CN105891293A - 一种pnipam-rgo石墨烯复合材料的制备及其在智能响应性修饰电极上的应用 - Google Patents

一种pnipam-rgo石墨烯复合材料的制备及其在智能响应性修饰电极上的应用 Download PDF

Info

Publication number
CN105891293A
CN105891293A CN201610383119.0A CN201610383119A CN105891293A CN 105891293 A CN105891293 A CN 105891293A CN 201610383119 A CN201610383119 A CN 201610383119A CN 105891293 A CN105891293 A CN 105891293A
Authority
CN
China
Prior art keywords
pnipam
rgo
composite material
electrode
graphene composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610383119.0A
Other languages
English (en)
Other versions
CN105891293B (zh
Inventor
夏立新
张秋月
张谦
张俊慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHENYANG INDUSTRIAL TECHNOLOGY INSTITUTE OF LANJIN ENVIRONMENTAL PROTECTION INDUSTRY Co.,Ltd.
Original Assignee
Liaoning University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liaoning University filed Critical Liaoning University
Priority to CN201610383119.0A priority Critical patent/CN105891293B/zh
Publication of CN105891293A publication Critical patent/CN105891293A/zh
Application granted granted Critical
Publication of CN105891293B publication Critical patent/CN105891293B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/52Amides or imides
    • C08F120/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inert Electrodes (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开一种PNIPAM‑RGO石墨烯复合材料,制备方法是以偶氮二异丁基脒盐酸盐作为引发剂,先把引发剂价键固载在氧化石墨烯基底上,进而再通过原子自由基聚合来制备智能高分子修饰的石墨烯复合材料。该PNIPAM‑RGO纳米复合物对温度的改变表现出不同的响应性。利用多种电化学技术对PNIPAM‑RGO/GC修饰电极的智能型电化学的响应性进行了研究,研究结果表明,PNIPAM‑RGO/GC修饰电极兼具PNIPAM和RGO的优点,即前者的智能响应性和后者较好的电子传输性。研究中进一步探究了不同温度下PNIPAM‑RGO/GC修饰电极对多巴胺的电化学催化性能及浓度的检测。

