CN105771978A - 新型银负载磁性石墨烯基TiO2纳米管的制备方法及应用 - Google Patents

新型银负载磁性石墨烯基TiO2纳米管的制备方法及应用 Download PDF

Info

Publication number
CN105771978A
CN105771978A CN201610162248.7A CN201610162248A CN105771978A CN 105771978 A CN105771978 A CN 105771978A CN 201610162248 A CN201610162248 A CN 201610162248A CN 105771978 A CN105771978 A CN 105771978A
Authority
CN
China
Prior art keywords
tio
graphene
nanotube
silver
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610162248.7A
Other languages
English (en)
Inventor
王延辉
罗川南
丁超凡
李剑波
王晓娇
段辉敏
孙元玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201610162248.7A priority Critical patent/CN105771978A/zh
Publication of CN105771978A publication Critical patent/CN105771978A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种新型银负载磁性石墨烯基TiO2纳米管复合材料制备方法及其在光催化降解中的应用。该方法以氧化石墨烯‑TiO2纳米管为载体,对其进行功能化改性。主要技术特征是:按一定的比例加入四氧化三铁、氧化石墨烯、二氧化钛纳米管制备了磁性氧化石墨烯‑TiO2纳米管,并将银纳米粒子负载在复合材料上,制备了银负载磁性石墨烯基TiO2纳米管复合材料。该催化剂对含有塑化剂(邻苯二甲酸二辛酯)的污染废水的降解效果明显,在可见光下降解效率高达95%以上,并具有易分离,易回收等优点。

