CN105859263A - 一种高性能96氧化铝陶瓷及其制备方法 - Google Patents

一种高性能96氧化铝陶瓷及其制备方法 Download PDF

Info

Publication number
CN105859263A
CN105859263A CN201610290900.3A CN201610290900A CN105859263A CN 105859263 A CN105859263 A CN 105859263A CN 201610290900 A CN201610290900 A CN 201610290900A CN 105859263 A CN105859263 A CN 105859263A
Authority
CN
China
Prior art keywords
performance
aluminium oxide
oxide ceramics
preparation
base substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610290900.3A
Other languages
English (en)
Other versions
CN105859263B (zh
Inventor
伍尚华
程利霞
刘建
伍海东
周茂鹏
向其军
谭毅成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Shangde Advanced Ceramic Co Ltd
Guangdong University of Technology
Original Assignee
Shenzhen Shangde Advanced Ceramic Co Ltd
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Shangde Advanced Ceramic Co Ltd, Guangdong University of Technology filed Critical Shenzhen Shangde Advanced Ceramic Co Ltd
Priority to CN201610290900.3A priority Critical patent/CN105859263B/zh
Publication of CN105859263A publication Critical patent/CN105859263A/zh
Application granted granted Critical
Publication of CN105859263B publication Critical patent/CN105859263B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/668Pressureless sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及电子材料技术领域,具体为一种高性能96氧化铝陶瓷及其制备方法。本发明通过向α‑Al2O3中添加适量的SiO2、MgO和CaO,可显著提高所制备的96氧化铝陶瓷的绝缘性能、介电强度、力学性能及导热性。通过控制制备工艺可制备性能稳定的96氧化铝陶瓷,所制备的96氧化铝陶瓷在室温及25%湿度环境中的体积电阻率可高达7×1014Ω·cm,在室温及70%湿度环境中其体积电阻率仍可保持在1012的数量级以上,当温度为600℃时其体积电阻率还能达到108数量级以上;室温条件下96氧化铝陶瓷的介电强度高达30kV/mm,抗弯强度高达约400MPa,维氏硬度高达14GPa。