Description

一种PNIPAM-RGO石墨烯复合材料的制备及其在智能响应性修 饰电极上的应用
技术领域
本发明属于生物传感器领域,具体涉及一种PNIPAM-RGO石墨烯复合材料的制备及其在智能响应性修饰电极的应用。
背景技术
生物传感器是由酶、免疫系统、抗体、动物组织、细胞器等生物活性物质作为识别元件,与物理化学转换器相结合将浓度转化为电信号的检测装置。生物传感器是化学传感器的一种,具有高灵敏度、高效性、检出限低、对目标物的特异性响应,而且可以在线分析甚至是活体分析,因此引起了极大的关注。其中,酶电化学传感器又称为酶电极,是应用领域最广的一类传感器。
近年来,温度敏感聚合物由于独特的性质在生物传感器领域受到广泛的关注,在众多的温度敏感聚合物中,聚N-异丙基丙烯酰胺(PNIPAM)是近几年来很受关注的温度敏感型高分子材料,其在水溶液中具有很低的相转变温度,在相转变温度上下高分子材料会发生可逆的溶解-沉淀、收缩-溶胀的变化。近年来,该材料在电化学领域的应用也广泛受到人们的重视,例如Zhou等人研究了PNIPAM的不同热响应行为及对离子的可逆固定,Zhu等人将PNIPAM固定到ITO电极表面,并研究了对肌红蛋白的吸附-释放行为。碳材料作为一种生物兼容的纳米材料由于其独特的电子传输性能而备受关注,这些碳材料不仅能有效的促进电子传输,还可以有效的实现氧化还原蛋白质与电极之间的直接电子传输。氧化石墨烯作为一种新型的二维碳材料受到了广泛的关注,氧化石墨烯拥有大量的含氧官能团增强了在水溶液中的分散性,也使得它很容易功能化。目前功能化石墨烯有很多种,其中一种就是石墨烯与有机大分子制备的复合材料。
基于以上分析,将PNIPAM与碳材料复合形成功能性复合物用于生物传感器,不仅可以改变PNIPAM的力学性能和敏感性,而且由于碳材料的存在提升了功能性复合物的电子传输性能。然而目前报道的合成方法都过于繁琐,限制了该复合物的进一步应用。
发明内容
针上述现有的不足,本发明提供了一种普适性的合成方法,利用AIBA与氧化石墨烯表面的环氧键在水体系中发生环氧键的开环反应,实现自由基引发剂在GO环上的负载,进而通过热引发产生自由基,引发N-异丙基丙烯酰胺(NIPAM)的聚合,形成一种新型的温度敏感的PNIPAM-RGO纳米复合材料,并对该复合物的结构、形貌、性质进行了表征;其次利用这种方法合成了水溶性的聚氮异丙基丙烯酰胺-石墨烯纳米复合物(PNIPAM-RGO),对其亲疏 水性及电化学性质随温度的变化进行了考察,考察了其智能响应性,并将该材料应用到电化学领域生物传感器中,并将该材料通过滴涂法制备成PNIPAM-RGO/GC修饰电极,研究在不同温度下的电化学行为,用于对多巴胺进行检测。
本发明采用的技术方案为:
一种PNIPAM-RGO石墨烯复合材料,制备方法是以偶氮二异丁基脒盐酸盐作为引发剂,通过先把引发剂价键固载在氧化石墨烯基底上,进而再通过原子自由基聚合来制备智能高分子修饰的石墨烯复合材料。
所述的一种PNIPAM-RGO石墨烯复合材料,制备方法具体为:将氧化石墨烯GO分散在水中,超声30min后,加入偶氮二异丁基脒盐酸盐得混合溶液A,将混合溶液A于碱性环境下,反应2h;然后向混合溶液A中注入N-异丙基丙烯酰胺NIPAM单体,于80℃反应3h,产物离心,水洗后,透析,得到最终产物PNIPAM-RGO。
所述的一种PNIPAM-RGO石墨烯复合材料,所述碱性环境,是用氨水调节混合溶液的PH,PH值约为10。
一种上述的PNIPAM-RGO石墨烯复合材料在智能响应性修饰电极上的应用。
所述的应用,将PNIPAM-RGO水溶液滴涂到预处理好的玻碳电极GC表面,然后在电极上面罩一个干燥且干净的烧杯,室温下干燥24h,水分缓慢蒸发,在电极表面形成一层薄膜,即得到PNIPAM-RGO/GC修饰电极。
一种上述的PNIPAM-RGO石墨烯复合材料在电化学催化多巴胺上的应用。
一种上述的PNIPAM-RGO石墨烯复合材料在检测多巴胺浓度上的应用。
本发明具有以下有益效果:
本发明首先建立了一种具有普适性的氧化石墨烯功能化的基础,即首先通过将引发剂价键固载在氧化石墨烯基底上,进而通过原子自由基聚合制备智能高分子修饰的石墨烯。利用这种方法首先合成了水溶性的聚氮异丙基丙烯酰胺-石墨烯纳米复合物(PNIPAM-RGO)。通过透射电镜、红外吸收光谱、紫外-可见吸收光谱、Zeta电位、热重分析等方法对此复合物的形貌、结构、表面电荷性质进行了表征,并利用紫外-可见吸收光谱对复合物的温度敏感性进行了监测,实验结果表明PNIPAM-RGO纳米复合物对温度的改变表现出不同的响应性。此外,还利用多种电化学技术对PNIPAM-RGO/GC修饰电极的智能型电化学的响应性进行了研究,研究结果表明,PNIPAM-RGO复合材料由于结构中PNIPAM和RGO的共存,因此可使PNIPAM-RGO/GC修饰电极兼具PNIPAM和RGO的优点,即前者的智能响应性和后者较好的电子传输性。研究中进一步探究了不同温度下PNIPAM-RGO/GC修饰电极对多巴胺的电化学催化性能及浓度的检测。