Description

新型银负载磁性石墨烯基TiO2纳米管的制备方法及应用
技术领域
本发明涉及的是一种光催化降解催化剂的制备方法与应用技术,特别涉及一种银负载磁性石墨烯基TiO2纳米管复合材料在含有塑化剂(邻苯二甲酸二辛酯)废水降解中的应用技术。
背景技术
单纯的光催化剂TiO2具有化学性质稳定、价廉、无毒、活性高等优点一直被认为是一种接近理想的光催化材料之一。但是TiO2为宽带隙的半导体,只能吸收太阳光中的紫外光部分(只占太阳光能的3-5%),而同时TiO2中的光生电子-空穴对极易复合这两个原因,极大地限制了TiO2的光催化效率,使得目前报道的改性TiO2光催化剂的效果不甚理想,因此高性能的改性TiO2光催化材料的研发仍需进行。而且扩展TiO2的光吸收范围和抑制光生载流子的复合,就成为提高TiO2光催化性能的关键。为进一步提高TiO2的光催化性能,研究者针对限制TiO2光催化性能的两个因素,尝试了多种解决途径,主要包括二氧化钛改性,贵金属沉积、复合半导体、离子掺杂、表面光敏化、表面还原处理、表面螯合及衍生技术、超强酸化等。贵金属沉积就是将Ag、Pt和Cd等金属元素沉积在TiO2表面,使得TiO2上的电子可以从较高的费米能级转移到具有较低费米能级的金属上,直到二者费米能级相持平,从而整体上降低体系的带隙能,提高可见光活性。离子掺杂就是将N或者C元素与TiO2进行掺杂,使掺杂的离子可以形成捕获中心,同时形成晶格缺陷,成为电子-空穴对的陷阱,抑制电子-空穴对的复合,从而提高反应效率。此外,将WO3、SnO2等氧化物与二氧化钛进行复合,制成复合半导体,使所掺杂的半导体与TiO2具有不同能级的导带和价带,从而使复合后的材料具有新的导带和价带。复合材料在受到光照后,电子和受到激发,分别迁移至TiO2的导带和复合材料的价带,从而实现了载流子的有效分离,提高光催化效率。经过改性后的二氧化钛虽然在一定程度上提高了光催化降解效率,但是,对于太阳光中可见光部分的利用依然没有涉及,不能利用可见光极大地降低了TiO2的在光催化领域的应用价值,同时光催化效率也有待进一度提高。而且催化剂不易分离且回收使用次数低。容易造成浪费。因为二氧化钛的团聚,使得催化剂接触面与界面接触不充。
近年来,氧化石墨烯具有良好的导电能力和独特的二维平面结构,在光催化降解领域有巨大的应用潜力,它可以通过在半导体中交联石墨烯使得光生电子快速传入导带,降低光生电子和空穴的复合几率,从而提高光催化的效率。此外氧化石墨烯巨大的比表面积可以增加对染料的吸附,从而增加催化材料表面染料量。使得催化剂与染料充分接触。从而进一步提高光催化效率。
TiO2纳米管是TiO2的又一种存在形式,由于纳米管具有大的比表面积,因而具有较高的吸附能力,可望提高TiO2的光电转换效率、光催化性能。磁性纳米粒子的引入,可以增加催化剂的可控性,使得在溶液中更容易分离。银纳米粒子的引入可以减少TiO2的禁带宽度,增强TiO2对可见光的响应,并可以充当电子捕获剂,减少电子-空穴对的复合。增加光降解效率。
发明内容
本发明的目的之一是提供一种易分离可重复使用且对太阳光响应好的光催化降解催化剂的制备方法与应用技术,主要是以氧化石墨烯-TiO2纳米管为载体,对其进行功能化改性,合成对含有塑化剂(邻苯二甲酸二辛酯)的污染废水具有高降解率、高催化活性的光催化剂。
本发明的目的通过以下技术方案实现:
一种新型银负载磁性石墨烯基TiO2纳米管复合材料制备方法,特征在于该方法具有以下工艺步骤:
1)磁性氧化石墨烯的制备
将氧化石墨烯,无水三氯化铁和氯化亚铁混合并制成混合液,控制溶液在碱性条件下,并进行N2保护,同时加热机械搅拌,使得磁性粒子沉积在氧化石墨烯表面,之后用磁铁吸引分离,并用乙醇洗涤两次后置于真空干燥箱中干燥即得到磁性氧化石墨烯;
(2)TiO2纳米管的制备
P25纳米TiO2颗粒和氢氧化钠溶液超声混合并避光搅拌,在密封水热反应釜中高温干燥,TiO2粒子经过重排弯曲,最后成管状。之后依次用盐酸溶液,超纯水洗涤至中性,并进行高温煅烧,既得TiO2纳米管;
(3)银负载TiO2纳米管的制备
TiO2纳米管与硝酸银溶液混合超声搅拌并在马弗炉中高温焙烧得到银负载TiO2纳米管;
(4)银负载磁性石墨烯基TiO2纳米管复合材料的制备