Description

一种高性能96氧化铝陶瓷及其制备方法
技术领域
本发明涉及电子材料技术领域,尤其涉及一种高性能96氧化铝陶瓷及其制备方法。
背景技术
电子技术的快速发展促使电路元件用绝缘承载材料的高速发展。电子设备向薄、轻、小和数字化发展,使得研制新型电子材料迫在眉睫。电子元件的高密度化、高功率化及高集成度对其配套电子材料的综合性能提出更高的要求。近年来,制备低成本、高性能、无毒电子绝缘材料成为电子材料领域研究的热点。
众所周知,氧化铝陶瓷具有高强度、耐高温、耐腐蚀、耐磨损、抗氧化及良好的化学稳定性和电绝缘性能,且成本低廉、制备工艺成熟,已被广泛应用在电子电气、航空航天、石油化工等领域。然而,一般工业用氧化铝陶瓷大多采用成本低、生产量大的拜耳法制备而成,烧结活性较差,导致其烧结温度高、耗能大、制备成本较高。为降低其烧结温度,通常会向氧化铝粉体中引入一定量的烧结助剂(如CaO,SiO2等)来促进其烧结。目前氧化铝陶瓷在电子元器件材料领域已占有一席之地,但是市场上应用最为广泛的是低铝陶瓷。低铝陶瓷的电绝缘性能一般且受环境影响较大,很难满足在高温高湿环境中使用的要求。另外低铝陶瓷的机械性能较差,在对机械性能要求较高的领域也无法应用,因此高铝陶瓷电子元器件材料应运而生。目前高铝陶瓷电子材料中均含有钠离子(Na+),而Na+半径小,且是一价离子,其与硅氧四面体网体的连接力弱,高温下与玻璃相共熔,使无规网络出现非桥接氧(即断头),结构疏松,激活能低,在热运动下极易迁移,所以含钠高铝陶瓷材料的电阻率较低、介电损耗大。
发明内容
本发明针对现有氧化铝陶瓷的机电性能较差的问题,提供一种具有优异绝缘性能、介电强度、力学性能及导热性的高性能96氧化铝陶瓷,以及该种高性能96氧化铝陶瓷的制备方法。
为实现上述目的,本发明采用以下技术方案。
一种高性能96氧化铝陶瓷,由以下质量百分比的各组分制备而成:96%的α-Al2O3,0.1-1.5%的MgO,0.01-0.5%的CaO,余量为SiO2
优选的,所述高性能96氧化铝陶瓷由以下质量百分比的各组分制备而成:96%的α-Al2O3,2.75%的SiO2,1.0%的MgO,0.25%的CaO。
以上所述高性能96氧化铝陶瓷的制备方法,包括以下步骤:
S1制混合粉体:按各组分配比分别称取α-Al2O3、SiO2、MgO和CaO,然后将各组分混合在一起并分散均匀,得到混合粉体。
优选的,将α-Al2O3、SiO2、MgO和CaO置于无水乙醇中并超声分散至混合物的粘稠度增大到该混合物无法流动,得到分散体;然后干燥分散体,得到混合粉体。
更优选的,干燥分散体得到混合粉体后,还包括以下步骤:研磨混合粉体并使混合粉体过100目筛。
S2成型:将混合粉体模压成坯体。
优选的,以干压与冷等静压相结合的方式在10-500MPa下将混合粉体模压成坯体。
S3烧结:将坯体置于烧结炉中烧结,制得氧化铝陶瓷。
优选的,在空气中以无压烧结的方式烧结坯体,烧结温度为1500-1600℃,保温时间为1-4h。
更优选的,将坯体置于烧结炉中,以20℃/min的升温速度将坯体由室温加热至1200℃,然后再以10℃/min的升温速度将坯体继续加热至1500-1600℃,接着使坯体在1500-1600℃下保温1-4h。
与现有技术相比,本发明的有益效果是:本发明通过向α-Al2O3中添加适量的SiO2、MgO和CaO,可显著提高所制备的96氧化铝陶瓷的绝缘性能、介电强度、力学性能及导热性。通过控制工艺可制备性能稳定的96氧化铝陶瓷,所制备的96氧化铝陶瓷在室温及25%湿度环境中的体积电阻率可高达7×1014Ω·cm,在室温及70%湿度环境中其体积电阻率仍可保持在1012的数量级以上,当温度为600℃时其体积电阻率还能达到108数量级以上;室温条件下96氧化铝陶瓷的介电强度高达30kV/mm,抗弯强度高达约400MPa,维氏硬度高达14GPa。
尤其是采用无水乙醇作为分散剂使混合物在超声下分散,超声过程中无水乙醇不断挥发使混合物悬浮液逐渐变粘稠,超声至混合物不能流动,至此可将各组分分散均匀,为96氧化铝陶瓷提供有保障的混合粉体。将烧结温度控制在1500-1600℃的范围内可保障96氧化铝陶瓷的致密度,若烧结温度低于1500℃会导致96氧化铝陶瓷的致密度达不到要求,而当烧结温度大于1600℃时因材料中的晶体生长过大,导致96氧化铝陶瓷各方面的性能均有所下降。