附图说明
图1为GO(A)和PNIPAM-RGO(B)的透射电镜图
图2为GO(a)和PNIPAM-RGO(b)的UV-Vis图
图3为GO(a)、RGO(b)和PNIPAM-RGO(c)的FT-IR图
图4为RGO(a)、GO(b)、PNIPAM-RGO(c)和PNIPAM(d)的TGA(N2气氛,室温~800℃,升温速度10℃/min)
图5为GO(A)、RGO(B)和PNIPAM-RGO(C)在水溶液中(pH 7.0)的Zeta电位图,右侧对应的是其分散在水溶液中的照片
图6为GO(A)、PNIPAM(B)和PNIPAM-RGO(C)分散在60℃的水中的数码照片
图7A为PNIPAM-RGO在20℃(a)和50℃(b)的紫UV-Vis图;
图7B为温度循环与UV-Vis吸收峰的关系图(阴影部分为20℃的紫外-可见吸收,白色部分为50℃的紫外-可见吸收)
图8为PNIPAM(a)和PNIPAM-RGO(b)的粒径随温度变化趋势(温度:20-45℃,升温速度1℃/min)
图9为PNIPAM-RGO/GC修饰电极的电化学表征测试图,其中A为PNIPAM-RGO/GC修饰电极在5mM K3Fe(CN)6/K4Fe(CN)6(1:1),0.5M KCl为支持电解质中20℃(a)和40℃(b)的循环伏安图;B为还原峰电流随循环次数的关系图;C为峰位差随扫描次数的关系图(扫速:200mV/s);
图10A为PNIPAM-RGO/GC修饰电极在5mM K3Fe(CN)6/K4Fe(CN)6(1:1),0.5M KCl为支持电解质中20℃(a)和40℃(b)的EIS图;
图10B为电阻随循环次数的关系图(频率范围从0.1Hz-100KHz,振幅5mV,电位0.24V)
图11A为GO/GC(a)、PNIPAM-RGO/GC(b)和PNIPAM/GC(c)修饰电极在20℃含有0.2mMDA的0.1M PBS(pH 7.0)中的循环安曲线;
图11B为PNIPAM-RGO/GC修饰电极在20℃(a)和40℃(b)含有0.2mM DA的0.1M PBS(pH 7.0)中的循环伏安曲线(扫速:200mV/s)
图12A为PNIPAM-RGO/GC修饰电极在20℃对不同浓度DA检测的DPV曲线
图12B为PNIPAM-RGO/GC修饰电极在40℃对不同浓度DA检测的DPV曲线
图12C为PNIPAM-RGO/GC修饰电极在20℃(a)和40℃(b)对不同浓度DA检测的校正曲线
具体实施方式
为了更好地理解本发明的技术方案,特以具体的实施例作进一步详细说明,但方案不限于此。
实施例1(N-异丙基丙烯酰胺NIPAM的纯化)
在两口圆底烧瓶中加入10.0020g NIPAM单体,加热滴加丙酮至NIPAM全部溶解,冷却回流,滴加正己烷,直到加入正己烷后出现白色物质为止(V丙酮:V正己烷=1:6),停止加热,冷却至室温,转入0℃放置10h,转入-10℃放置20h。待晶体析出后,取出抽滤,用正己烷洗涤。真空室温干燥。
实施例2(氧化石墨烯的制备)
氧化石墨烯采用Hummer法制备。向三口圆底烧瓶中加入67.5mL浓硫酸,然后将其置于冰水浴中,再加入2.0011g高纯石墨和1.6003g的NaNO3,搅拌均匀后加入9.0002g高锰酸钾固体,然后在水浴32-38℃之间反应30min,然后在室温下放置7天,最后用560.0mL热水稀释,滴加3%H2O2至溶液为亮黄色,静置1h,离心处理GO(10000rpm,10min),先用0.01MNaOH洗GO溶液至中性,再用水洗,洗掉多余的SO4 2-,用饱和乙酸钡检验直至无白色沉淀,最后用乙醇洗2次,产物在真空干燥箱中干燥,备用。
实施例3(聚N-异丙基丙烯酰胺PNIPAM的制备)
取1.0005g NIPAM,溶解在30.0mL水中,加入17.0mg偶氮二异丁基脒盐酸盐(AIBA),70℃反应2h,即得到PNIPAM聚合物。
实施例4(还原氧化石墨烯RGO的制备)
取5.0mg GO分散于10.0mL的水中,超声30min,加入12.0mg偶氮二异丁基脒盐酸盐(AIBA),用氨水调节pH=10,35℃反应2h。
实施例5(PNIPAM-RGO的制备)
取5.0mg GO,分散在10.0mL的水中,超声30min,加入12.0mg偶氮二异丁基脒盐酸盐(AIBA),用氨水调节pH=10,35℃反应2h。注入NIPAM单体(1.0000g,溶于5.0mL水中),80℃反应3h。产物离心水洗(10000rpm,10min),直至检查上清液无PNIPAM,透析4天,得到最终产物PNIPAM-RGO。