磁性氧化石墨烯、去离子水与银负载TiO2纳米管混合,在高压反应釜中进行水热反应,可得银负载磁性石墨烯基TiO2纳米管复合材料。
本发明的另一个目的是提供新型银负载磁性石墨烯基TiO2纳米管复合材料在对含有塑化剂(邻苯二甲酸二辛酯)废水的光催化降解中的应用。特征为:将制备好的新型催化剂加入到废水中,置于紫外光或者可见光下搅拌降解,每隔五分钟取上清液,并用紫外分光光度计测定吸光度,从而测定降解率。
本发明的优点及效果是:
(1)本发明获得高降解效率的材料是银负载磁性石墨烯基TiO2纳米管复合材料,以氧化石墨烯-TiO2纳米管为载体,并对其进行功能化改性的方法制备了银负载磁性石墨烯基TiO2纳米管复合材料。该方法制得的新型催化剂可见光响应灵敏,催化活性高,易分离,便于回收重复利用;
(2)本发明新型银负载磁性石墨烯基TiO2纳米管复合材料制备过程简单,条件易于控制,生产成本低;
(3)本发明制备新型银负载磁性石墨烯基TiO2纳米管复合材料,由于是将氧化石墨烯和TiO2纳米管结合在一起,增大了复合材料的比表面积,更有利于光生电子快速传入导带,降低光生电子和空穴的复合几率,从而提高光催化的效率引入了磁性粒子,使催化剂在溶液中更容易分离回收,并将银离子负载在二氧化钛表面,其作用位点都在催化剂的表面,有利于降低光生电子和空穴的复合几率,而且银离子的负载使得二氧化钛禁带宽度变小。从而提高光催化的效率,催化降解时间短,催化降解能力强、效率高,对含有塑化剂(邻苯二甲酸二辛酯)废水最大降解效率为95.37%;
(4)本发明制备银负载磁性石墨烯基TiO2纳米管复合材料,有良好的物理化学稳定性和优异的机械稳定性,对废水降解操作简单。
具体实施方式
实施例1
(1)磁性氧化石墨烯的制备
称取50mg氧化石墨烯-溶于30mL超纯水中超声分散0.5小时,分别称取50mg无水三氯化铁和35mg氯化亚铁加入之前分散好的氧化石墨烯溶液中,补加20mL超纯水,在N2保护下,在90℃下加热的同时机械搅拌,滴加氨水至pH=9.0继续加热搅拌0.5小时,之后停止加热,冷却至室温,用磁铁吸引分离,并用乙醇洗涤两次后置于真空干燥箱中干燥;
(2)TiO2纳米管的制备
0.6gP25二氧化钛粉末和60mLNaOH(10mol/L)溶液经超声波分散30min、避光搅拌12h充分混合均匀后移至带聚四氟乙烯内衬的不锈钢水热反应釜中,密封,置于鼓风干燥箱内,加热到150℃,恒温保持48h,自然冷却至室温,用离心机分离。样品先用超纯水洗至中性,再用0.01mol/L的HCl溶液反复清洗至pH值接近于HCl溶液的pH值,最后用超纯水反复清洗,直至洗出的水溶液pH值接近中性。样品经离心后,在80℃下鼓风干燥12h,即制得钛酸盐纳米管。在450℃温度下煅烧,煅烧后就是TiO2纳米管;
(3)银负载TiO2纳米管的制备
取0.8g二氧化钛纳米管,加入到100mLAgNO3(99.8%)水溶液中(Ag/Ti物质的量的比为0.5%),超声10min,分散均匀,继续搅拌10h,离心分离,所得样品用去离子水洗涤3次,100°C烘干,得到银负载的TiO2纳米管,所得固体粉末在马弗炉中500°C焙烧2h,即可得到银负载TiO2纳米管;
(4)银负载磁性石墨烯基TiO2纳米管复合材料的制备
0.2g磁性氧化石墨烯和1.1g银负载TiO2纳米管混合,加入200ml去离子水,超声分散1h,充分搅拌后,转移到水热反应釜中,120℃的条件下进行水热反应3h,待冷却到室温时,取出反应物液,离心,去离子水充分洗涤得到固体沉淀,在恒温50℃下烘干即可得到银负载磁性石墨烯基TiO2纳米管复合材料。
实施例2
(1)磁性氧化石墨烯的制备
称取100mg氧化石墨烯-溶于80mL超纯水中超声分散1小时,分别称取100mg无水三氯化铁和80mg氯化亚铁加入之前分散好的氧化石墨烯溶液中,补加40mL超纯水,在N2保护下,在90℃下加热的同时机械搅拌,滴加氨水至pH=9.0继续加热搅拌0.5小时,之后停止加热,冷却至室温,用磁铁吸引分离,并用乙醇洗涤两次后置于真空干燥箱中干燥;
(2)TiO2纳米管的制备
1gP25二氧化钛粉末和100mLNaOH(10mol/L)溶液经超声波分散30min、避光搅拌10h充分混合均匀后移至带聚四氟乙烯内衬的不锈钢水热反应釜中,密封,置于鼓风干燥箱内,加热到120℃,恒温保持48h,自然冷却至室温,用离心机分离。样品先用超纯水洗至中性,再用0.01mol/L的HCl溶液反复清洗至pH值接近于HCl溶液的pH值,最后用超纯水反复清洗,直至洗出的水溶液pH值接近中性。样品经离心后,在60℃下鼓风干燥10h,即制得钛酸盐纳米管。在420℃温度下煅烧,煅烧后就是TiO2纳米管;
