CN105866184B - 一种对二氧化碳敏感的镧-二氧化锡纳米纤维膜 - Google Patents

一种对二氧化碳敏感的镧-二氧化锡纳米纤维膜 Download PDF

Info

Publication number
CN105866184B
CN105866184B CN201610430340.7A CN201610430340A CN105866184B CN 105866184 B CN105866184 B CN 105866184B CN 201610430340 A CN201610430340 A CN 201610430340A CN 105866184 B CN105866184 B CN 105866184B
Authority
CN
China
Prior art keywords
lanthanum
sno
hours
film
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610430340.7A
Other languages
English (en)
Other versions
CN105866184A (zh
Inventor
薛庆忠
熊雅
鲁文博
丁德恭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN201610430340.7A priority Critical patent/CN105866184B/zh
Publication of CN105866184A publication Critical patent/CN105866184A/zh
Application granted granted Critical
Publication of CN105866184B publication Critical patent/CN105866184B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/041Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/12Stencil printing; Silk-screen printing
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明提供了一种可用于检测CO2的La‑SnO2传感器膜的制备方法,属于气敏传感器技术领域。我们将二水氯化亚锡与氯化镧混合,通过静电纺丝法制备了La‑SnO2材料,再通过丝网印刷法制备成膜,该样品可检测大范围浓度的CO2,在空气气氛下对1000ppm CO2的灵敏值高达3.4。此方法制备简单,原料成本低,可重复性好,材料膜性能优异,具有很好的应用价值和前景。