附图说明
图1为实施例4制备高性能96氧化铝陶瓷的工艺流程图;
图2为实施例4制备高性能96氧化铝陶瓷的烧结曲线图;
图3为实施例4制备的高性能96氧化铝陶瓷的体积电阻率在室温下(25℃)随环境湿度变化的曲线图;
图4为实施例4制备的高性能96氧化铝陶瓷的体积电阻率随温度变化的曲线图。
具体实施方式
为了更充分的理解本发明的技术内容,下面结合具体实施例对本发明的技术方案作进一步介绍和说明。
实施例1-23
实施例1-23提供一种高性能96氧化铝陶瓷以及该种96氧化铝陶瓷的制备方法。具体制备步骤如下(实施例4的工艺流程如图1所示):
(1)配料
按各组分的质量百分比分别称取一定量的α-Al2O3、SiO2、MgO和CaO,各物质的具体质量百分比如下表1所示。
(2)制混合粉体
将α-Al2O3、SiO2、MgO、CaO和无水乙醇分散剂加入到大功率超声分散仪中进行超声分散,在超声分散的过程中无水乙醇缓慢被挥发掉,混合悬浮液的粘稠度逐渐增大,直至混合物无法流动时停止超声,得到分散体。然后对分散体依次进行干燥处理和研磨处理,所得粉体过100目筛,得到混合粉体。
(3)成型
首先将混合粉体倒入50mm×50mm×8mm的方形钢模中进行干压成型,压力为10MPa,保压时间为60s,获得方形的坯体;坯体再经冷等静压成型,压力为200MPa,时间300s。
(4)烧结
将坯体置于烧结炉中,并在空气中以无压烧结的方式烧结坯体。烧结的控温方式如下:以20℃/min的升温速度(一阶升温速度)将坯体由室温加热至1200℃(一阶温度),然后再以10℃/min的升温速度(二阶升温速度)将坯体继续加热至1600℃(保温温度),接着使坯体在1600℃下保温1h(保温时间),制得96氧化铝陶瓷。实施例4制备高性能96氧化铝陶瓷的烧结曲线如图2所示。实施例1-23制备的96氧化铝陶瓷分别记为TC1-TC23。
表1 实施例1-23中各组分的质量百分比
实施例24-37
实施例24-37提供一种高性能96氧化铝陶瓷以及该种96氧化铝陶瓷的制备方法。实施例24-37中α-Al2O3、SiO2、MgO和CaO的质量百分比及制混合粉体步骤、成型步骤、烧结方式均与实施例4的一致,不同之处在于烧结步骤中的控温方式,具体的烧结控温方式如下表2所示。实施例24-37制备的96氧化铝陶瓷分别记为TC24-TC37。
表2 实施例24-37中具体的烧结控温方式
分别测试实施例1-37制备的96氧化铝陶瓷TC1-TC37在室温/环境湿度25%、室温/环境湿度70%、600℃(完全干燥)下的体积电阻率,室温下TC1-TC37的介电强度、抗弯强度、维氏硬度,以及TC1-TC37的热膨胀系数和热导率。具体测试结果如下表3所示。
表3 实施例1-37制备的96氧化铝陶瓷TC1-TC37的各性能参数
实施例4制备的高性能96氧化铝陶瓷的体积电阻率随环境湿度变化的曲线如图3所示;图4为实施例4制备的高性能96氧化铝陶瓷的体积电阻率随温度变化的曲线如图4所示。从上述实施例的制备步骤、图3和图4以及表3中96氧化铝陶瓷的性能数据可知,通过向α-Al2O3中添加适量的SiO2、MgO和CaO以及控制制备工艺的各参数,可显著提高所制备的96氧化铝陶瓷的绝缘性能、介电强度、力学性能及导热性。
采用无水乙醇作为分散剂使混合物在超声下分散,超声过程中无水乙醇不断挥发使混合物悬浮液逐渐变粘稠,超声至混合物不能流动,至此可将各组分分散均匀,为96氧化铝陶瓷提供有保障的混合粉体。
将烧结温度控制在1500-1600℃的范围内可保障96氧化铝陶瓷的致密度,若烧结温度低于1500℃会导致96氧化铝陶瓷的致密度达不到要求,而当烧结温度大于1600℃时因材料中的晶体生长过大,导致96氧化铝陶瓷各方面的性能均有所下降。
以上所述仅以实施例来进一步说明本发明的技术内容,以便于读者更容易理解,但不代表本发明的实施方式仅限于此,任何依本发明所做的技术延伸或再创造,均受本发明的保护。