如图1所示,图1中A为实施例2制备的氧化石墨烯GO的投射电镜图,图1中B为实施例5制备的PNIPAM-RGO(B)的透射电镜图。由图可知聚合物PNIPAM-RGO与GO相比,形貌未发生明显变化,均为不规则的片状结构,并且表面有大量的褶皱。
图2是GO(a)和PNIPAM-RGO(b)在水中的UV-Vis图。从图中可以看出,GO在228nm 处有特征吸收,这是由于C-C骨架的π-π吸附引起的;当GO上面修饰上PNIPAM之后,其特征吸收峰红移到243nm,说明其共轭程度增大,表明GO在修饰的过程中被还原。
图3为GO(a)、RGO(b)和PNIPAM-RGO(c)的红外光谱图。从图中可以观察到GO(a)在3421cm-1处有一吸收峰,该峰归属于O-H的伸缩振动峰,1625cm-1处的吸收峰归属于氧化石墨烯碳骨架的吸收,1737cm-1处归属于C=O伸缩振动的吸收峰,1005cm-1处的吸收峰归属于C-O伸缩振动吸收。曲线b中,羰基(1737cm-1)处的吸收峰消失,说明GO在碱性条件下发生了还原。曲线c是与PNIPAM复合之后的光谱图,1641cm-1处的吸收峰归属于PNIPAM中仲酰胺C=O伸缩振动吸收峰,1379cm-1处有一吸收峰,该峰归属于C-N伸缩振动吸收和N-H弯曲振动吸收的混合峰。与曲线b相比,出现了高分子链上酰胺的特征吸收,说明PNIPAM成功地复合到了RGO上。
图4是GO(a)、RGO(b)、PNIPAM-RGO(c)和PNIPAM(d)的TGA图。从图中可以看出,GO(a)在100℃时有10%的失重,主要是由于失去GO中的水,在200℃时,有38%的失重,这主要是由于失去含氧官能团,如羟基、羧基、羰基和环氧基,生成CO、CO2、H2O等;GO被AIBA还原形成RGO之后在200℃有22%的失重,主要是其中没被还原的含氧官能团,如羰基的失重以及AIBA中的氨基的失重;PNIPAM-RGO在800℃时失重85%,且与PNIPAM类似,表明PNIPAM-RGO的失重是由于PNIPAM造成的,说明PNIPAM-RGO包含85%的PNIPAM和15%的GO。
图5是GO(A)、RGO(B)和PNIPAM-RGO(C)分散在水溶液中的Zeta电位图,右侧为对应分散在水中的照片。从图中可以看出,GO在pH 7.0的水溶液中的Zeta电位为-30.1mV,可以稳定地分散在水中,呈现出棕褐色;RGO的Zeta电位为-23.3mV,当GO被还原形成RGO之后,在水中几乎不分散,形成不可逆的团聚,聚集在瓶的底部;修饰过PNIPAM的RGO复合物,Zeta电位为-2.3mV,能稳定地分散在水中,因为PNIPAM带有亲水的酰胺基团,所以可以分散在水中,因此增强了PNIPAM-RGO的水溶性。
图6是GO、PNIPAM和PNIPAM-RGO分散在60℃的水中的数码照片图。从图中可以看出,GO可以很好的分散在水中,呈现浅褐色。PNIPAM在60℃的水中发生了团聚,从水中析出,这是由于温度升高,PNIPAM由分子间氢键转变为分子内氢键,因此发生了团聚,从水中析出。PNIPAM-RGO疏水,水中析出,有明显的黑色团聚颗粒,与PNIPAM类似。对比A和C可以看出来,PNIPM-RGO赋予了GO温度敏感性,对比B和C可以看出,PNIPAM-RGO的温度敏感性是由于其中的PNIPAM性质所决定的。
图7A为PNIPAM-RGO在20℃(a)和50℃(b)的UV-Vis图,图7B为20-50℃的循环 图。从图A可以看出来,在20℃时PNIPAM-RGO在243nm处有吸收峰,当加热至50℃,其吸收峰消失,由此可以说明PNIPAM-RGO在50℃时从溶液中析出,沉于样品池底部,因此检测不到吸收峰。图7B为温度循环与UV-Vis吸收峰的关系图。当温度在20和50℃之间转变时,PNIPAM-RGO呈现出亲水-疏水的转变,表现在紫外谱图上即为有吸收峰-无吸收峰的转变。从B图可以看出,PNIPAM-RGO在20℃和50℃的吸收是可逆的,且这种转变可以一直重复下去。
图8是PNIPAM(a)和PNIPAM-RGO(b)的粒径随温度变化的曲线图,温度范围20-45℃。从图中可以看出,PNIPAM和PNIPAM-RGO都存在相转变温度,PNIPAM的相转变温度为33℃,PNIPAM-RGO的相转变温度为34℃,PNIPAM和PNIPAM-RGO的相转变温度略有不同,这说明石墨烯与PNIPAM相互作用影响了复合物的相转变温度。
实施例6(电极的预处理)
本实验采用直径为3mm的玻碳电极,分别用1.0、0.3、0.05μm的Al2O3对玻碳电极进行抛光,用超纯水超声清洗1min。以玻碳电极(GC)为工作电极,铂丝为对电极,Ag/AgCl电极为参比电极,构成三电极体系。在1mM K3Fe(CN)6的1M KCl溶液中进行电化学循环伏安(CV)的测试,扫描范围-200-800mV(vs.Ag/AgCl),扫描速率为200mV/s。当电极的氧化峰与还原峰的峰位差小于70.0mV时,说明该电极达到活化清洁的要求。取出玻碳电极,用超纯水清洗,高纯氮气(N2)吹干备用。