Description

一种对二氧化碳敏感的镧-二氧化锡纳米纤维膜
技术领域
本发明属于气敏传感器技术领域,具体涉及一种镧-二氧化锡(La-SnO2)纳米纤维膜的制备及其对二氧化碳的气敏性能研究。
背景技术
近年来,二氧化碳(CO2)产生的温室效应使气候变化异常、自然灾害频发和疾病增多等已引起世界各国的普遍关注,对CO2浓度进行快速准确的检测和监控尤为重要。此外,在室内空气质量监测、农业生产、清洁能源技术、化学化工等领域,也需要对CO2浓度进行严格控制。因此,研制性能优异的CO2传感器已成为目前国内外研究热点。
当前,检测CO2的手段主要包括红外、电化学和金属氧化物半导体(MOS)传感器检测法。其中,采用红外法检测CO2所需成本太高,电化学传感器又存在易漏电、寿命短等问题。而MOS传感器由于具有体积小、操作方便、成本低廉、响应时间和恢复时间短等优点,其产品发展迅速,目前已成为世界上产量最大、应用最广的传感器之一。然而,CO2是一种化学性质非常稳定的气体,用纯MOS材料检测CO2灵敏度非常低。为了提高MOS材料的敏感性能,人们尝试了多种方法,其中,二氧化锡(SnO2)表面修饰稀土元素的方法采用的较多。早在1993年,Mizuno等就研究了La-SnO2对CO2的灵敏性能(Sens.Actuators B,1993,13,473),但其工作温度高达673K,高温测试增加了设备投入,因而应用上具有较大的局限。
迄今为止,文献中报道的MOS气敏传感器几乎都是在空气中使用。然而,很少有人研究背景气氛中氧浓度大小对CO2传感器检测性能的影响,而弄清楚这点能帮助我们更好地研究材料对CO2的敏感机制。Kim等人分别研究了在纯氮气、合成空气和纯氧背景气氛下,采用微滴注法制备的La-SnO2对2000ppm CO2的检测,发现材料在纯氧气氛下灵敏值最大,为1.59,在氮气气氛下对CO2几乎无响应(Sens.Actuators B,2000,62,61)。Zhou等人对比了氮气气氛和空气气氛下,还原氧化石墨烯对5000ppm CO2的检测,发现材料在空气气氛下灵敏值较大,约为1.1,在氮气气氛下约为1.01(Sens.Actuators B,2014,203,135)。显然,背景气氛中氧含量确实很大程度地影响着材料对CO2的检测。
为系统研究背景气氛中氧浓度对气敏性能的影响,我们以锡的无机盐为原料,采用静电纺丝法制备了La-SnO2纳米纤维,通过丝网印刷法制备成膜,然后进行性能测试。该方法制备简单,原料成本低,可重复性好,对CO2灵敏度高,具有很好的应用价值和前景。
发明内容
本发明的目的是提供一种检测CO2的传感器膜的制备方法。通过静电纺丝法制备La-SnO2纳米纤维,再通过丝网印刷法制备成膜。该制备方法具有成本低廉、操作方便、简单快捷等特点。
下面以二水氯化亚锡(SnCl2.2H2O)为例简要说明本发明的实现过程。首先采用静电纺丝法制备La-SnO2纳米纤维,将适量的纳米纤维和有机浆料混合均匀后涂覆在叉指电极上,涂层干燥后即为一层均匀膜。将上述覆有膜的叉指电极置于马弗炉中,分别在350℃和550℃下处理2小时后取出,得到测试基片,将测试基片放入洁净环境中保存,等待后续电学性质测试。该La-SnO2纤维膜可通过以下具体步骤实现:
(1)将0.6克二水氯化亚锡和氯化镧混合,其中镧元素与锡元素的摩尔比为8:100,然后分别加入4.42克二甲基甲酰胺和4.42克无水乙醇,将混合液搅拌30分钟;
(2)待上述二水氯化亚锡和氯化镧完全溶解后加入0.8克聚乙烯吡咯烷酮,搅拌12小时得到澄清透明的电纺前驱溶液;
(3)用注射器量取一定量的电纺前驱液进行纺丝,设置注射泵速度为1毫升/小时,直流高压电源正向供电电压为20千伏,负向供电电压为1千伏,纺丝喷头和收集板距离为15厘米;
(4)电纺得到的纤维在60℃下干燥24小时后置于管式炉中600℃处理2小时后得到样品,管式炉升温速率为1℃/分钟;
(5)取适量上述样品和有机浆料混合均匀,然后丝网印刷到印有铂电极的陶瓷片上,得到一层均匀的膜;
(6)将上述覆有膜的陶瓷片置于马弗炉中,分别在350℃和550℃下处理2小时后取出,得到测试基片,将测试基片放入洁净环境中保存,等待后续电学性质测试。
由上述过程可获得不同比例镧掺杂的SnO2纳米纤维膜(记作La-SnO2)。当背景气氛中氧浓度分别为0、50、500ppm时,16at.%掺杂的材料对CO2的灵敏度最高,当背景气氛中氧浓度为21%(合成空气)和100%时,8at.%掺杂的材料对CO2的灵敏度最高。且对于同种材料,随着背景气氛中氧浓度增加,材料对CO2的灵敏度增加。
本发明所提供的制备La-SnO2纳米纤维膜的方法,可实现对大范围的CO2浓度检测。该方法制备简单,原料成本低,可重复性好,具有很好的应用价值和前景。
附图说明
图1为测试基片制备示意图。
图2为氮气气氛下,纯SnO2及4at.%、8at.%、12at.%、16at.%La-SnO2对1000ppmCO2的灵敏度随温度变化曲线图。
图3为不同氧浓度背景气氛,300℃下,16at.%La-SnO2的电阻随1000ppm CO2通断气变化曲线图。
图4为空气气氛,300℃下,纯SnO2及4at.%、8at.%、12at.%、16at.%La-SnO2的电阻随1000ppm CO2通断气变化曲线图。
图5为不同氧浓度背景气氛,300℃下,8at.%和16at.%La-SnO2对CO2的灵敏度随CO2浓度变化曲线图。
具体实施方式
下面结合附图和实施例来详细描述本发明。
实施例1,将0.6克二水氯化亚锡和氯化镧混合,其中镧元素与锡元素的摩尔比为8:100,然后分别加入4.42克二甲基甲酰胺和4.42克无水乙醇(共4个样),将混合液搅拌30分钟至无机盐完全溶解,再加入0.8克聚乙烯吡咯烷酮,搅拌12小时得到澄清透明的电纺前驱溶液。用注射器量取一定量的电纺前驱液进行纺丝。设置注射泵速度为1毫升/小时,直流高压电源正向供电电压为20千伏,负向供电电压为1千伏,纺丝喷头和收集板距离为15厘米。将电纺得到的纤维在60℃下干燥24小时后置于管式炉中600℃处理2小时,管式炉升温速率为1℃/分钟。取70毫克上述样品和30毫克有机浆料混合均匀后丝网印刷到印有铂电极的陶瓷片上,得到一层均匀的膜。将上述覆有膜的陶瓷片置于马弗炉中,分别在350℃和550℃下处理2小时后取出,得到测试基片,其过程如图1所示。
图2给出了氮气气氛下,纯SnO2及4at.%、8at.%、12at.%、16at.%La-SnO2对1000ppm CO2的灵敏度随温度变化曲线图。从图中可知,在所测温度范围内,300℃下材料膜对1000CO2的灵敏度最高。从图中还可得知,在所掺杂浓度范围内,16at.%La-SnO2对CO2的灵敏度最高。
图3给出了不同氧浓度背景气氛,300℃下,16at.%La-SnO2的电阻随1000ppm CO2通断气变化曲线图。从图中可知,通CO2后材料电阻下降,停止通入CO2后材料能很快恢复到初始电阻。从图中还可得知,对于同种材料,随着背景气氛中氧浓度增加,材料对CO2的灵敏度增加,分别为2、2.4、3、3.4、3.6。
图4给出了空气气氛,300℃下,纯SnO2及4at.%、8at.%、12at.%、16at.%La-SnO2的电阻随1000ppm CO2通断气变化曲线图。从图中可知,在所掺杂浓度范围内,8at.%La-SnO2对CO2的灵敏度最高。
图5给出了不同氧浓度背景气氛,300℃下,8at.%和16at.%La-SnO2对CO2的灵敏度随CO2浓度变化曲线图。从图中可知,当背景气氛中氧浓度为0、50和500ppm时,材料在测高浓度CO2时出现饱和现象,而当背景气氛中氧浓度为21%(合成空气)和100%时,在所测CO2浓度范围100-1000000ppm内,材料没有出现饱和现象,且在这两种背景气氛下,8at.%La-SnO2对1000000ppm CO2的灵敏度分别高达393和607。