Claims (8)

1.一种高性能96氧化铝陶瓷,其特征在于,由以下质量百分比的各组分制备而成:96%的α-Al2O3,0.1-1.5%的MgO,0.01-0.5%的CaO,余量为SiO2
2.根据权利要求1所述一种高性能96氧化铝陶瓷,其特征在于,由以下质量百分比的各组分制备而成:96%的α-Al2O3,2.75%的SiO2,1%的MgO,0.25%的CaO。
3.一种如权利要求1所述高性能96氧化铝陶瓷的制备方法,其特征在于,包括以下步骤:
S1制混合粉体:按各组分配比分别称取α-Al2O3、SiO2、MgO和CaO,然后将各组分混合在一起并分散均匀,得到混合粉体;
S2成型:将混合粉体模压成坯体;
S3烧结:将坯体置于烧结炉中烧结,制得氧化铝陶瓷。
4.根据权利要求3所述一种高性能96氧化铝陶瓷的制备方法,其特征在于,步骤S1中,将α-Al2O3、SiO2、MgO和CaO置于无水乙醇中并超声分散至混合物的粘稠度增大到该混合物无法流动,得到分散体;然后干燥分散体,得到混合粉体。
5.根据权利要求4所述一种高性能96氧化铝陶瓷的制备方法,其特征在于,步骤S1中,干燥分散体得到混合粉体后,还包括以下步骤:研磨混合粉体并使混合粉体过100目筛。
6.根据权利要求3所述一种高性能96氧化铝陶瓷的制备方法,其特征在于,步骤S2中,以干压与冷等静压相结合的方式在10-500MPa下将混合粉体模压成坯体。
7.根据权利要求3所述一种高性能96氧化铝陶瓷的制备方法,其特征在于,步骤S3中,在空气中以无压烧结的方式烧结坯体,烧结温度为1500-1600℃,保温时间为1-4h。
8.根据权利要求7所述一种高性能96氧化铝陶瓷的制备方法,其特征在于,步骤S3中,将坯体置于烧结炉中,以20℃/min的升温速度将坯体由室温加热至1200℃,然后再以10℃/min的升温速度将坯体继续加热至1500-1600℃,接着坯体在1500-1600℃下保温1-4h。
CN201610290900.3A 2016-05-04 2016-05-04 一种高性能96氧化铝陶瓷及其制备方法 Expired - Fee Related CN105859263B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610290900.3A CN105859263B (zh) 2016-05-04 2016-05-04 一种高性能96氧化铝陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610290900.3A CN105859263B (zh) 2016-05-04 2016-05-04 一种高性能96氧化铝陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN105859263A true CN105859263A (zh) 2016-08-17
CN105859263B CN105859263B (zh) 2019-03-05

Family

ID=56631087

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610290900.3A Expired - Fee Related CN105859263B (zh) 2016-05-04 2016-05-04 一种高性能96氧化铝陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN105859263B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108101522A (zh) * 2017-12-28 2018-06-01 宁波东联密封件有限公司 一种氧化铝陶瓷
CN109748574A (zh) * 2019-03-06 2019-05-14 娄底市安地亚斯电子陶瓷有限公司 一种陶瓷连接材料及其应用
CN109761589A (zh) * 2019-03-15 2019-05-17 沈阳君威新能科技有限公司 一种陶瓷化热电池用惰性阻流环及其制备方法
CN109761585A (zh) * 2019-03-06 2019-05-17 娄底市安地亚斯电子陶瓷有限公司 一种动力电池陶瓷密封材料及其应用
US11028018B2 (en) 2016-12-08 2021-06-08 Siemens Energy Global GmbH & Co. KG Erosion-resistant ceramic material, powder, slip and component
CN113087498A (zh) * 2021-03-31 2021-07-09 广东工业大学 高强度高韧性高热导的氧化铝陶瓷材料及其制备方法和应用
CN116265412A (zh) * 2021-12-17 2023-06-20 辽宁省轻工科学研究院有限公司 一种陶瓷管壳用氧化铝粉体的制备方法
CN116283236A (zh) * 2022-12-13 2023-06-23 潍柴火炬科技股份有限公司 一种氧化铝陶瓷及其制备方法和应用
CN117185786A (zh) * 2023-09-12 2023-12-08 东莞市晟鼎精密仪器有限公司 一种等离子清洗设备电极用陶瓷绝缘板材料及其制作方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1088897A (zh) * 1993-12-01 1994-07-06 朱海临 一种高铝陶瓷及其生产方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1088897A (zh) * 1993-12-01 1994-07-06 朱海临 一种高铝陶瓷及其生产方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
熊礼威 等: "微波烧结氧化铝陶瓷的纳米增韧研究", 《武汉工程大学学报》 *
白军信 等: "添加剂对氧化铝陶瓷性能的影响", 《陶瓷》 *
薄占满 等: "低温烧结细晶氧化铝瓷的研究", 《硅酸盐学报》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11028018B2 (en) 2016-12-08 2021-06-08 Siemens Energy Global GmbH & Co. KG Erosion-resistant ceramic material, powder, slip and component
CN108101522A (zh) * 2017-12-28 2018-06-01 宁波东联密封件有限公司 一种氧化铝陶瓷
CN109748574B (zh) * 2019-03-06 2021-08-31 娄底市安地亚斯电子陶瓷有限公司 一种陶瓷连接材料及其应用
CN109748574A (zh) * 2019-03-06 2019-05-14 娄底市安地亚斯电子陶瓷有限公司 一种陶瓷连接材料及其应用
CN109761585A (zh) * 2019-03-06 2019-05-17 娄底市安地亚斯电子陶瓷有限公司 一种动力电池陶瓷密封材料及其应用
CN109761585B (zh) * 2019-03-06 2020-05-01 娄底市安地亚斯电子陶瓷有限公司 一种动力电池陶瓷密封材料及其应用
CN109761589A (zh) * 2019-03-15 2019-05-17 沈阳君威新能科技有限公司 一种陶瓷化热电池用惰性阻流环及其制备方法
CN113087498A (zh) * 2021-03-31 2021-07-09 广东工业大学 高强度高韧性高热导的氧化铝陶瓷材料及其制备方法和应用
CN116265412A (zh) * 2021-12-17 2023-06-20 辽宁省轻工科学研究院有限公司 一种陶瓷管壳用氧化铝粉体的制备方法
CN116283236A (zh) * 2022-12-13 2023-06-23 潍柴火炬科技股份有限公司 一种氧化铝陶瓷及其制备方法和应用
CN116283236B (zh) * 2022-12-13 2024-09-20 潍柴火炬科技股份有限公司 一种氧化铝陶瓷及其制备方法和应用
CN117185786A (zh) * 2023-09-12 2023-12-08 东莞市晟鼎精密仪器有限公司 一种等离子清洗设备电极用陶瓷绝缘板材料及其制作方法
CN117185786B (zh) * 2023-09-12 2024-04-02 东莞市晟鼎精密仪器有限公司 一种等离子清洗设备电极用陶瓷绝缘板材料及其制作方法

