润滑梯度涂层及其制备方法 |
CN112358905B (zh) * | 2020-11-09 | 2022-05-27 | 扬州工业职业技术学院 | 一种三元硼化物固体润滑梯度涂层及其制备方法 |
CN115872778A (zh) * | 2022-12-14 | 2023-03-31 | 中国科学院兰州化学物理研究所 | 一种实现900℃以上高温优良润滑和超低磨损的方法 |
CN115872778B (zh) * | 2022-12-14 | 2023-12-01 | 中国科学院兰州化学物理研究所 | 一种实现900℃以上高温优良润滑和超低磨损的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105906345A (zh) | 一种具有TiB2表层的AlMgB14-TiB2超硬复合材料及其制备方法 | |
CN109400164B (zh) | 一种max相/氮化物陶瓷层状梯度复合材料及其快速制备方法和应用 | |
CN102700191B (zh) | Cvd金刚石增强聚晶金刚石复合片的制备方法 | |
CN102124590A (zh) | 密封环和相关联的方法 | |
CN101345142B (zh) | 一种Ti3SiC2多层复合结构电触头材料及其制备工艺 | |
Li et al. | Research progress in TiB 2 wettable cathode for aluminum reduction | |
CN101345143A (zh) | 一种Cu/Ti3SiC2电接触材料及其制备工艺 | |
CN100582311C (zh) | 一种铝电解用陶瓷基惰性阳极与金属导电杆的连接方法 | |
CN108330508A (zh) | 一种铝电解用金属陶瓷惰性阳极与金属导电杆的连接方法 | |
CN108409333A (zh) | 一种AlMgB14-TiB2/Ti梯度功能复合材料及其制备方法 | |
CN101345141A (zh) | 一种Ti3SiC2三层复合结构的电触头材料及其制备工艺 | |
CN103979974A (zh) | 一种C/SiC-HfB2-HfC超高温陶瓷基复合材料的制备方法 | |
CN106498206A (zh) | 一种Ti3SiC2增强Ag基电触头材料的制备方法 | |
CN107779829B (zh) | 基于高温镍基合金的多层复合耐高温腐蚀涂层的制备方法 | |
CN104532042A (zh) | 一种立方氮化硼颗粒增强Cu基电极复合材料及其制备方法 | |
CN109332941B (zh) | 一种耐腐蚀的高导放热焊剂 | |
CN102822392B (zh) | 精炼铝用阴极碳块及其制造方法 | |
CN102672144A (zh) | 一种碳化钨陶瓷/耐热合金基耐热、耐磨复合材料的制备方法 | |
CN104047030B (zh) | 一种陶瓷外壳与合金内芯的铝电解惰性阳极的制备方法 | |
CN107460476A (zh) | 一种钛合金表面TiC增强钛基复合涂层及其制备方法 | |
CN104709094B (zh) | 一种高速铁路动车组用碳纤维增强碳一体化受电弓滑板 | |
CN107775210A (zh) | 一种耐磨堆焊合金材料的制备方法 | |
Li et al. | Copper fiber reinforced needle-coke/carbon composite for pantograph slide and its current-carrying wear performance | |
CN106521223B (zh) | 碳化钛/铜基复合材料的制备方法 | |
CN106191514A (zh) | 一种多用途的铜基复合材料及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160831 |
|
RJ01 | Rejection of invention patent application after publication |