CN105879919B - Au/ZIF-8-TiO2催化剂及其制备方法与应用 - Google Patents

Au/ZIF-8-TiO2催化剂及其制备方法与应用 Download PDF

Info

Publication number
CN105879919B
CN105879919B CN201610260879.2A CN201610260879A CN105879919B CN 105879919 B CN105879919 B CN 105879919B CN 201610260879 A CN201610260879 A CN 201610260879A CN 105879919 B CN105879919 B CN 105879919B
Authority
CN
China
Prior art keywords
zif
tio
catalyst
preparation
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610260879.2A
Other languages
English (en)
Other versions
CN105879919A (zh
Inventor
戴文新
张玉娟
陈旬
王绪绪
刘平
付贤智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201610260879.2A priority Critical patent/CN105879919B/zh
Publication of CN105879919A publication Critical patent/CN105879919A/zh
Application granted granted Critical
Publication of CN105879919B publication Critical patent/CN105879919B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/38Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/864Removing carbon monoxide or hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/10Oxidants
    • B01D2251/102Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/802Photocatalytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Au/ZIF‑8‑TiO2催化剂及其制备方法与应用,其是将自组装法制得的金属有机骨架材料ZIF‑8(类沸石咪唑酯骨架材料)加入到TiO2的前驱体中,制得ZIF‑8改性后的TiO2载体,而后通过沉积沉淀法,以Au纳米粒子为活性组分,将其分散在ZIF‑8改性后的TiO2载体表面,制得高分散的负载型Au催化剂Au/ZIF‑8‑TiO2。本发明中ZIF‑8的引入提高了所得催化剂可见光下催化氧化CO的活性,使该催化剂适用于空气或其他场合下CO的常温去除;且其制备方法简单易行,有利于推广应用。

