CN105870189A - 一种具有体电场调制效应的横向超结双扩散金属氧化物半导体场效应管 - Google Patents
一种具有体电场调制效应的横向超结双扩散金属氧化物半导体场效应管 Download PDFInfo
- Publication number
- CN105870189A CN105870189A CN201610251306.3A CN201610251306A CN105870189A CN 105870189 A CN105870189 A CN 105870189A CN 201610251306 A CN201610251306 A CN 201610251306A CN 105870189 A CN105870189 A CN 105870189A
- Authority
- CN
- China
- Prior art keywords
- metal oxide
- oxide semiconductor
- buried layer
- layer
- floating buried
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005684 electric field Effects 0.000 title claims abstract description 18
- 239000004065 semiconductor Substances 0.000 title claims abstract description 15
- 238000009792 diffusion process Methods 0.000 title claims abstract description 13
- 229910044991 metal oxide Inorganic materials 0.000 title claims abstract description 13
- 150000004706 metal oxides Chemical class 0.000 title claims abstract description 13
- 230000000694 effects Effects 0.000 title claims abstract description 5
- 230000005669 field effect Effects 0.000 title claims abstract description 4
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 230000002146 bilateral effect Effects 0.000 claims description 11
- 238000009413 insulation Methods 0.000 claims description 7
- 238000009826 distribution Methods 0.000 abstract description 5
- 230000015556 catabolic process Effects 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 description 7
- 238000005457 optimization Methods 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 108010075750 P-Type Calcium Channels Proteins 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7801—DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
- H01L29/7816—Lateral DMOS transistors, i.e. LDMOS transistors
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
本发明提出了一种具有体电场调制效应的横向超结双扩散金属氧化物半导体场效应管,在横向超结功率器件的有源区下方的衬底外延材料中形成多层浮空埋层,可以通过合理地设置多层浮空埋层的位置、厚度、长度和掺杂浓度对横向超结功率器件的体电场有效地进行调制,使得器件的整体电场分布达到最优,在保证器件低导通电阻的条件下,可以大幅度提高器件的击穿电压。
Description
技术领域
本发明涉及功率器件领域,特别是涉及一种横向超结双扩散金属氧化物半导体场效应管。
背景技术
横向功率器件具有易集成,热稳定性好,较好的频率稳定性,低功耗,多子导电,功率驱动小,开关速度高等优点被广泛应用于PIC(Power IntegratedCircuit)中。早期普通横向功率器件与纵向纵向功率器件结构相比,两种器件在具有相同耐压(Breakdown Voltage,简称BV)和器件面积的情况下,前者的导通电阻(On-Resistance,简称Ron)要大好几倍。随着弱化表面电场(ReducedSurface Field,简称RESURF)技术、场板(Field Plate,简称FP)技术、横向变掺杂(Variation of Lateral Doping,简称VLD)等技术在横向功率器件中应用横向功率器件的表面电场已经优化到了一定程度程度,然而器件的纵向体电场并没有进行优化。横向超结功率器件的耐压是由横向和纵向电场综合决定的,当采用RESURF等技术将表面电场优化到一定程度,器件的纵向电场决定着器件整体耐压。由于横向超结功率器件的纵向电场并没有得到很好的优化,从而使得器件的击穿在体内过早发生,器件的整体性能降低。
发明内容
本发明提出了一种新的横向超结双扩散金属氧化物半导体场效应管结构,旨在优化器件的体电场分布使得器件的整体电场分布达到最优,有效地提高器件的击穿电压。