(3)银负载TiO2纳米管的制备
取0.5gTiO2纳米管,加入到100mLAgNO3(99.8%)水溶液中(Ag/Ti物质的量的比为0.8%),超声10min,分散均匀,继续搅拌10h,离心分离,所得样品用去离子水洗涤3次,80°C烘干,得到银负载的TiO2纳米管,所得固体粉末在马弗炉中480°C焙烧2h,即可得到银负载TiO2纳米管;
(4)银负载磁性石墨烯基TiO2纳米管复合材料的制备
0.5g磁性氧化石墨烯和2g银负载TiO2纳米管混合,加入300ml去离子水,超声分散1h,充分搅拌后,转移到水热反应釜中,150℃的条件下进行水热反应3h,待冷却到室温时,取出反应物液,离心,去离子水充分洗涤得到固体沉淀,在恒温50℃下烘干即可得到银负载磁性石墨烯基TiO2纳米管复合材料。
实施例3
(1)磁性氧化石墨烯的制备
称取200mg氧化石墨烯-溶于160mL超纯水中超声分散1小时,分别称取200mg无水三氯化铁和160mg氯化亚铁加入之前分散好的氧化石墨烯溶液中,补加80mL超纯水,在N2保护下,在90℃下加热的同时机械搅拌,滴加氨水至pH=9.0继续加热搅拌0.5小时,之后停止加热,冷却至室温,用磁铁吸引分离,并用乙醇洗涤两次后置于真空干燥箱中干燥;
(2)TiO2纳米管的制备
2gP25二氧化钛粉末和200mLNaOH(10mol/L)溶液经超声波分散1h、避光搅拌10h充分混合均匀后移至带聚四氟乙烯内衬的不锈钢水热反应釜中,密封,置于鼓风干燥箱内,加热到130℃,恒温保持36h,自然冷却至室温,用离心机分离。样品先用超纯水洗至中性,再用0.01mol/L的HCl溶液反复清洗至pH值接近于HCl溶液的pH值,最后用超纯水反复清洗,直至洗出的水溶液pH值接近中性。样品经离心后,在60℃下鼓风干燥10h,即制得钛酸盐纳米管。在400℃温度下煅烧,煅烧后就是TiO2纳米管;
(3)银负载TiO2纳米管的制备
取1gTiO2纳米管,加入到180mLAgNO3(99.8%)水溶液中(Ag/Ti物质的量的比为0.3%),超声10min,分散均匀,继续搅拌10h,离心分离,所得样品用去离子水洗涤3次,50°C烘干,得到银负载的TiO2纳米管,所得固体粉末在马弗炉中450°C焙烧2h,即可得到银负载TiO2纳米管;
(4)银负载磁性石墨烯基TiO2纳米管复合材料的制备
0.8g磁性氧化石墨烯和1.5g银负载TiO2纳米管混合,加入250ml去离子水,超声分散1h,充分搅拌后,转移到水热反应釜中,150℃的条件下进行水热反应3h,待冷却到室温时,取出反应物液,离心,去离子水充分洗涤得到固体沉淀,在恒温50℃下烘干即可得到银负载磁性石墨烯基TiO2纳米管复合材料。
实施例4
新型银负载磁性石墨烯基TiO2纳米管复合材料应用方法:
废水中塑化剂(邻苯二甲酸二辛酯)的光催化降解,降解后采用紫外分光光度法检测,其具体方法的步骤如下:
(1)待测液前处理:准确称取0.0050g塑化剂(邻苯二甲酸二辛酯),溶解于250mL容量瓶中(该溶液中邻苯二甲酸二辛酯质量浓度为20.00mg/L)并摇匀,量取50.00mL于100mL烧杯中,然后调节pH在4.0左右,准确称取0.0150g银负载磁性石墨烯基TiO2纳米管复合材料,转入前述的烧杯中,均匀摇晃形成均匀待测溶液,
(2)光催化降解:将盛有50.00mL待测液的烧杯放置在光催化反应箱中,先暗室搅拌20min,移取上清液,再用紫外光照射(电流大小为15.0A),每隔五分钟取上清液一次(取样4mL),直至待测液取完为止,之后在紫外分光光度计中以蒸馏水为参比溶液,在200-800nm波长范围内分别测定降解前和降解后溶液的吸光度值A,并计算降解率;
银负载磁性石墨烯基TiO2纳米管复合材料降解塑化剂(邻苯二甲酸二辛酯):在pH=4.0的条件下,催化剂用量为0.2500g/L时降解初始浓度为20.00mg/L的塑化剂(邻苯二甲酸二辛酯)溶液,在紫外光照射35min时可达到最大降解效率95.37%,在保持最优条件下。该催化剂可重复使用5次。