实施例7(PNIPAM-RGO/GC修饰电极的制备)
分别取7.0μL PNIPAM-RGO水溶液滴涂到预处理好的电极表面,在电极上面罩一个干燥且干净的烧杯,室温下干燥24h,水分缓慢蒸发,在电极表面形成一层薄膜,即得到PNIPAM-RGO/GC修饰电极。本实验以5mM K3Fe(CN)6/K4Fe(CN)6(1:1),0.5M KCl为支持电解质。采用三电极体系,Ag/AgCl电极为参比电极,铂电极为辅助电极,PNIPAM-RGO/GC修饰电极为工作电极。
实施例8(PNIPAM-RGO/GC修饰电极的电化学表征测试)
在电化学表征测试时,本实验是以5mM K3Fe(CN)6/K4Fe(CN)6(1:1),0.5M KCl为支持电解质。采用三电极体系,Ag/AgCl电极为参比电极,铂电极为辅助电极,PNIPAM-RGO/GC修饰电极为工作电极。
具体结果如图9-图10所示。从图9中曲线a和b可以观察到,PNIPAM-RGO/GC修饰电极在20和40℃时在铁氰化钾溶液中都存在一对可逆的氧化还原峰,20℃时还原峰电流为95.0μA,峰位为270.0mV,然而当温度升高到40℃时,循环伏安信号发生了很大的 变化,峰电流减小到65.0μA,峰位差增大到580.0mV,结果表明,这种修饰电极随温度的升高电子传输能力下降。同时可以观察到,当温度在20和40℃重复转变时,PNIPAM-RGO/GC修饰电极对Fe(CN)6 3-/4-探针的响应是可逆的,表现为峰电流(B)和峰位差(C)的可逆性。
图10为PNIPAM-RGO/GC修饰电极的Nyquist图,半圆的直径与电极表面Fe(CN)6 3-/4-探针的电子转移阻力(Ret)有关。从图10A中的曲线a和b可以看出,当温度为20℃时,PNIPAM-RGO/GC修饰电极的电阻(Ret)为1114.0Ω,当温度升高到40℃时,PNIPAM-RGO/GC修饰电极的电阻(Ret)增大到4922.0Ω。对比可知,当温度升高,PNIPAM-RGO/GC修饰电极的电阻增大,温度降低,PNIPAM-RGO/GC修饰电极的电阻减小,从而阻碍电子的传输,与循环伏安图图10B得出的结论一致。
实施例9(PNIPAM-RGO/GC修饰电极对多巴胺的电催化响应探究)
在确保电解池温度恒定在15℃左右的情况下,分别将GO/GC(a)、PNIPAM-RGO/GC(b)和PNIPAM/GC(c)这三种修饰电极作为工作电极,Ag/AgCl电极为参比电极,铂电极为辅助电极,N2饱和的条件,在有0.2mM DA的0.1M PBS(pH 7.0)中的循环伏安曲线。测试完后,升高温度到40℃,其它条件不变的情况下测试PNIPAM/GC修饰电极体系的循环伏安曲线。
具体结果如图11A-B,从图11A中可以看出,三种修饰电极都有一对氧化还原峰,对比这三种电极的循环伏安曲线可知如图11B所示,GO/GC修饰电极对DA检测的峰电流强度优于PNIPAM-RGO/GC和PNIPAM/GC修饰电极,PNIPAM-RGO/GC修饰电极要优于GO/GC修饰电极,这是由于PNIPAM-RGO中的GO起到了电子传输的作用。如图11B所示,在20℃时,PNIPAM-RGO/GC修饰电极表现出较大的氧化还原峰电流,且氧化还原峰具有良好的对称性;当温度升高到40℃时,氧化峰几乎不变,而还原峰明显减小,对称性不好,说明电子传输的可逆性变差。
实施例10(PNIPAM-RGO/GC修饰电极对多巴胺浓度的检测)
在不改变三电极体系的前提下,测试PNIPAM-RGO/GC修饰电极在0.1M PBS(pH7.0)中20℃和40℃时对DA浓度与峰电流的DPV曲线。
具体结果如图12A-C,从图12A中可以看出,在20℃时,PNIPAM-RGO/GC修饰电极在DA浓度范围为3.9–174.0μM内与还原峰电流呈良好的线性关系,线性回归方程为y=0.008x+0.041(R=0.9921,n=12),检出限为1.30μM(S/N)。根据图12C校正曲线中直线a的斜率可知修饰电极的灵敏度为114.3mA﹒cm-2﹒M-1。从图12B中可以看出,在40℃ 时,PNIPAM-RGO/GC修饰电极在DA浓度范围11.3–174.0μM内与还原峰电流呈良好的线性关系,线性回归方程为y=0.0019x+0.0061(R=0.9934,n=10),检出限为3.78μM(S/N)。根据图C校正曲线中直线b的斜率可知修饰电极的灵敏度27.1mA﹒cm-2﹒M-1。对比可知,在20℃时,PNIPAM-RGO/GC修饰电极对DA的检出限比较低,灵敏度比较高。