Also Published As

Publication number Publication date
CN105859263B (zh) 2019-03-05

Similar Documents

Publication Publication Date Title
CN105859263A (zh) 一种高性能96氧化铝陶瓷及其制备方法
Kemethmüller et al. Viscous flow as the driving force for the densification of low‐temperature co‐fired ceramics
WO2021228278A1 (zh) 晶粒级配的氧化锆增韧氧化铝陶瓷基板及其制备工艺
CN110128115A (zh) 一种闪烧制备氧化物共晶陶瓷的方法
CN108546115A (zh) 一种钛酸钡基低损耗巨介电常数电介质材料及其制备方法
CN104761259B (zh) 一种线性电致应变无铅压电陶瓷材料及其制备方法
CN105948723A (zh) 一种氧化铝微波介质陶瓷及其制备方法
CN103096529B (zh) 具有较高可靠性和安全性的氮化硅发热体的制作方法
CN105967674A (zh) 一种铬掺杂铝酸镁高温热敏电阻材料及其制备方法
CN108275999A (zh) 一种铌酸钾钠基无铅压电陶瓷的制备方法
CN101182189B (zh) 多元掺杂的高性能氧化铍陶瓷材料及制备方法
JP2019182689A (ja) 焼結体の製造方法および焼結体
CN108610042A (zh) 具有巨介电常数高绝缘特性的介质材料及其制备方法
CN107892576A (zh) 碳化硅陶瓷及其制备方法和散热片及其应用
CN108358646A (zh) 一种硼化锆基陶瓷及其制备方法
CN111646782A (zh) 一种zta陶瓷材料、发热元件及其制备方法
CN109293344A (zh) 一种高精度ntc热敏电阻芯片及其制备方法
CN107903055A (zh) 一种梯度掺杂钛酸铋钠基多层无铅压电陶瓷
CN104108938A (zh) 一种制备Sialon陶瓷的方法
Ji et al. Direct ink writing of cellulose-plasticized aqueous ceramic slurry for YAG transparent ceramics
CN103096528A (zh) 一种氮化硅发热体的制作方法
CN107129301A (zh) 一种plzt/氧化铝复合陶瓷材料及其制备方法
Sun et al. Effect of dispersant concentration on preparation of an ultrahigh density ZnO–Al2O3 target by slip casting
CN106083057A (zh) 一种碳化硅基复相陶瓷材料及其制备方法
CN105693260B (zh) 一种低温烧结铜纤维陶瓷基复合基板

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 510000 Panyu District, Guangzhou, Guangzhou University,, West Ring Road, No. 100

Applicant after: Guangdong University of Technology

Applicant after: Shenzhen City, Germany and advanced ceramics Limited by Share Ltd

Address before: 510000 Panyu District, Guangzhou, Guangzhou University,, West Ring Road, No. 100

Applicant before: Guangdong University of Technology

Applicant before: Shenzhen Shangde Advanced Ceramic Co., Ltd.

GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190305

Termination date: 20200504