Claims (3)

1.一种新型银负载磁性石墨烯基TiO2纳米管复合材料的制备方法,其特征是:在于该方法具有以下工艺步骤:
(1)磁性氧化石墨烯的制备
氧化石墨烯、无水三氯化铁和氯化亚铁的质量比为:5:5:3~2:2:1(比例最大扩大4~8倍),之后混合加入适量超纯水,在N2保护下,在90℃下加热的同时机械搅拌,滴加氨水至pH=8.0~10.0继续加热搅拌0.5~1小时,之后停止加热,冷却至室温,用磁铁吸引分离,并用乙醇洗涤两次后置于真空干燥箱中干燥;
(2)二氧化钛纳米管的制备
P25二氧化钛粉末(0.3~1g)和60mLNaOH(6~10mol/L)溶液经超声波分散0.5~1h、避光搅拌10~12h充分混合均匀后移至带聚四氟乙烯内衬的不锈钢水热反应釜中,密封,置于鼓风干燥箱内,加热到120~150℃(最高不能高于150℃),恒温保持36~48h,自然冷却至室温,用离心机分离,样品先用超纯水洗至中性,再用0.01~0.1mol/L的HCl溶液反复清洗至pH值接近于HCl溶液的pH值,最后用超纯水反复清洗,直至洗出的水溶液pH值接近中性,样品经离心后,在50~80℃下鼓风干燥8~12h,即制得钛酸盐纳米管,在400~450℃(最高不能高于450℃)温度下煅烧,煅烧后就是TiO2纳米管;
(3)银负载TiO2纳米管的制备
TiO2纳米管,加入到AgNO3水溶液中(Ag/Ti物质的量的比为0.1%~2%),超声10~30min,分散均匀,继续搅拌8~12h,离心分离,所得样品用去离子水洗涤3次,100°C烘干,得到Ag负载的TiO2纳米管,所得固体粉末在马弗炉中450~500°C焙烧1~2h,即可得到银负载TiO2纳米管;
(4)银负载磁性石墨烯基TiO2纳米管复合材料的制备
磁性氧化石墨烯和银负载TiO2纳米管质量比为1:5~3:7,加入去离子水,超声分散0.5~1h,充分搅拌后,转移到水热反应釜中,100~120℃的条件下进行水热反应1~3h,待冷却到室温时,取出反应物液,离心,去离子水充分洗涤得到固体沉淀,在恒温50℃下烘干即可得到银负载磁性石墨烯基TiO2纳米管复合材料。
2.根据权利要求1所述的新型银负载磁性石墨烯基TiO2纳米管复合材料制备方法,其特征是:银负载在TiO2纳米管上。
3.根据权利要求1所述的新型银负载磁性石墨烯基TiO2纳米管复合材料的催化降解方法,其特征是采用光催化反应箱光照,之后用紫外分光光度计测定,其具体方法的步骤如下:
(1)待测液前处理:准确称取0.0050g塑化剂(邻苯二甲酸二辛酯),溶解于250mL容量瓶中(该溶液中邻苯二甲酸二辛酯质量浓度为20.00mg/L)并摇匀,量取50.00mL于100mL烧杯中,然后调节pH在4.0左右,准确称取0.0150g银负载磁性石墨烯基TiO2纳米管复合材料,转入前述的烧杯中,均匀摇晃形成均匀待测溶液,
(2)光催化降解:将盛有50.00mL待测液的烧杯放置在光催化反应箱中,先暗室搅拌20min,移取上清液,再用紫外光照射(电流大小为15.0A),每隔五分钟取上清液一次(取样4mL),直至待测液取完为止,之后在紫外分光光度计中以蒸馏水为参比溶液,在200-800nm波长范围内分别测定降解前和降解后溶液的吸光度值A,并计算降解率:
计算降解效率参照以下公式:η= 100%
式中,A0和As分别为降解前和t时刻降解后的塑化剂(邻苯二甲酸二辛酯)溶液的吸光度值;η为特定条件下的降解率。
CN201610162248.7A 2016-03-22 2016-03-22 新型银负载磁性石墨烯基TiO2纳米管的制备方法及应用 Pending CN105771978A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610162248.7A CN105771978A (zh) 2016-03-22 2016-03-22 新型银负载磁性石墨烯基TiO2纳米管的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610162248.7A CN105771978A (zh) 2016-03-22 2016-03-22 新型银负载磁性石墨烯基TiO2纳米管的制备方法及应用

Publications (1)

Publication Number Publication Date
CN105771978A true CN105771978A (zh) 2016-07-20

Family

ID=56394328

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610162248.7A Pending CN105771978A (zh) 2016-03-22 2016-03-22 新型银负载磁性石墨烯基TiO2纳米管的制备方法及应用