Claims (1)

1.一种对二氧化碳敏感的镧-二氧化锡纳米纤维膜的制备方法,其制备步骤包括:
(1)将0.6克二水氯化亚锡和氯化镧混合,其中镧元素与锡元素的摩尔比为8:100,然后分别加入4.42克二甲基甲酰胺和4.42克无水乙醇,将混合液搅拌30分钟;
(2)待上述二水氯化亚锡和氯化镧完全溶解后加入0.8克聚乙烯吡咯烷酮,搅拌12小时得到澄清透明的电纺前驱溶液;
(3)用注射器量取一定量的电纺前驱液进行纺丝,设置注射泵速度为1毫升/小时,直流高压电源正向供电电压为20千伏,负向供电电压为1千伏,纺丝喷头和收集板距离为15厘米;
(4)电纺得到的纤维在60℃下干燥24小时后置于管式炉中600℃处理2小时后得到样品,管式炉升温速率为1℃/分钟;
(5)取适量上述样品和有机浆料混合均匀,然后丝网印刷到印有铂电极的陶瓷片上,得到一层均匀的膜;
(6)将上述覆有膜的陶瓷片置于马弗炉中,分别在350℃和550℃下处理2小时后取出,得到测试基片,将测试基片放入洁净环境中保存,等待后续电学性质测试。
CN201610430340.7A 2016-06-15 2016-06-15 一种对二氧化碳敏感的镧-二氧化锡纳米纤维膜 Expired - Fee Related CN105866184B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610430340.7A CN105866184B (zh) 2016-06-15 2016-06-15 一种对二氧化碳敏感的镧-二氧化锡纳米纤维膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610430340.7A CN105866184B (zh) 2016-06-15 2016-06-15 一种对二氧化碳敏感的镧-二氧化锡纳米纤维膜

Publications (2)

Publication Number Publication Date
CN105866184A CN105866184A (zh) 2016-08-17
CN105866184B true CN105866184B (zh) 2019-01-01

Family

ID=56650695

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610430340.7A Expired - Fee Related CN105866184B (zh) 2016-06-15 2016-06-15 一种对二氧化碳敏感的镧-二氧化锡纳米纤维膜

Country Status (1)