本发明的技术方案如下:
一种具有体电场调制效应的横向超结双扩散金属氧化物半导体场效应管,包括:
半导体材料的衬底;
在所述衬底上生长的外延层;
在所述外延层上形成基区;
在所述外延层上形成浓度分区的缓冲层;
在所述基区边缘到部分缓冲层上注入N柱和P柱,相间排列形成超结(Super Junction)漂移区;
在所述器件表面形成有源区;
在所述有源区上形成的栅绝缘层,并在栅绝缘层上方形成栅极;
在所述有源区上形成漏区同时在所述基区上形成的沟道;
在所述基区上形成沟道衬底接触并与靠近沟道一侧短接形成源区;
分别在源区、漏区上形成的源极和漏极;
有别于现有技术的是:
在所述外延层内部具有多层浮空埋层,自器件的漏端延伸到所述浓度分区的缓冲层的下方;浮空埋层的掺杂浓度和厚度根据衬底掺杂浓度设定,满足使浮空埋层全部耗尽。
基于上述基本方案,本发明还进一步做如下优化限定和改进:
浮空埋层之间距离根据器件耐压等级可以等间距或变间距,最佳的设计为:浮空埋层之间的间距随着深度的增加而减小间距呈现等差状。
浮空埋层个数根据横向功率器件耐压量级而具体确定,例如一般中等耐压(100V~500V)埋层数为1-2个左右为最佳;对于高耐(500V~1000V及1000V以上)器件,埋层数大于等于3个,一般3层为最佳。
各个浮空埋层的掺杂浓度均比衬底掺杂浓度高1个数量级。
衬底外延材料中多层浮空埋层在衬底中所占的区域根据器件在纵向耗尽区域范围设定和优化。对于常见的横向超结功率器件,多层浮空埋层的长度占漂移区整体长度的1/2~2/3为佳。
各个浮空埋层的长度根据耐压等级设定或长度相同,或长度渐变(长度从器件表面到衬底逐渐增加,或逐渐减少)。
本发明技术方案的有益效果如下:
在横向超结功率器件有源区的下方的衬底中通过外延形成多层浮空埋层,通过合理地设计浮空埋层的厚度、间距、埋层个数掺杂浓度和浮空埋层长度的厚度可以有效地改善器件的体电场分布,使得器件的体电场分布达到最优,从而可以有效地提高器件的击穿电压。
附图说明
图1为本发明实施例的结构示意图(正视图);
图2为本发明实施例的三维剖视示意图(为了便于标注,对超结、漂移区绝缘层以及阶梯场氧化层等作了部分立体断面);
图3为传统缓冲层分区的N沟道SJ-LDMOS与采用多段浮空场板的N沟道SJ-LDMOS器件的耐压比较。
附图标号说明:
1-源极;2-栅极;3-栅绝缘层;4-41-42-超结漂移区;41-N柱;42-P柱;
5-漏电极;6-漏区;7-分区缓冲层;8-外延层;9-多段浮空埋层;10-衬底;
11-基区;12-源区;13-沟道。
具体实施方式
如图1所示,本发明为具有体电场调制的横向超结双扩散金属氧化物半导体场效应管的结构包括:
半导体材料的衬底10;
位于衬底上的外延层8;
位于外延层中的浮空埋层9;
外延层上左端为基区11,中间部分为浓度分区的缓冲层7,右端为漏区6;
基区10上左端为源区11,源区上为源电极1;
基区10上右端为沟道12,沟道上为栅绝缘层3,栅绝缘层3上为栅电极2,漏区6上为漏电极5;
在横向超结功率器件采用RESURF等技术将横向功率器件的表面电场优化到一定程度之后,需要对器件的体电场进行优化,器件分区缓冲层方下方具有多层浮空埋,层从而使得器件的整体电场达到最优,器件的整体耐压提高,性能提高。
以N沟道的SJ-LDMOS为例,具体可以通过以下步骤进行制备:
1)半导体材料(包括Si、SiC和GaAs等)的衬底上外延高电阻率的P型层;
2)在外延P型层的过程中形成多个N型浮空埋层,N型埋层的间距为等间距;N型埋层的具有一定的厚度;N型埋层由漏端延伸到漂移区的下方,其长度占漂移区整体长度的(1/2~2/3),N型埋层的掺杂浓度比衬底掺杂浓度高约1个数量级;
3)在外延层上形成P型基区;
4)在外延层上形成N型分区缓冲层;
4)利用离子注入技术在缓冲层上从P型基区边缘到另一端形成N柱与P柱相间排列的超结漂移区;
5)在器件表面形成有源区;
6)在有源区上形成栅氧化层;
7)在栅氧化层上淀积多晶硅刻蚀形成栅电极;
8)进行高浓度N型离子注入,在基区形成沟道,同时在漂移区边缘形成漏区;
9)进行高浓度P型离子注入,形成沟道衬底接触;
10)在器件表面淀积钝化层,并刻蚀接触孔;
11)淀积金属并刻蚀形成漏极和源极。
图3为传统缓冲层分区的N沟道SJ-LDMOS与采用多段浮空场板的N沟道SJ-LDMOS器件的耐压比较,两种器件在漂移区长度相同都为40μm,衬底浓度与超结浓度都相同。采用多段浮空场板的N沟道SJ-LDMOS器件的耐压为619V比传统缓冲层分区的N沟道SJ-LDMOS器件耐压389V提高约59.13%。
当然,本发明中的超结LDMOS也可以为P型沟道的SJ-LDMOS,其结构与N沟道SJ-LDMOS等同,并且多层浮空埋层结构同样适用于LDMOS器件、LIGBT等一系列横向功率器件,在此不再赘述。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。
Claims (6)
1.一种具有体电场调制效应的横向超结双扩散金属氧化物半导体场效应管,包括:
半导体材料的衬底;
在所述衬底上生长的外延层;
在所述外延层上形成基区;
在所述外延层上形成浓度分区的缓冲层;
在所述基区边缘到部分缓冲层上注入N柱和P柱,相间排列形成超结(Super Junction)漂移区;
在所述器件表面形成有源区;
在所述有源区上形成的栅绝缘层,并在栅绝缘层上方形成栅极;
在所述有源区上形成漏区同时在所述基区上形成的沟道;
在所述基区上形成沟道衬底接触并与靠近沟道一侧短接形成源区;
分别在源区、漏区上形成的源极和漏极;
其特征在于:
在所述外延层内部具有多层浮空埋层,自器件的漏端延伸到所述浓度分区的缓冲层的下方;浮空埋层的掺杂浓度和厚度根据衬底掺杂浓度设定,满足使浮空埋层全部耗尽。
2.根据权利要求1所述的横向超结双扩散金属氧化物半导体场效应管,其特征在于:各个浮空埋层之间呈等间距设置;或者随着深度的增加,相邻浮空埋层之间的间距逐级减小。