Country Status (1)

Country Link
CN (1) CN105771978A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107670664A (zh) * 2017-10-31 2018-02-09 云南健牛生物科技有限公司 二氧化钛复合光催化体系制备及其应用
CN109382108A (zh) * 2017-12-19 2019-02-26 中国环境科学研究院 一种磁性复合纳米结构二氧化钛光催化剂及其制备方法
CN109647384A (zh) * 2019-01-31 2019-04-19 河北宇轩纳米科技有限责任公司 石墨烯负载纳米TiO2/Ag光催化复合材料的制备方法
CN110116002A (zh) * 2019-06-11 2019-08-13 西北民族大学 一种可磁分离缺陷型TNTs复合材料及其制备方法
CN110404506A (zh) * 2019-07-12 2019-11-05 中国科学院东北地理与农业生态研究所 磁性氧化石墨烯/钛酸钠复合材料的制备方法和应用
CN111167441A (zh) * 2019-12-25 2020-05-19 厦门十日甫智能科技合伙企业(有限合伙) 一种金/石墨烯复合二氧化钛纳米管的制备及其在空气净化中的应用
CN114946878A (zh) * 2021-07-08 2022-08-30 广西柳州中和高新技术有限公司 Ag@Fe3O4@SiC/TiO2纳米材料的合成方法及其用途
CN115672318A (zh) * 2021-07-30 2023-02-03 中国石油化工股份有限公司 一种二氧化钛光催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102125837A (zh) * 2011-01-11 2011-07-20 湖南大学 金属-石墨烯-二氧化钛纳米管阵列光催化剂及其制备和应用
CN102527366A (zh) * 2012-01-12 2012-07-04 北京交通大学 一种二氧化钛纳米管石墨烯混合光催化剂及制备方法
WO2014188448A1 (en) * 2013-05-24 2014-11-27 Council Of Scientific & Industrial Research Semiconductor-oxides nanotubes-based composite particles useful for dye-removal and process thereof
CN104237197A (zh) * 2014-07-30 2014-12-24 东南大学 一种氧化石墨烯-银纳米粒子-二氧化钛纳米管阵列材料及其制备方法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102125837A (zh) * 2011-01-11 2011-07-20 湖南大学 金属-石墨烯-二氧化钛纳米管阵列光催化剂及其制备和应用
CN102527366A (zh) * 2012-01-12 2012-07-04 北京交通大学 一种二氧化钛纳米管石墨烯混合光催化剂及制备方法
WO2014188448A1 (en) * 2013-05-24 2014-11-27 Council Of Scientific & Industrial Research Semiconductor-oxides nanotubes-based composite particles useful for dye-removal and process thereof
CN104237197A (zh) * 2014-07-30 2014-12-24 东南大学 一种氧化石墨烯-银纳米粒子-二氧化钛纳米管阵列材料及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YIBING XIE ET AL.: "SERS performance of graphene oxide decorated silver nanoparticle/titania nanotube array", 《RSC ADV.》 *
孙洋洋 等: "磁性氧化石墨烯/ TiO2复合材料的制备及光催化降解染料废水的研究", 《应用化工》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107670664A (zh) * 2017-10-31 2018-02-09 云南健牛生物科技有限公司 二氧化钛复合光催化体系制备及其应用
CN109382108A (zh) * 2017-12-19 2019-02-26 中国环境科学研究院 一种磁性复合纳米结构二氧化钛光催化剂及其制备方法
CN109382108B (zh) * 2017-12-19 2021-09-21 中国环境科学研究院 一种磁性复合纳米结构二氧化钛光催化剂及其制备方法
CN109647384A (zh) * 2019-01-31 2019-04-19 河北宇轩纳米科技有限责任公司 石墨烯负载纳米TiO2/Ag光催化复合材料的制备方法
CN110116002A (zh) * 2019-06-11 2019-08-13 西北民族大学 一种可磁分离缺陷型TNTs复合材料及其制备方法
CN110404506A (zh) * 2019-07-12 2019-11-05 中国科学院东北地理与农业生态研究所 磁性氧化石墨烯/钛酸钠复合材料的制备方法和应用
CN110404506B (zh) * 2019-07-12 2022-04-29 中国科学院东北地理与农业生态研究所 磁性氧化石墨烯/钛酸钠复合材料的制备方法和应用
CN111167441A (zh) * 2019-12-25 2020-05-19 厦门十日甫智能科技合伙企业(有限合伙) 一种金/石墨烯复合二氧化钛纳米管的制备及其在空气净化中的应用
CN114946878A (zh) * 2021-07-08 2022-08-30 广西柳州中和高新技术有限公司 Ag@Fe3O4@SiC/TiO2纳米材料的合成方法及其用途
CN114946878B (zh) * 2021-07-08 2024-05-14 广西柳州中和高新技术有限公司 Ag@Fe3O4@SiC/TiO2纳米材料的合成方法及其用途
CN115672318A (zh) * 2021-07-30 2023-02-03 中国石油化工股份有限公司 一种二氧化钛光催化剂及其制备方法
CN115672318B (zh) * 2021-07-30 2024-05-17 中国石油化工股份有限公司 一种二氧化钛光催化剂及其制备方法