Description

Au/ZIF-8-TiO2催化剂及其制备方法与应用
技术领域
本发明属于可见光催化氧化CO技术领域,具体涉及一种Au/ZIF-8-TiO2催化剂及其制备方法与应用。
背景技术
CO是典型的易燃、易爆、有毒气体,极易与血液中的血红蛋白(Hb)结合。当空气中含ppm级的CO时,就会引起人体中毒;当空气中CO含量达到400ppm时会使人出现头痛、疲倦、恶心等感觉;当含量达到600ppm时,人发生心悸亢进,并伴有虚脱;当含量大于1000ppm时,人便出现昏睡、痉挛,严重时将窒息而死。在当前研究最多的氢燃料电池中,微量的CO就会使催化剂和电极等中毒,其中最典型的就是质子膜交换燃料电池(PEMFC),在重整气中0.5-1.0 vol%CO就会使PEMFC电极中毒,必须将燃料气中的CO浓度降至100ppm以下。同样,在工业生产中,微量CO的存在能引起一些合成反应的催化剂中毒,对工业生产极为不利,如合成氨工业原料气中含有的微量CO就必须净化脱除。因此,如何高效的去除CO,已经成为当前的主要环境问题之一。
目前,最常用的CO去除方法有物理方法:深冷分离法、变压吸附法、膜分离法、溶剂吸收法等;化学脱除法:低温水煤气变换法、甲烷化法和催化氧化法等。但是由于CO的净化设备要求具有温度低、重量轻、体积小、操作方便、工艺简单、连续工作等特点,故物理净化方法不易采用;而低温水煤气变换反应法是将CO与水蒸汽反应转化为CO2并同时生成H2,其非常适合CO的脱除体系,但是该反应在低温条件下反应速率相对较慢,而且反应还受到热力学平衡的限制,难以达到将CO降到ppm级的要求,所以只适合用于CO浓度较高时的去除。CO甲烷化是一项比较成熟的工艺,但是在反应过程中会消耗掉大量的氢气(去除1摩尔CO要消耗3摩尔的H2),体系内部很可能发生逆水煤气变换反应。因此,研究低(常)温(<100 ℃)CO催化氧化,对消除CO的污染更具有实际意义。
当前,关于催化氧化CO研究最多的就是将活性组分贵金属(Pd, Au, Ag, Rh和Pt等)负载到一定的载体上(Al2O3, SiO2, TiO2等),对CO均表现出一定的催化氧化效果。其中,研究最多的就是Au/TiO2体系。研究发现,当金纳米颗粒高度分散在金属氧化物的载体表面时,不仅对CO的氧化具有极好的催化活性,而且具有良好的抗水性、稳定性和湿度增强效应;而TiO2因其具有合适的禁带宽度、高的光电转换效率、价廉等优势而在光催化氧化CO中受到广大研究者的钟爱。虽然Au/TiO2体系对CO表现出较好的催化氧化活性,但是由于存在稳定性差、易失活、选择性不是很高等缺点而受到限制。因此,如何实现在常温条件下提高Au催化剂高效、低成本的催化氧化CO,迄今为止仍然是研究的热点问题之一。
发明内容
本发明的目的在于提供一种Au/ZIF-8-TiO2催化剂及其制备方法与应用,其针对传统Au负载型催化剂需在较高温度下才能催化氧化CO的问题,通过引入多孔、大比表面积的ZIF-8作为助剂,对载体TiO2进行改性,加强了金属与载体间的相互作用,并使其在可见光区的吸收带边发生红移,以提高Au/TiO2在可见光下催化氧化CO的性能,从而提高此类催化剂的低温活性;且该催化剂制备方法简单易行,有利于推广应用。
为实现上述目的,本发明采用如下技术方案:
一种Au/ZIF-8-TiO2催化剂,是以Au纳米粒子为活性组分,将其均匀分散在经金属有机骨架材料ZIF-8(类沸石咪唑酯骨架材料)改性后的TiO2载体表面,形成的一种高分散负载型催化剂;所得催化剂中ZIF-8的含量为1.0~20.0wt%,Au的含量为0.1~5.0 wt%。
所述Au/ZIF-8-TiO2催化剂的制备方法包括以下步骤:
1)利用自组装法制备ZIF-8;
2)在TiO2的前驱体中加入ZIF-8,通过溶剂热反应,制得ZIF-8改性后的TiO2载体;
3)利用沉积沉淀法在步骤2)制得的ZIF-8改性后的TiO2载体表面负载Au纳米粒子,制得所述催化剂。
其具体操作为:将硝酸锌与2-甲基咪唑在甲醇溶剂中搅拌8~48h后,离心,洗涤,所得沉淀60~100℃真空烘干,得ZIF-8;将制得的ZIF-8加入到TiO2的前驱体溶液中,130~180℃溶剂热反应15~20h,而后离心、洗涤,60~100℃真空干燥,得到ZIF-8改性后的TiO2载体;将ZIF-8改性后的TiO2载体与HAuCl4溶液混合,得到的Au前驱体溶液,用0.5~1.5 mol/LNaOH溶液调节pH值为8~12,反应1h后用含NaOH的NaBH4溶液于室温下搅拌2~7 h进行还原反应,而后离心、洗涤,60~100℃干燥,即制得所述Au/ZIF-8-TiO2催化剂。
其中,所述HAuCl4溶液中Au浓度为0.005~0.02 g/mL;所述含NaOH的NaBH4溶液中,NaBH4的浓度为0.1~0.25 mol/L,NaOH的浓度为0.1~0.25 mol/L。
所得Au/ZIF-8-TiO2催化剂在可见光催化下,能够用于空气或其他场合中CO的常温去除。
本发明的显著优点在于:
(1)本发明以多孔、大比表面积的ZIF-8为助剂,对载体TiO2进行改性,有利于活性组分Au纳米粒子在载体表面的高度分散;同时,因为ZIF-8具有很强的光吸收,可使Au/TiO2在可见光区的吸收带边发生了红移,有利于提高该催化剂在可见光下光催化氧化CO的活性。
(2)ZIF-8与TiO2的结合实现了MOFs与半导体组合,有利于开发其他MOFs半导体材料在催化氧化CO方面的应用。
(3)本发明的制备方法简单易行,有利于推广应用。
附图说明
图1为实施例制得的Au/ZIF-8-TiO2催化剂的透射光谱图,其中,图A为Au纳米粒子在TiO2和ZIF-8中的分散情况,图B为Au和TiO2的晶格条纹。