3.根据权利要求1所述的横向超结双扩散金属氧化物半导体场效应管,其特征在于:对于耐压指标100V~500V的器件,浮空埋层的层数为1-2个;对于耐压指标500V~1000V及1000V以上的器件,浮空埋层的层数大于或等于3个。
4.根据权利要求1所述的横向超结双扩散金属氧化物半导体场效应管,其特征在于:各个浮空埋层的掺杂浓度均比衬底掺杂浓度高1个数量级。
5.根据权利要求1所述的横向超结双扩散金属氧化物半导体场效应管,其特征在于:所述多层浮空埋层的长度占漂移区整体长度的1/2~2/3。
6.根据权利要求1所述的横向超结双扩散金属氧化物半导体场效应管,其特征在于:各个浮空埋层的长度相同,或依次呈单调性渐变。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610251306.3A CN105870189B (zh) | 2016-04-21 | 2016-04-21 | 一种具有体电场调制效应的横向超结双扩散金属氧化物半导体场效应管 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610251306.3A CN105870189B (zh) | 2016-04-21 | 2016-04-21 | 一种具有体电场调制效应的横向超结双扩散金属氧化物半导体场效应管 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105870189A true CN105870189A (zh) | 2016-08-17 |
CN105870189B CN105870189B (zh) | 2019-07-19 |
Family
ID=56633748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610251306.3A Active CN105870189B (zh) | 2016-04-21 | 2016-04-21 | 一种具有体电场调制效应的横向超结双扩散金属氧化物半导体场效应管 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105870189B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107785414A (zh) * | 2017-10-27 | 2018-03-09 | 电子科技大学 | 具有混合导电模式的横向功率器件及其制备方法 |
CN107808899A (zh) * | 2017-10-27 | 2018-03-16 | 电子科技大学 | 具有混合导电模式的横向功率器件及其制备方法 |
CN111969041A (zh) * | 2020-08-26 | 2020-11-20 | 电子科技大学 | 一种超结vdmos |
CN114937689A (zh) * | 2022-06-06 | 2022-08-23 | 电子科技大学 | 一种平面型SiC IGBT及其制作方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6168983B1 (en) * | 1996-11-05 | 2001-01-02 | Power Integrations, Inc. | Method of making a high-voltage transistor with multiple lateral conduction layers |
CN1983632A (zh) * | 2005-10-25 | 2007-06-20 | 三星电子株式会社 | 横向双扩散金属氧化物半导体晶体管及其制造方法 |
US20080261358A1 (en) * | 2005-02-07 | 2008-10-23 | Nxp B.V. | Manufacture of Lateral Semiconductor Devices |
CN101488526A (zh) * | 2009-02-27 | 2009-07-22 | 东南大学 | N型绝缘体上硅的横向双扩散金属氧化物半导体晶体管 |
CN104835836A (zh) * | 2015-05-22 | 2015-08-12 | 西安电子科技大学 | 一种具有双电场调制的横向超结双扩散金属氧化物半导体场效应管 |
-
2016
- 2016-04-21 CN CN201610251306.3A patent/CN105870189B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6168983B1 (en) * | 1996-11-05 | 2001-01-02 | Power Integrations, Inc. | Method of making a high-voltage transistor with multiple lateral conduction layers |
US20080261358A1 (en) * | 2005-02-07 | 2008-10-23 | Nxp B.V. | Manufacture of Lateral Semiconductor Devices |
CN1983632A (zh) * | 2005-10-25 | 2007-06-20 | 三星电子株式会社 | 横向双扩散金属氧化物半导体晶体管及其制造方法 |
CN101488526A (zh) * | 2009-02-27 | 2009-07-22 | 东南大学 | N型绝缘体上硅的横向双扩散金属氧化物半导体晶体管 |
CN104835836A (zh) * | 2015-05-22 | 2015-08-12 | 西安电子科技大学 | 一种具有双电场调制的横向超结双扩散金属氧化物半导体场效应管 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107785414A (zh) * | 2017-10-27 | 2018-03-09 | 电子科技大学 | 具有混合导电模式的横向功率器件及其制备方法 |