Claims (7)

1.一种PNIPAM-RGO石墨烯复合材料,其特征在于,制备方法是以偶氮二异丁基脒盐酸盐作为引发剂,通过先把引发剂价键固载在氧化石墨烯基底上,进而再通过原子自由基聚合来制备智能高分子修饰的石墨烯复合材料。
2.如权利要求1所述的一种PNIPAM-RGO石墨烯复合材料,其特征在于,制备方法具体为:将氧化石墨烯GO分散在水中,超声30min后,加入偶氮二异丁基脒盐酸盐得混合溶液A,将混合溶液A于碱性环境下,反应2h;然后向混合溶液A中注入N-异丙基丙烯酰胺NIPAM单体,于80℃反应3h,产物离心,水洗后,透析,得到最终产物PNIPAM-RGO。
3.如权利要求2所述的一种PNIPAM-RGO石墨烯复合材料,其特征在于,所述碱性环境,是用氨水调节混合溶液的PH,PH值约为10。
4.一种如权利要求1所述的PNIPAM-RGO石墨烯复合材料在智能响应性修饰电极上的应用。
5.如权利要求4所述的应用,其特征在于,将PNIPAM-RGO水溶液滴涂到预处理好的玻碳电极GC表面,然后在电极上面罩一个干燥且干净的烧杯,室温下干燥24h,水分缓慢蒸发,在电极表面形成一层薄膜,即得到PNIPAM-RGO/GC修饰电极。
6.一种如权利要求1所述的PNIPAM-RGO石墨烯复合材料在电化学催化多巴胺上的应用。
7.一种如权利要求1所述的PNIPAM-RGO石墨烯复合材料在检测多巴胺浓度上的应用。
CN201610383119.0A 2016-06-01 2016-06-01 一种pnipam-rgo石墨烯复合材料的制备及其在智能响应性修饰电极上的应用 Active CN105891293B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610383119.0A CN105891293B (zh) 2016-06-01 2016-06-01 一种pnipam-rgo石墨烯复合材料的制备及其在智能响应性修饰电极上的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610383119.0A CN105891293B (zh) 2016-06-01 2016-06-01 一种pnipam-rgo石墨烯复合材料的制备及其在智能响应性修饰电极上的应用