图2为实施例和对比例1制得的TiO2(a),Au/TiO2(b),ZIF-8-TiO2(c)和Au/ZIF-8-TiO2(d)的X射线粉末衍射谱。
图3为实施例和对比例1制得的TiO2(a),ZIF-8-TiO2(b),Au/TiO2(c),Au/ZIF-8-TiO2(d)和ZIF-8(e)的漫反射光谱图。
图4为实施例和对比例制得的Au/ZIF-8(a),Au/TiO2(b)和Au/ZIF-8-TiO2(c)催化剂样品的光电流图。
图5为光照前后Au/TiO2,Au/ZIF-8-TiO2与Au/ZIF-8样品催化氧化CO性能的结果图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例 Au/ZIF-8-TiO2催化剂的制备
(1)将1.66g六水合硝酸锌与10.6g 2-甲基咪唑依次加入114mL的甲醇溶液中,室温下磁力搅拌48h,而后离心、洗涤,80℃真空干燥12h,得ZIF-8;
(2)将0.1g步骤(1)制得的ZIF-8加入到含14mL三氯化钛和1.68g NaOH的280mL乙醇溶液中,150℃溶剂热反应18h,然后离心、洗涤,80℃干燥12h,得ZIF-8-TiO2载体;
(3)将步骤(2)制得的载体和2 mL含Au浓度为0.01g/mL的HAuCl4溶液(1.0gHAuCl4·3H2O用去离子水溶解、定容至100mL)加入到100 mL水中,用0.1 mol/L NaOH调其pH值为10,搅拌反应1h后,用pH值为10的30mL含NaOH的0.1 mol/L NaBH4溶液于室温下搅拌反应7h进行还原处理,而后离心、洗涤,所得沉淀于80℃烘干,即得Au负载量为1.0 wt%的Au/ZIF-8-TiO2催化剂。
图1为所制得的Au/ZIF-8-TiO2催化剂的透射光谱图。由图1可以看出,ZIF-8成功的长在了TiO2表面上,而Au纳米粒子高度分散在载体表面上。
对比例1 Au/TiO2催化剂的制备
(1)将14mL三氯化钛和1.68g NaOH加入到280mL乙醇溶液中,150℃溶剂热反应18h,然后离心、洗涤,80℃干燥12h,得TiO2载体;
(2)将步骤(1)制得的载体和2 mL含Au浓度为0.01g/mL的HAuCl4溶液(1.0gHAuCl4·3H2O用去离子水溶解、定容至100mL)加入到100 mL水中,用0.5 mol/LNaOH调其pH值为10,搅拌反应1h后用pH值为10的30mL含NaOH的0.1 mol/L NaBH4溶液于室温下搅拌反应7h进行还原处理,而后离心、洗涤,所得沉淀于80℃烘干,即得Au负载量为1.0 wt%的Au/TiO2催化剂。
图2为实施例和对比例1制得的TiO2(a),Au/TiO2(b),ZIF-8-TiO2(c)和Au/ZIF-8-TiO2(d)的X射线粉末衍射谱。由图2对比可以看出,ZIF-8的加入和Au的负载并没有改变TiO2的晶型结构。
图3为实施例和对比例1制得的TiO2(a),ZIF-8-TiO2(b),Au/TiO2(c),Au/ZIF-8-TiO2(d)和ZIF-8(e)的漫反射光谱图。由图3可以看出,ZIF-8的引入使Au催化剂在可见光区的吸收带边发生了红移,提高了对可见光的吸收,从而增强了可见光对Au/ZIF-8-TiO2催化氧化CO的促进作用。
对比例2 Au/ZIF-8催化剂的制备
(1)将1.66g六水合硝酸锌与10.6g 2-甲基咪唑依次加入114mL的甲醇溶液中,室温下磁力搅拌48h,而后离心、洗涤,80℃真空干燥12h,得ZIF-8;
(2)将制得的ZIF-8和2 mL含Au浓度为0.01g/mL的HAuCl4溶液(1.0g HAuCl4·3H2O用去离子水溶解、定容至100mL)加入到100 mL水中,用0.5 mol/LNaOH调其pH值为10,搅拌反应1h后用pH值为10的30mL含NaOH的0.1 mol/L NaBH4溶液于室温下搅拌反应7小时进行还原处理,而后离心、洗涤,所得沉淀于80℃烘干,即得Au负载量为1.0 wt%的Au/ZIF-8催化剂。
图4为实施例和对比例制得的Au/ZIF-8(a),Au/TiO2(b)和Au/ZIF-8-TiO2(c)催化剂样品的光电流图。由图4可以看出,ZIF-8的加入有利于Au催化剂中光生载流子的分离。
催化剂的性能评价
催化剂催化氧化CO的性能评价采用常压连续流动装置进行测定。该常压连续流动装置包括带有进气口和出气口的石英玻璃反应器(长30mm×宽15mm×高1mm),石英玻璃反应器的内腔装填有催化剂,石英玻璃反应器周侧设置有循坏冷凝水装置(配热电偶检测)及用于激发Au产生等离子共振效应带的滤光片(490 nm-760 nm)和氙灯装置,所述氙灯装置发出的光能够透过石英玻璃反应器到达催化剂表面。
测定方法为:取0.5 g催化剂装填在石英玻璃反应器中,催化剂粒径为0.2~0.3 mm(60~80目),反应气中CO和O2的含量分别为0.3 V%及0.3 V%,氦气作为平衡补充气,反应气总流速为100 mL/min。反应温度由带循环冷凝水调控在25℃。采用Agilent 7890D型气相色谱仪定时在线分析气氛中CO、O2和CO2的浓度,检测器为TCD,填充柱为TDX-01,取反应6小时后的结果计算CO转化率,结果见图5。
CO转化率的计算公式为:C=(VinCO-VoutCO)/VinCO×100%,
式中,C为CO的转化率;VinCO和VoutCO分别为进气和出气中的CO含量(V%)。
图5为光照前后Au/TiO2,Au/ZIF-8-TiO2与Au/ZIF-8样品催化氧化CO性能的结果图。由图5结果显示,ZIF-8的引入有效提高了Au/TiO2光催化氧化CO的活性。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (5)