Country Link
CN (1) CN105866184B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106501448A (zh) * 2016-10-17 2017-03-15 中国石油大学(华东) 一种对二氧化碳敏感的碳酸氧镧纳米颗粒膜
CN106525916B (zh) * 2016-11-07 2019-03-01 中国石油大学(华东) 一种室温下对氧敏感的镧-二氧化锡纳米中空多孔膜
CN113092539A (zh) * 2021-03-16 2021-07-09 宁波大学 一种利用半导体气敏传感器的高稳态puf

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"CO2 Sensing Properties of La-loaded SnO2 Thin Films Prepared by Sputtering";Hiroshi Sakama等;《Chemistry Letters》;20041231;第33卷(第9期);第1080页左栏倒数第一段及右栏第一-二段
"FacilesynthesisofSnO2 mesoporoustubularnanostructurewithhigh sensitivitytoethanol";X.L. Xu等;《Materials Letters》;20151231;全文
"PVP-assisted Sb-doped SnO2 nanofibers synthesized byelectrospinning process";Somtop Santibenchakul等;《Key Engineering Materials》;20160125;全文
Zhaojie Wang等."Ultrasensitive Hydrogen Sensor Based on Pd0‑Loaded SnO2Electrospun Nanofibers at Room Temperature".《Applied materials & interfaces》.2013,

Also Published As

Publication number Publication date
CN105866184A (zh) 2016-08-17

Similar Documents

Publication Publication Date Title
Chen et al. UV activated hollow ZnO microspheres for selective ethanol sensors at low temperatures
CN105628748B (zh) 一种负载铂的二氧化锡纳米纤维气敏材料及其气敏元件
Deng et al. Visible-light activate mesoporous WO3 sensors with enhanced formaldehyde-sensing property at room temperature
Du et al. Formaldehyde gas sensor based on SnO2/In2O3 hetero-nanofibers by a modified double jets electrospinning process
CN106587134B (zh) 贵金属掺杂的花状CuO纳米材料的制备方法及其制备气敏元件的方法
CN105866184B (zh) 一种对二氧化碳敏感的镧-二氧化锡纳米纤维膜
CN106198646A (zh) 一种对甲烷敏感的铂‑二氧化锡纳米纤维膜
CN104297301B (zh) 基于聚苯胺/石墨烯纳米带/二氧化硅/硅的氨气传感器的制备方法
Ramasamy et al. Design and development of Co 3 O 4/NiO composite nanofibers for the application of highly sensitive and selective non-enzymatic glucose sensors
Xu et al. A novel nonenzymatic fructose sensor based on electrospun LaMnO3 fibers
CN105675689A (zh) 一种基于硫化钼复合材料构建的过氧化氢无酶传感器的制备方法及应用
CN107164839B (zh) 具有超高灵敏度和选择性的甲醛敏感材料CdGa2O4及其制备方法
Li et al. Novel sensor array based on doped tin oxide nanowires for organic vapor detection
CN106053413A (zh) 一种金属有机荧光甲醇传感薄膜及其制备方法
Fu Silver sulfide-based sensor for the selective determination of ammonia at room temperature
CN109678214A (zh) 一种对丙酮敏感的四氧化三钴/氧化铟纳米管复合薄膜
CN105699368A (zh) 一种基于二维复合材料构建的双功能过氧化氢无酶传感器的制备方法及应用
Salikhov et al. Nanocomposite thin-film structures based on a polyelectrolyte complex of chitosan and chitosan succinamide with SWCNT
CN106680336B (zh) 还原氧化石墨烯/酞菁锌复合膜的制备及其应用于no2气体监测
CN106525916B (zh) 一种室温下对氧敏感的镧-二氧化锡纳米中空多孔膜
Dong et al. A limiting current oxygen sensor with (CuO) 0.1 (8YSZ) 0.9 dense diffusion barrier
CN104931562A (zh) 一种FTO-ZnO/CuO电极的制备方法
CN104407018B (zh) 一种纳米纤维耦合结构气敏材料及其制备方法和应用
CN106501448A (zh) 一种对二氧化碳敏感的碳酸氧镧纳米颗粒膜
CN113720879B (zh) 丙酮气敏材料和丙酮气体传感器的制备方法及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190101

CF01 Termination of patent right due to non-payment of annual fee