Publications (2)

Publication Number Publication Date
CN105891293A true CN105891293A (zh) 2016-08-24
CN105891293B CN105891293B (zh) 2018-10-16

Family

ID=56710979

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610383119.0A Active CN105891293B (zh) 2016-06-01 2016-06-01 一种pnipam-rgo石墨烯复合材料的制备及其在智能响应性修饰电极上的应用

Country Status (1)

Country Link
CN (1) CN105891293B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106824129A (zh) * 2017-02-15 2017-06-13 南昌航空大学 一种可分级回收Pb2+和4‑NP的吸附剂的制备方法
CN108183240A (zh) * 2017-11-27 2018-06-19 西北工业大学 温度、pH值双重刺激响应柔性漆酶电极及构筑方法
CN108456288A (zh) * 2018-01-29 2018-08-28 辽宁大学 一种新型温敏性石墨烯基电化学修饰材料及其制备方法和应用
CN110243899A (zh) * 2019-07-15 2019-09-17 辽宁大学 一种pH敏感石墨烯纳米复合材料及其制备方法和应用
CN112018379A (zh) * 2020-08-25 2020-12-01 湖北工程学院 一种含有温敏材料的氧化铁复合氧化石墨烯纳米材料及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102675508A (zh) * 2012-01-04 2012-09-19 河南科技大学 一种氧化石墨烯纳米复合有机水凝胶及其制备方法
CN103044688A (zh) * 2012-12-07 2013-04-17 长春理工大学 先改性引发聚合提高取代率的温敏性氧化石墨烯制备方法
CN103073665A (zh) * 2013-01-19 2013-05-01 华南理工大学 高强度、温度敏感的聚合物-氧化石墨烯复合水凝胶和导电石墨烯复合水凝胶及其制备方法
CN103204979A (zh) * 2013-04-17 2013-07-17 安康学院 一种环境响应型石墨烯杂化材料的制备方法
CN103242554A (zh) * 2013-05-13 2013-08-14 中国科学院化学研究所 一种纳米复合凝胶及其制备方法
CN103804553A (zh) * 2014-02-27 2014-05-21 厦门凯纳石墨烯技术有限公司 一种石墨烯/聚氯乙烯复合材料的制备方法
CN104479058A (zh) * 2014-12-10 2015-04-01 湖南科技大学 一种石墨烯可控接枝热敏聚合物复合材料的制备方法
CN105111388A (zh) * 2015-09-06 2015-12-02 华南理工大学 一种近红外光响应型智能水凝胶仿生手臂及其制备方法
CN105399080A (zh) * 2015-10-15 2016-03-16 南京工业大学 一种制备石墨烯-量子点复合材料的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102675508A (zh) * 2012-01-04 2012-09-19 河南科技大学 一种氧化石墨烯纳米复合有机水凝胶及其制备方法
CN103044688A (zh) * 2012-12-07 2013-04-17 长春理工大学 先改性引发聚合提高取代率的温敏性氧化石墨烯制备方法
CN103073665A (zh) * 2013-01-19 2013-05-01 华南理工大学 高强度、温度敏感的聚合物-氧化石墨烯复合水凝胶和导电石墨烯复合水凝胶及其制备方法
CN103204979A (zh) * 2013-04-17 2013-07-17 安康学院 一种环境响应型石墨烯杂化材料的制备方法
CN103242554A (zh) * 2013-05-13 2013-08-14 中国科学院化学研究所 一种纳米复合凝胶及其制备方法
CN103804553A (zh) * 2014-02-27 2014-05-21 厦门凯纳石墨烯技术有限公司 一种石墨烯/聚氯乙烯复合材料的制备方法
CN104479058A (zh) * 2014-12-10 2015-04-01 湖南科技大学 一种石墨烯可控接枝热敏聚合物复合材料的制备方法
CN105111388A (zh) * 2015-09-06 2015-12-02 华南理工大学 一种近红外光响应型智能水凝胶仿生手臂及其制备方法
CN105399080A (zh) * 2015-10-15 2016-03-16 南京工业大学 一种制备石墨烯-量子点复合材料的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ENZHONG ZHANG等: "Robust and thermo-response graphene–PNIPAm hybrid hydrogels reinforced by hectorite clay", 《CARBON》 *
YONGFANG YANG等: "Synthesis of PNIPAM Polymer Brushes on Reduced Graphene Oxide Based on Click Chemistry and RAFT Polymerization", 《JOURNAL OF POLYMER SCIENCE PART A: POLYMER CHEMISTRY》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106824129A (zh) * 2017-02-15 2017-06-13 南昌航空大学 一种可分级回收Pb2+和4‑NP的吸附剂的制备方法
CN106824129B (zh) * 2017-02-15 2019-06-14 南昌航空大学 一种可分级回收Pb2+和4-NP的吸附剂的制备方法
CN108183240A (zh) * 2017-11-27 2018-06-19 西北工业大学 温度、pH值双重刺激响应柔性漆酶电极及构筑方法
CN108183240B (zh) * 2017-11-27 2020-05-19 西北工业大学 温度、pH值双重刺激响应柔性漆酶电极及构筑方法
CN108456288A (zh) * 2018-01-29 2018-08-28 辽宁大学 一种新型温敏性石墨烯基电化学修饰材料及其制备方法和应用
CN108456288B (zh) * 2018-01-29 2020-06-16 辽宁大学 一种温敏性石墨烯基电化学修饰材料及其制备方法和应用
CN110243899A (zh) * 2019-07-15 2019-09-17 辽宁大学 一种pH敏感石墨烯纳米复合材料及其制备方法和应用
CN112018379A (zh) * 2020-08-25 2020-12-01 湖北工程学院 一种含有温敏材料的氧化铁复合氧化石墨烯纳米材料及其制备方法和应用