1.一种Au/ZIF-8-TiO2催化剂的制备方法,其特征在于:以Au纳米粒子为活性组分,将其均匀分散在经金属有机骨架材料ZIF-8改性后的TiO2载体表面,形成高分散负载型催化剂;其具体包括以下步骤:
1)利用自组装法制备ZIF-8,即将硝酸锌与2-甲基咪唑在甲醇溶剂中搅拌8~48h后,离心,洗涤,所得沉淀60~100℃真空烘干,得ZIF-8;
2)在TiO2的前驱体中加入ZIF-8,通过溶剂热反应,制得ZIF-8改性后的TiO2载体;
3)利用沉积沉淀法在步骤2)制得的ZIF-8改性后的TiO2载体表面负载Au纳米粒子,制得所述催化剂。
2. 根据权利要求1所述Au/ZIF-8-TiO2催化剂的制备方法,其特征在于:所得催化剂中ZIF-8的含量为1.0~20.0 wt%,Au的含量为0.1~5.0 wt%。
3.根据权利要求1所述Au/ZIF-8-TiO2催化剂的制备方法,其特征在于:步骤2)所述溶剂热反应是在130~180℃反应15~20h,而后离心、洗涤,60~100℃真空干燥,得到所述ZIF-8改性后的TiO2载体。
4. 根据权利要求1所述Au/ZIF-8-TiO2催化剂的制备方法,其特征在于:步骤3)所述沉积沉淀法是将ZIF-8改性后的TiO2载体与HAuCl4溶液混合,得到Au前驱体溶液,然后用NaOH溶液调节pH值为8~12,反应1h后用含NaOH的NaBH4溶液于室温下搅拌2~7 h进行还原反应,而后离心、洗涤,60~100℃干燥。
5. 根据权利要求4所述Au/ZIF-8-TiO2催化剂的制备方法,其特征在于:所述HAuCl4溶液中Au浓度为0.005~0.02 g/mL;
所述含NaOH的NaBH4溶液中,NaBH4的浓度为0.1~0.25 mol/L,NaOH的浓度为0.1~0.25mol/L。
CN201610260879.2A 2016-04-26 2016-04-26 Au/ZIF-8-TiO2催化剂及其制备方法与应用 Active CN105879919B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610260879.2A CN105879919B (zh) 2016-04-26 2016-04-26 Au/ZIF-8-TiO2催化剂及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610260879.2A CN105879919B (zh) 2016-04-26 2016-04-26 Au/ZIF-8-TiO2催化剂及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN105879919A CN105879919A (zh) 2016-08-24
CN105879919B true CN105879919B (zh) 2018-08-17