CN107808899A (zh) * | 2017-10-27 | 2018-03-16 | 电子科技大学 | 具有混合导电模式的横向功率器件及其制备方法 |
CN107808899B (zh) * | 2017-10-27 | 2020-05-01 | 电子科技大学 | 具有混合导电模式的横向功率器件及其制备方法 |
CN107785414B (zh) * | 2017-10-27 | 2020-10-02 | 电子科技大学 | 具有混合导电模式的横向功率器件及其制备方法 |
CN111969041A (zh) * | 2020-08-26 | 2020-11-20 | 电子科技大学 | 一种超结vdmos |
CN114937689A (zh) * | 2022-06-06 | 2022-08-23 | 电子科技大学 | 一种平面型SiC IGBT及其制作方法 |
CN114937689B (zh) * | 2022-06-06 | 2023-04-28 | 电子科技大学 | 一种平面型SiC IGBT及其制作方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105870189B (zh) | 2019-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9947779B2 (en) | Power MOSFET having lateral channel, vertical current path, and P-region under gate for increasing breakdown voltage | |
US9184248B2 (en) | Vertical power MOSFET having planar channel and its method of fabrication | |
US8466513B2 (en) | Semiconductor device with enhanced mobility and method | |
US9178050B2 (en) | Load-short-circuit-tolerant semiconductor device having trench gates | |
JP3721172B2 (ja) | 半導体装置 | |
CN102420249B (zh) | 功率半导体装置 | |
US6861702B2 (en) | Semiconductor device | |
US9825158B2 (en) | Insulated gate bipolar transistor | |
US20080035992A1 (en) | Semiconductor device | |
CN102376762B (zh) | 超级结ldmos器件及制造方法 | |
US11888022B2 (en) | SOI lateral homogenization field high voltage power semiconductor device, manufacturing method and application thereof | |
WO2018147466A1 (ja) | 半導体装置 | |
CN111816707B (zh) | 消除体内曲率效应的等势降场器件及其制造方法 | |
CN104979404A (zh) | 一种具有阶梯场氧的横向双扩散金属氧化物半导体场效应管 | |
CN107093622B (zh) | 一种具有半绝缘多晶硅层的纵向超结双扩散金属氧化物半导体场效应管 | |
CN104835836B (zh) | 一种具有双电场调制的横向超结双扩散金属氧化物半导体场效应管 | |
CN104733532A (zh) | 横向双扩散金属氧化物半导体场效应管 | |
CN105870189A (zh) | 一种具有体电场调制效应的横向超结双扩散金属氧化物半导体场效应管 | |
US10068972B2 (en) | Semiconductor device with opposite conductivity-type impurity regions between source and trench gate for reducing leakage | |
CN107564965B (zh) | 一种横向双扩散mos器件 | |
CN104218088A (zh) | 基于折叠漂移区的soi耐压结构及功率器件 | |
CN107546274B (zh) | 一种具有阶梯型沟槽的ldmos器件 | |
CN108172618B (zh) | 高k介质沟槽横向双扩散金属氧化物宽带隙半导体场效应管及其制作方法 | |
CN112993007A (zh) | 超结结构及超结器件 | |
CN112289845A (zh) | 具有jfet区布图设计的半导体器件 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210809 Address after: 610041 No. 12-18, floor 9, building 2, No. 1366, middle section of Tianfu Avenue, high tech Zone, Chengdu, Sichuan Patentee after: Chengdu Wenhai Semiconductor Co.,Ltd. Address before: 710071 No. 2 Taibai South Road, Shaanxi, Xi'an Patentee before: XIDIAN University |