Also Published As

Publication number Publication date
CN105891293B (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
CN105891293A (zh) 一种pnipam-rgo石墨烯复合材料的制备及其在智能响应性修饰电极上的应用
Zhang et al. Quantum dots-based hydrogels for sensing applications
Wei et al. Near-infrared light-responsive electrochemical protein imprinting biosensor based on a shape memory conducting hydrogel
Liu et al. Fabrication of carbon dots@ restricted access molecularly imprinted polymers for selective detection of metronidazole in serum
CN104142361B (zh) 一种蛋白质分子印迹聚离子液体膜电化学传感器
CN102269693B (zh) 光子晶体湿度传感器及其制备方法
CN105675683A (zh) 一种检测日落黄的电化学传感器的制备方法及其应用
Mathew et al. Synthesis and characterization of gold–chitosan nanocomposite and application of resultant nanocomposite in sensors
CN109613083B (zh) 纳米金-原卟啉铜(ⅱ)高灵敏检测h2o2电化学传感器的构建及其应用
Wang et al. Electrochemical temperature-controlled switch for nonenzymatic biosensor based on Fe3O4-PNIPAM microgels
Chen et al. Highly selective molecularly imprinted gel-based electrochemical sensor with CuS@ COOH-MWCNTs signal amplification for simultaneous detection of vanillin and tartrazine in foods
Zhang et al. A molecularly imprinted electrochemical BPA sensor based on multi-walled carbon nanotubes modified by CdTe quantum dots for the detection of bisphenol A
Cui et al. An antifouling electrochemical biosensor based on a protein imprinted hydrogel for human immunoglobulin G recognition in complex biological media
CN103575781A (zh) 一种电化学传感器及其制备方法
CN110031522A (zh) 镍金属有机框架材料及其制备方法与应用
Chen et al. One-pot synthesis of a novel conductive molecularly imprinted gel as the recognition element and signal amplifier for the selective electrochemical detection of amaranth in foods
Yan et al. Solvothermal synthesis of luminescence molybdenum disulfide QDs and the ECL biosensing application
CN107300582A (zh) 基于微传感器的抗生素检测装置及其制造方法、检测方法
Yu et al. Molecularly imprinted ultrasensitive cholesterol photoelectrochemical sensor based on perfluorinated organics functionalization and hollow carbon spheres anchored organic-inorganic perovskite
CN101545886A (zh) 纳米金均布于导电聚合物中的复合敏感膜制备方法
CN108456288A (zh) 一种新型温敏性石墨烯基电化学修饰材料及其制备方法和应用
CN105277603B (zh) 一种包裹金纳米粒子的高铁血卟啉材料、制备及应用
Karami et al. A new glucose biosensor based on Nickel/KH550 nanocomposite deposited on the GCE: An electrochemical study
Lee et al. Label-free detection of dopamine based on photoluminescence of boronic acid-functionalized carbon dots in solid-state polyethylene glycol thin film
CN106841351A (zh) 一种二硫化钼纳米片电化学传感器及其制备方法与应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201127

Address after: 110000 Shangshengou Village, Hunnan District, Shenyang City, Liaoning Province 861-3 (301)

Patentee after: SHENYANG INDUSTRIAL TECHNOLOGY INSTITUTE OF LANJIN ENVIRONMENTAL PROTECTION INDUSTRY Co.,Ltd.

Address before: 110000, Liaoning, Shenyang, Shenbei New Area moral South Avenue No. 58

Patentee before: LIAONING University