Family

ID=56705406

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610260879.2A Active CN105879919B (zh) 2016-04-26 2016-04-26 Au/ZIF-8-TiO2催化剂及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN105879919B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106881155B (zh) * 2016-12-29 2019-11-12 广州凯耀资产管理有限公司 一种Au/TiO2/金属有机骨架复合光催化剂及制备方法与应用
CN106916110B (zh) * 2017-03-10 2020-03-24 国家纳米科学中心 一种负载型贵金属纳米粒子复合材料及其制备方法
CN108555311B (zh) * 2018-04-18 2020-10-30 北京化工大学 一种构晶离子诱导生长将金属纳米团簇嵌入金属有机骨架材料的方法
CN108704666B (zh) * 2018-05-28 2021-01-29 福州大学 一种Au/ZnO-Alq3催化剂及其制备方法与应用
CN108772108B (zh) * 2018-05-31 2020-12-08 苏州大学 一种可见光响应的二氧化钛纳米线/金属有机骨架/碳纳米纤维膜及其制备方法及应用
CN108855220B (zh) * 2018-07-02 2020-12-29 肇庆市华师大光电产业研究院 一种二氧化钛掺杂zif及其制备方法和应用
CN112391840B (zh) * 2020-10-20 2023-02-24 西安工程大学 一种核壳空心结构mof材料改性羊毛纤维的方法
CN113737178B (zh) * 2021-09-24 2023-01-20 常州大学 一种钛酸盐表面原位构建金属有机框架纳米颗粒的方法
CN115282290B (zh) * 2022-07-20 2023-08-15 武汉理工大学 一种pH响应的Au@ZIF-8水相制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102015066A (zh) * 2008-02-21 2011-04-13 埃克森美孚研究工程公司 利用沸石咪唑酯骨架结构材料分离氢和烃
CN103638981A (zh) * 2013-11-28 2014-03-19 福州大学 一种含有有机聚合物电子助剂的负载型Au催化剂
CN104475027A (zh) * 2014-11-11 2015-04-01 天津工业大学 一种具有sod沸石构型的用于富集和催化降解有机物的新型复合材料
CN105170097A (zh) * 2015-09-29 2015-12-23 安徽工程大学 一种TiO2/ZIF-8核壳结构纳米复合材料及其制备方法
CN105413638A (zh) * 2015-11-24 2016-03-23 天津工业大学 一种具有sod沸石构型的核壳型复合材料制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102015066A (zh) * 2008-02-21 2011-04-13 埃克森美孚研究工程公司 利用沸石咪唑酯骨架结构材料分离氢和烃
CN103638981A (zh) * 2013-11-28 2014-03-19 福州大学 一种含有有机聚合物电子助剂的负载型Au催化剂
CN104475027A (zh) * 2014-11-11 2015-04-01 天津工业大学 一种具有sod沸石构型的用于富集和催化降解有机物的新型复合材料
CN105170097A (zh) * 2015-09-29 2015-12-23 安徽工程大学 一种TiO2/ZIF-8核壳结构纳米复合材料及其制备方法
CN105413638A (zh) * 2015-11-24 2016-03-23 天津工业大学 一种具有sod沸石构型的核壳型复合材料制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Au@ZIF-8: CO Oxidation over Gold Nanoparticles Deposited to Metal-Organic Framework;Hai-Long Jiang et al.;《J. AM. CHEM. SOC.》;20090728;第131卷;11302-11303 *
Photocatalytic activities of Pt/ZIF-8 loaded highly ordered TiO2 nanotubes;Tayirjan T. Isimjan et al.;《Journal of Materials Chemistry》;20100929;第20卷;10242页左栏第2-4段、10244页右栏第2段 *