Similar Documents

Publication Publication Date Title
CN105771978A (zh) 新型银负载磁性石墨烯基TiO2纳米管的制备方法及应用
Li et al. A novel 3D Z-scheme heterojunction photocatalyst: Ag 6 Si 2 O 7 anchored on flower-like Bi 2 WO 6 and its excellent photocatalytic performance for the degradation of toxic pharmaceutical antibiotics
Tang et al. Enhanced photocatalytic degradation of glyphosate over 2D CoS/BiOBr heterojunctions under visible light irradiation
Tang et al. Fabrication of magnetically recoverable Ag/CuNb2O6/CuFe2O4 ternary heterojunction composite for highly efficient photocatalytic degradation of pollutants
Priya et al. Synthesis of BiFeWO6/WO3 nanocomposite and its enhanced photocatalytic activity towards degradation of dye under irradiation of light
Shifu et al. Preparation, characterization and activity evaluation of p–n junction photocatalyst p-CaFe2O4/n-ZnO
Huang et al. Enhancement of photocatalytic activity of Z-scheme BiO2-x/BiOI heterojunction through vacancy engineering
Qi et al. Preparation and photocatalytic properties of g-C3N4/BiOCl heterojunction
Raja et al. Construction of visible-light driven Bi2MoO6-rGO-TiO2 photocatalyst for effective ofloxacin degradation
She et al. Facile preparation of mixed-phase CdS and its enhanced photocatalytic selective oxidation of benzyl alcohol under visible light irradiation
Wu et al. Synthesis of TiO2/Ti3C2Tx/AgI Z-scheme photocatalyst for tetracycline hydrochloride photocatalytic degradation
CN110639620A (zh) 用于降解四环素的复合光催化剂及其制备方法和应用
Yang et al. Enhancing the visible-light-induced photocatalytic activity of AgNbO 3 by loading Ag@ AgCl nanoparticles
Xu et al. Enhanced photocatalytic discoloration of acid fuchsine wastewater by TiO2/schorl composite catalyst
CN106582626A (zh) 一种新型银离子掺杂TiO2复合材料的制备方法及应用
Yu et al. Fabrication of heterostructured CdS/TiO2 nanotube arrays composites for photoreduction of U (VI) under visible light
CN106693996B (zh) 硫化铋-铁酸铋复合可见光催化剂的制备方法及其应用
CN109012663B (zh) 一种纳米银/碳复合光催化材料及其制备方法和应用
CN104001494A (zh) 一种类石墨改性纳米锡酸锌的合成方法
Raza et al. In-situ synthesis of mesoporous TiO2-Cu2ZnSnS4 heterostructured nanocomposite for enhanced photocatalytic degradation
Tang et al. A novel AgCl-based visible-light photocatalyst through in-situ assembly of carbon dots for efficient dye degradation and hydrogen evolution
Zhou et al. Enhanced photocatalytic degradation of ciprofloxacin over Bi2MoO6/g-C3N4/BiFeO3 heterojunction photocatalyst under visible light irradiation
Liao et al. Photocatalytic properties of flower-like BiOBr/BiOCl heterojunctions in-situ constructed by a reactable ionic liquid
Wang et al. Synergetic piezo-photocatalytic effect in SbSI for highly efficient degradation of methyl orange
Deshpande et al. Rapid detoxification of polluted water using ultrastable TiO2 encapsulated CsPbBr3 QDs in collected sunlight

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160720