Also Published As

Publication number Publication date
CN105879919A (zh) 2016-08-24

Similar Documents

Publication Publication Date Title
CN105879919B (zh) Au/ZIF-8-TiO2催化剂及其制备方法与应用
Wei et al. Boosting the removal of diesel soot particles by the optimal exposed crystal facet of CeO2 in Au/CeO2 catalysts
Meng et al. Construction of g-C3N4/ZIF-67 photocatalyst with enhanced photocatalytic CO2 reduction activity
Li et al. Encapsulating CuO quantum dots in MIL-125 (Ti) coupled with g-C3N4 for efficient photocatalytic CO2 reduction
Li et al. Amorphous TiO 2@ NH 2-MIL-125 (Ti) homologous MOF-encapsulated heterostructures with enhanced photocatalytic activity
Wang et al. All-solid-state Z-scheme photocatalysts of g-C3N4/Pt/macroporous-(TiO2@ carbon) for selective boosting visible-light-driven conversion of CO2 to CH4
Bi et al. Efficient degradation of toluene over ultra-low Pd supported on UiO-66 and its functional materials: Reaction mechanism, water-resistance, and influence of SO2
Mao et al. Metal support interaction in Pt nanoparticles partially confined in the mesopores of microsized mesoporous CeO2 for highly efficient purification of volatile organic compounds
Ren et al. Ultrathin graphene encapsulated Cu nanoparticles: A highly stable and efficient catalyst for photocatalytic H2 evolution and degradation of isopropanol
Bai et al. A dual-cocatalyst-loaded Au/BiOI/MnO x system for enhanced photocatalytic greenhouse gas conversion into solar fuels
CN103638981B (zh) 一种含有有机聚合物电子助剂的负载型Au催化剂
He et al. Insight into reaction pathways of CO2 photoreduction into CH4 over hollow microsphere Bi2MoO6-supported Au catalysts
He et al. NH2-MIL-125 (Ti) encapsulated with in situ-formed carbon nanodots with up-conversion effect for improving photocatalytic NO removal and H2 evolution
CN107952429B (zh) 用于甲苯催化氧化的纳米催化剂、制备方法及其应用
Kolobova et al. Formation of silver active states in Ag/ZSM-5 catalysts for CO oxidation
Wu et al. Facile construction of Bi2MoO6/Bi/g-C3N4 toward efficient photocatalytic oxidation of indoor gaseous formaldehyde with a wide concentration range under visible light irradiation
CN103586022B (zh) 室温条件下高效同步催化氧化低浓度气相甲醛、一氧化碳和氢气的催化剂及其制备方法
WO2024078051A1 (zh) 生物质骨架炭-金属复合微纳结构催化材料及制备方法和应用
Li et al. Engineering light propagation for synergetic photo-and thermocatalysis toward volatile organic compounds elimination
CN106378141A (zh) ZnO/Cu纳米晶复合材料及其制备方法和应用
CN104525220B (zh) 一种Au‑CuO/TiO2微球催化剂及其制备方法和应用
CN113908840A (zh) 一种Fe基多功能催化剂及其制备方法和应用
CN110433814A (zh) 活性物种高分散的铜铈催化剂制备方法
CN105771974A (zh) 一种室温催化甲酸盐分解产氢的催化剂
Hailili et al. Mechanistic insights into the photocatalytic reduction of nitric oxide to nitrogen on oxygen-deficient quasi-two-dimensional bismuth-based perovskites

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant