CN105764810A - 由自交联性原纤化纤维素制得的具有低湿度敏感性的氧和水蒸气阻隔膜 - Google Patents

由自交联性原纤化纤维素制得的具有低湿度敏感性的氧和水蒸气阻隔膜 Download PDF

Info

Publication number
CN105764810A
CN105764810A CN201480053917.6A CN201480053917A CN105764810A CN 105764810 A CN105764810 A CN 105764810A CN 201480053917 A CN201480053917 A CN 201480053917A CN 105764810 A CN105764810 A CN 105764810A
Authority
CN
China
Prior art keywords
film
oxygen
cellulose
packaging material
fibril
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480053917.6A
Other languages
English (en)
Other versions
CN105764810B (zh
Inventor
P·拉松
L·瓦格贝尔格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Than Strangling Shandong Otto Dix Na Si Co
Original Assignee
Than Strangling Shandong Otto Dix Na Si Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Than Strangling Shandong Otto Dix Na Si Co filed Critical Than Strangling Shandong Otto Dix Na Si Co
Publication of CN105764810A publication Critical patent/CN105764810A/zh
Application granted granted Critical
Publication of CN105764810B publication Critical patent/CN105764810B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B23/08Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/02Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose in the form of fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B23/00Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose
    • B32B23/04Layered products comprising a layer of cellulosic plastic substances, i.e. substances obtained by chemical modification of cellulose, e.g. cellulose ethers, cellulose esters, viscose comprising such cellulosic plastic substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/12Layered products comprising a layer of synthetic resin next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B29/00Layered products comprising a layer of paper or cardboard
    • B32B29/02Layered products comprising a layer of paper or cardboard next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/02Oxycellulose; Hydrocellulose; Cellulosehydrate, e.g. microcrystalline cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/10Crosslinking of cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • C08L1/04Oxycellulose; Hydrocellulose, e.g. microcrystalline cellulose
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/18Highly hydrated, swollen or fibrillatable fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/16Sizing or water-repelling agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/10Packing paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/30Multi-ply
    • D21H27/38Multi-ply at least one of the sheets having a fibrous composition differing from that of other sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7244Oxygen barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7246Water vapor barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • B32B2307/7248Odour barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2553/00Packaging equipment or accessories not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/04Oxycellulose; Hydrocellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Food Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Wrappers (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Packages (AREA)

Abstract

本公开提供了一种包含氧阻隔性聚合物膜的包装材料,其中,所述膜包含可通过包括以下步骤的方法获得的聚合物:a)使纤维素纤维氧化以最终获得交联的纤维素;和b)对步骤a)的产物进行均质,以获得宽度范围为1nm~150nm的原纤维。本公开还提供了相应的应用。

Description

由自交联性原纤化纤维素制得的具有低湿度敏感性的氧和水蒸气阻隔膜
背景技术
可以与常规非可再生材料竞争并替代其的新型生物类包装和阻隔材料的开发是一项极大的挑战。碳水化合物类材料的最严重的缺陷之一是其对水分的敏感性。在低相对湿度下,由淀粉、半纤维素、溶解纤维素和原纤化纤维素制得的各种膜提供了对氧的优异阻隔,但是,一旦相对湿度增大,碳水化合物就开始吸收水分,并且这导致膜溶胀并且随后透气性增大[1-11]。为了防止水蒸气透过,通常认为碳水化合物类膜是较差的以致于很少有研究人员尽力对其进行测量,因而实验数据的数量有限[2,8,10-13],特别是在较宽的相对湿度范围内。
公开内容
不过,本公开人已经注意到存在减小纤维素对水的亲和性和水扩散性的方法。常用的方案通过共价交联进行,其是在面对水分含量变化时增大尺寸稳定性并减小水分扩散的公知途径[14-18]。Yang等[13]最近加入交联化学品来对来自良好分散的高带电原纤维的原纤维膜进行交联,并显著降低了水蒸气透过性。遗憾的是,仅在50%RH下评价了阻隔性,即,没有研究高湿度下的较低水分吸收和膜溶胀的影响。还探索了诸如酯化和接枝等化学改性来改善水蒸气阻隔性[11,19,20],但却牺牲了关键的机械性能和氧阻隔性。另一广泛使用的与多糖相关的方案是在基质聚合物中分散层状硅酸盐[7,21,22]。不过,无机片晶在基质聚合物中的分散和片晶在最终膜中的取向对最终的性质有严重的限制[7,21]。
本公开人探索了在原纤维水平上在由C2-C3键的高碘酸盐氧化引起的醛和羟基之间引入交联[16,23,24]。示意性氧化和交联反应显示在方案1中。为了实现具有高密度和较少大孔的膜,在膜制造之前在均化器中对改性纤维进行原纤化。
方案1:两条纤维素链(A)的C2-C3键如何氧化成二醛纤维素(B)并最终彼此共价交联(C)的示意性图示。如Morooka等[23]所指出的,在(C)中仍存在的醛可以与其他存在的羟基(可能是C6羟基)交联。
本公开人认识到,为了用生物类替代物替换例如包装应用中使用的石油类阻隔物,必需降低对水分的敏感性。本公开描述了在80%或90%相对湿度下具有明显改善的氧和水蒸气阻隔性的纤维素类膜的制造和表征。这通过在部分高碘酸盐氧化至二醛纤维素后制造自交联性原纤化纤维素的膜而实现。在80%的相对湿度下,分别由27%和44%氧化纤维素制成的膜显示出未处理参比的不到一半的水渗透率;即相比于8.0g·mm/(m2·24h·kPa)为3.8g·mm/(m2·24h·kPa)和3.7g·mm/(m2·24h·kPa)。据推测,这是由于膜中较低的水分摄入,因而溶胀较小。在无水分时,由未改性和改性的原纤化纤维素形成的膜都是理想的氧阻隔物,但是在80%的相对湿度下,与未氧化材料的9.2ml·μm/(m2·24h·kPa)相比,基于27%和44%转化纤维素的膜分别具有2.2ml·μm/(m2·24h·kPa)和1.8ml·μm/(m2·24h·kPa)的氧渗透率。在90%相对湿度下,未处理和经处理的纤维素之间的差异甚至更大。
因此,本公开提供了一种包含氧阻隔性聚合物膜的包装材料,其中,该膜包含通过包括以下步骤的方法可获得的聚合物:
a)使纤维素纤维氧化以最终获得交联的纤维素;和
b)对步骤a)的产物进行均质,以获得宽度范围为1nm~150nm的原纤维。
本公开还提供了一种包含氧阻隔性聚合物膜的包装材料,其中,该膜包含通过包括以下步骤的方法可获得的聚合物:
a)使纤维素纤维氧化至20%~50%的程度,以最终获得交联的纤维素;和
b)对步骤a)的产物进行均质,以获得宽度范围为1nm~150nm的原纤维。
本公开还提供了一种包含聚合物膜作为氧阻隔物的包装材料,其中,该膜包含通过包括以下步骤的方法可获得的聚合物:
a)使纤维素纤维氧化至20%~50%的程度,以最终获得交联的纤维素;和
b)通过使步骤a)的产物顺次穿过孔径为300μm~500μm、100μm~300μm、150μm~250μm和50μm~150μm的腔室而对其进行均质,以获得宽度范围为1nm~150nm的原纤维。
另外,提供了聚合物膜作为氧阻隔膜的应用,其中,聚合物膜包含通过包括以下步骤的方法可获得的聚合物:
a)使纤维素纤维氧化以最终获得交联的纤维素;和
b)对步骤a)的产物进行均质,以获得宽度范围为1nm~150nm的原纤维。
另外,提供了聚合物膜作为氧阻隔膜的应用,其中,聚合物膜包含通过包括以下步骤的方法可获得的聚合物:
a)使纤维素纤维氧化至20%~50%的程度,以最终获得交联的纤维素;和
b)对步骤a)的产物进行均质,以获得宽度范围为1nm~150nm的原纤维。
另外,提供了聚合物膜作为氧阻隔膜的应用,其中,聚合物膜包含通过包括以下步骤的方法可获得的聚合物:
a)使纤维素纤维氧化至20%~50%的程度,以最终获得交联的纤维素;和
b)通过使步骤a)的产物顺次穿过孔径为300μm~500μm、100μm~300μm、150μm~250μm和50μm~150μm的腔室而对其进行均质,以获得宽度范围为1nm~150nm的原纤维。
最后,提供了一种包含基材和氧阻隔膜(其包含交联的原纤化纤维素)的包装材料,以及至少部分由该材料构成的包装体。
附图说明
图1示出了根据方案1的氧化程度(%)随时间(h)推移而增大的实例。
图2示出了由未处理和高碘酸盐氧化至27%或44%的纤维素原纤维制成的膜的X射线衍射谱。晶面以及对应于非晶性纤维素的区域由箭头所标记。
图3示出了由在均质前(a~c)未处理、(d~f)27%高碘酸盐氧化和(g~i)44%高碘酸盐氧化的均质牛皮纸纤维制得的膜的SEM图像。第一和第二列示出了500和10000放大倍率下的俯视图像,第三列示出了20000放大倍率下的截面图。左手列中的重复图案是滤纸和干燥载体的印迹。
图4示出了由未处理和两种氧化程度的纤维素(27%和44%)制成的膜的相对于(a)氧和(b)水蒸气的渗透率与相对湿度(至多80%)的关系。误差条表示标准偏差(分别为n=3和n=4)。
图5示出了由未处理、27%氧化和44%氧化的纤维素制成的膜的平衡水分含量与相对湿度的关系。该图的数据点处在各自相对湿度下的大致调节时间。
图6示出了由未处理和两种氧化程度的纤维素(27%和44%)制成的膜的相对于(a)氧和(b)水蒸气的渗透率与相对湿度(至多90%)的关系。从图中明显可见,改性膜保持了完整的网络结构。
图7示出了与各种塑料的渗透率相比的由未处理和氧化(44%)的纤维素制成的膜的相对于(a)氧和(b)水蒸气的渗透率与相对湿度(至多90%)的关系。
具体实施方式
根据本公开第一方面的第一构型,提供了一种包含氧阻隔性聚合物膜的包装材料,其中,该膜包含通过包括以下步骤的方法可获得的聚合物:
a)使纤维素纤维氧化以最终获得交联的纤维素;和
b)对步骤a)的产物进行均质,以获得宽度范围为1nm~150nm的原纤维。
根据本公开的第一方面的第二构型,提供了一种包含氧阻隔性聚合物膜的包装材料,其中,该膜包含通过包括以下步骤的方法可获得的聚合物:
a)使纤维素纤维氧化至20%~50%的程度,以最终获得交联的纤维素;和
b)对步骤a)的产物进行均质,以获得宽度范围为1nm~150nm的原纤维。
根据本公开第一方面的第三构型,提供了一种包含聚合物膜作为氧阻隔物的包装材料,其中,该膜包含通过包括以下步骤的方法可获得的聚合物:
a)使纤维素纤维氧化至20%~50%的程度,以最终获得交联的纤维素;和
b)通过使步骤a)的产物顺次穿过孔径为300μm~500μm、100μm~300μm、150μm~250μm和50μm~150μm的腔室而对其进行均质,以获得宽度范围为1nm~150nm的原纤维。
第一方面的聚合物膜可以视为氧和水蒸气阻隔膜。
在第一方面的实施方式中,将纤维素纤维氧化至20%~45%、25%~35%、25%~30%、26%~28%、30%~50%、35%~45%或40%~45%的程度。
例如,第一方面的氧化可以使用诸如高碘酸盐等氧化剂进行。
本公开还提供了由第一方面的材料构成的包装体。
根据本公开第二方面的第一构型,提供了聚合物膜作为氧阻隔膜的应用,其中,聚合物膜包含通过包括以下步骤的方法可获得的聚合物:
a)使纤维素纤维氧化以最终获得交联的纤维素;和
b)对步骤a)的产物进行均质,以获得宽度范围为1nm~150nm的原纤维。
根据本公开第二方面的第二构型,提供了聚合物膜作为氧阻隔膜的应用,其中,聚合物膜包含通过包括以下步骤的方法可获得的聚合物:
a)使纤维素纤维氧化至20%~50%的程度,以最终获得交联的纤维素;和
b)对步骤a)的产物进行均质,以获得宽度范围为1nm~150nm的原纤维。
根据本公开第二方面的第三构型,提供了聚合物膜作为氧阻隔膜的应用,其中,聚合物膜包含通过包括以下步骤的方法可获得的聚合物:
a)使纤维素纤维氧化至20%~50%的程度,以最终获得交联的纤维素;和
b)通过使步骤a)的产物顺次穿过孔径为300μm~500μm、100μm~300μm、150μm~250μm和50μm~150μm的腔室而对其进行均质,以获得宽度范围为1nm~150nm的原纤维。
第二方面的应用可以是氧和水蒸气阻隔膜。
在第二方面的实施方式中,该应用处在80%或90%的相对湿度下。
在第二方面的实施方式中,使纤维素纤维氧化至20%~45%、25%~35%、25%~30%、26%~28%、30%~50%、35%~45%或40%~45%的程度。
另外,在第二方面的实施方式中,氧化可以使用诸如高碘酸盐等氧化剂进行。
在本公开的上下文中,如下文“材料和方法”中所述测量氧化程度。
根据本公开的第三方面,提供了一种包含基材和氧阻隔膜(其包含交联的原纤化纤维素)的包装材料。第三方面的各种实施方式如上关于第一和第二方面所述。
另外,在第三方面的实施方式中,基材是纸或纸板。纸板可包括例如一个、两个、三个、四个或五个纸层。
除了氧阻隔膜以外,第三方面的包装材料可以包含水蒸气阻隔膜。水蒸气阻隔膜可以设置在基材和氧阻隔膜之间。其还可以施加在氧阻隔膜上,这意味着氧阻隔膜夹在基材和水蒸气阻隔膜之间。
在第三方面的实施方式中,水蒸气阻隔膜包含聚乙烯(PE)、聚酰胺、聚对苯二甲酸乙二醇酯(PET)或乙烯-乙烯醇(EVOH)。PE可以为例如LDPE或HDPE。
另外,在第三方面的实施方式中,原纤化纤维素通过原纤维内部和/或之间的涉及C2和/或C3的共价键而交联。本领域技术人员熟悉C2和C3的结构含义。另外,C2和C3的位置由以上的方案1可见。
在第三方面的实施方式中,在80%相对湿度和/或90%相对湿度下,氧阻隔膜的水渗透率小于5g·mm/(m2·24h·kPa)。
另外,在第三方面的实施方式中,在80%相对湿度和/或90%相对湿度下,氧阻隔膜的氧渗透率小于5ml·μm/(m2·24h·kPa),如小于4ml·μm/(m2·24h·kPa),如小于3.5ml·μm/(m2·24h·kPa)。
本公开还提供了一种由第三方面的包装材料构成的包装体。包装体可以是例如食品或液体包装体。第三方面的材料可以是液体包装板。
实施例
材料和方法
纤维
干燥的漂白牛皮纸纤维(K44)由SCAAB(瑞典pulpmill)提供。在使用前,将纤维浸泡在水中并分解,并且根据先前描述的程序将纤维的羧基转化成其钠盐形式[11]。
化学品
用于氧化纤维素的(偏)高碘酸钠、用作自由基清除剂的异丙醇(纯度≥99.8%)和用于确定氧化程度的盐酸羟胺全部从Sigma-Aldrich购得。用于在AFM成像之前促进原纤维吸附的分子量为60kDa的聚乙烯亚胺(PEI)从AcrosOrganics购得。诸如盐酸和氢氧化钠等其他化学品全部是分析级的。
纤维素的氧化
在搅拌下,将5.4克高碘酸钠/克纤维添加至含有6.3%异丙醇(以体积计)的4g/l纤维悬浮液中,异丙醇作为自由基清除剂来防止副反应和断链[25,26]。为了进一步防止断链,氧化反应在暗处[27]进行12h或36h,然后通过过滤并用去离子水彻底洗涤来使反应终止。假设纯纤维素作为起始材料,通过与盐酸羟胺反应并根据先前描述的程序[16,28]用氢氧化钠滴定,可确定二醛纤维素的转化度分别为27%和44%(图1)。
原纤维制备
通过在约1600bar的压力下对4g/1~5g/1的悬浮液进行均质(Microfluidics微射流机处理器M-110EH)而由经处理和未处理的纤维制备原纤化纤维素。纤维通过串联连接的400μm和200μm腔室进行一次预均质,然后通过串联连接的200μm和100μm腔室进行十次均质。为了将堵塞的风险降至最低,将未处理的纤维在均质前于PFI磨机中进行6000转的打浆。
原纤维表征
为了评估原纤维的尺寸,将具有预吸附的PEI层(以0.1g/1吸附5分钟)的抛光硅晶片(意大利MEMCElectronicMaterials)在20倍稀释的原纤维悬浮液中浸泡10秒,然后干燥并使用MMP-12100-10型悬臂以轻敲模式进行原子力显微术(AFM)(VeecoInstruments的MultiModeIIIa)。
膜制作
在膜制作之前,将原纤化纤维素稀释至约2.5g/1,并在VWR超声清洗器中进行超声处理10分钟,然后使用先前描述的膜制备方法[29],在Fast纸页成形器(奥地利PaperTestingInstruments)中使用325×2300目荷兰双斜纹织物(TwillDutchDoubleWeave)(瑞典BoppUtildi)进行真空过滤。过滤后,将第二金属织物置于膜顶部,并将整个组合体在95kPa的减压下于93℃干燥15分钟。将膜在23℃和50%RH下储存直至进行进一步分析。
X射线衍射
通过使用X'PertProXRD(PANalytical)收集原纤维膜的X射线衍射(XRD)谱来评价结晶性。在反射模式下以5°~40°(2θ)的角范围记录衍射图谱。在45kV的施加电压和35mA的电流下产生CuKα辐射使用0.05°的增量步进和1步/10秒的速率。在测量前使用硅胶在干燥器中干燥样品。
扫描电子显微术
使用高分辨率场发射型扫描显微镜(FE-SEM)(HitachiS-4800)来获得制得的膜的显微照片。为了抑制样本在成像过程中带电,样本在208HRCressington溅射涂布机中使用Pt-Pd靶溅射5s~10s。
拉伸测试
拉伸测试在23℃和50%RH下使用具有500N载荷传感器的Instron5944进行。以40mm的自由长度夹持5mm宽的试验片,并以10%/分钟的应变速率进行应变。由0.05%应变附近的低应变区域中的应力-应变曲线的斜率确定杨氏模量(E)。
渗透性测试
分别根据ASTMD-3985和ASTMF1249-06标准,在5cm2样品上评价膜相对于氧(Systechinstruments8001型氧渗透分析仪)和水蒸气(MOCONPermaTran-W3/33)的阻隔性。在相对湿度方面,氧渗透率测定对称进行,即测试样本的两侧具有相同的相对湿度,而水蒸气渗透率测定通过在检测端供给干燥氮气而不对称地进行。水蒸气渗透率测量四次,氧渗透率测量三次。
水分吸收
在用于水蒸气渗透率测定的相对湿度和90%RH下的平衡水分含量如下测定:将膜放置在位于手套箱的天平上,该手套箱与以适当比例混合干湿气流的湿气生成器连接。通过在105℃干燥过夜来确定干重。
结果和讨论
原纤维表征
由未处理纤维或在高碘酸盐氧化至二醛纤维素(两种氧化程度:27%或44%)后,通过均质制造原纤维。这些原纤维的AFM图像显示,不同处理的原纤维之间在尺寸和其对PEI涂布的二氧化硅表面的亲和性方面都存在明显的区别。减小的亲和性确认原纤维的化学组成和结构有变化,据推测其原因不仅在于转化为二醛纤维素,还在于在氧化和随后的洗涤过程中观察到该材料有约15%的材料损耗。除去的材料主要由半纤维素构成,由于这些材料含有带电基团,改性原纤维的电荷密度以及由此导致的其对PEI表面的亲和性小于未改性原纤维。除了吸附上的这种区别,颗粒形状、粒径和粒径分布也存在明显的区别。如从原纤化木纤维所预期的那样[30,31],未处理原纤维的原纤维宽度范围为4nm~10nm,并具有一些较大的20nm聚集体。具有27%氧化原纤维的表面(其表面覆盖率小于具有未处理原纤维的表面)含有较大数量的原纤维聚集体,表明该纤维更难以均质,据推测是由于在均质前个体纤维之间引入的交联。尽管如此,仍存在游离原纤维,即原纤维悬浮液具有高尺寸多分散性。当纤维在均质前进一步氧化至44%氧化程度时,有甚至更小的吸附,因而与27%氧化材料相比存在更少的高长径比聚集体,不过将存在大量的低长径比的大颗粒。另外,44%氧化的单个原纤维是非常薄的(2nm~5nm)。
图2示出了参比和改性原纤维的XRD图谱,可见高碘酸盐氧化显著降低了材料的结晶度。结晶指数[32]从参比的73%降低至27%氧化材料的63%和44%氧化材料的21%,与早先公布的高碘酸盐氧化的纤维素[33,34]和进一步处理的二醛纤维素[34,35]的结果很好地符合。据推测这将生成更薄和更柔韧的原纤维[34],并可期望影响膜的形成和机械性质以及其阻隔性。高碘酸盐氧化逐步降低结晶度(图2)并伴随微晶宽度的同时降低[36]的事实也使得可以合理地推测存在留下具有高结晶性核和交联的非晶性外层的原纤维的异相氧化过程。
膜制作和力学表征
如表1所示,制作膜的时间相对较短,即,可相当容易地对原纤维悬浮液进行脱水(没有明显的材料损耗;未示出)。与未处理的等级相比,两种等级的氧化原纤维也明显更容易脱水,这可能是粒径的影响。薄膜的密度比1500kg/m3(即完全无孔纤维素的密度)小5%~10%[37]。这与膜仅是半透明的事实一起表明,膜是有点多孔性的。这得到显微观测的进一步支持,其中图3显示了三种不同的膜的SEM图像,这三种图像全部显示了小孔的存在。该SEM图像还支持了由AFM发现的原纤维尺寸分布的差异,即27%氧化材料由比未处理材料更大的原纤维聚集体构成(图3b相比于图3e)。在示出了44%氧化材料的图3g~图3i中,有趣的是注意到不存在任何明显的原纤维结构。同一材料的XRD谱图(图2)显示出明显低于未氧化和27%氧化材料的结晶度。这与Kim等[34]早先的发现是一致的,他们报道了在高碘酸盐氧化后结晶度较低且原纤维柔韧性较大。由最高氧化材料制成的膜在其微结构方面也欠均一,显示出与膜过滤侧更接近的具有较少孔的较平滑的截面(未示出)。可能与这些性质有关,由最高氧化的原纤维制成的膜显示出不同的且更为明显的金属线编织物(用于过滤和干燥支持体)的印迹(图3g)。
表1:膜过滤时间和平均的结构和机械性质。拉伸数据以95%置信界限给出。
膜的机械性能受到化学改性的显著影响。表1的下半部示出了三种不同膜的杨氏模量、断裂拉伸应力和拉伸断裂应变。由化学处理的原纤维制成的膜的机械性质与先前报道的那些[29,38]相似,不过,由表1清楚可见,化学处理使膜更弱且更脆。这与先前对纤维素交联的总体研究[15,39-41]、特别是对高碘酸钠诱发的交联的研究[16,23,42]很好地一致。当纤维素氧化至27%氧化程度时,与未处理材料相比,存在模量(显著)增大的迹象,但是在44%氧化程度时模量有明显损耗。因高碘酸盐诱发的交联所致的模量增大似乎是合理的,因为原纤维间共价交联可能导致应力传递改善[43,44]。不过,由于高碘酸盐氧化同时降低了材料的结晶度(图2),因此,在44%氧化程度时模量存在净减小。在讨论机械性质时,还重要的是牢记原纤维尺寸的差异和网络结构的差异(图3),这可能影响材料的机械性能。
膜透气性
在0%RH下,所有膜都可作为理想的氧阻隔物,并且氧渗透率低于仪器的检测极限(0.008ml/(m2·24h)),表明材料具有强分子内相互作用且不具有相互连通的孔,防止了如氧等非极性气体分子通过作为溶解分子以外的任何方式扩散。在于50%RH进行评价时,即在预期膜含有水分时,氧渗透率的范围为:从由未处理原纤维制成的膜的0.6ml·μm/(m2·24h·kPa)至最大氧化材料的1.5ml·μm/(m2·24h·kPa)(图4a)。这些值与其他纤维素类膜[1,2,4,8]和基于诸如淀粉或半纤维素等碳水化合物或碳水化合物类纳米复合材料[3,5,7,9,45,46]的其他膜的值相当。但是,所有这些材料在相对湿度增大时将遭受氧阻隔性的显著劣化。通常,在相对湿度从50%RH增大至80%RH时,氧渗透率将增大一个或两个数量级[1,2,7-9],不过,对于由自交联性纤维素制成的膜,图4a显示,当相对湿度增大至80%RH时,两种氧化等级的渗透率保持不变,据推测这是因为防止了原纤维彼此分离并为氧分子打开更大的扩散通路。在90%RH时,处理的效果甚至更明显(图6a)。
对于诸如水蒸气等极性分子,其趋势与氧渗透率的情况相似。图4b示出了水蒸气渗透率与相对湿度的关系,对于氧化等级,渗透率在50%RH~80%RH之间保持在同一水平,而由未处理原纤维制成的膜在80%RH时显示出水蒸气渗透率显著高于50%RH时的水蒸气渗透率。所有三种膜在50%RH时的渗透性(3.3g·mm/(m2·24h·kPa)~4.5g·mm/(m2·24h·kPa))与其他报道的纤维素类膜的渗透性[8,12,13]相似,例外的是,例如,Yang等[8]报道了当相对湿度由50%RH升高至70%RH时,渗透性增大四倍。在图4b的交联纤维素的情况中,渗透性在80%RH是相同的或甚至稍低。在90%RH时,水蒸气渗透率甚至低于80%RH时的水蒸气渗透率(图6b)。因此,与其他碳水化合物类阻隔物相比,对氧和水蒸气二者的这些阻隔性质具有高竞争力,但是,与大多数商用合成聚合物(如聚丙烯、聚乙烯或聚对苯二甲酸乙二醇酯,其通常均具有低于0.1g·mm/(m2·24h·kPa)的水蒸气渗透率[11,47])相比,该膜仍是显著较差的阻隔物。
为了阐述处理样品的氧和水蒸气渗透率随相对湿度增大而不变背后的机理,在相对应的相对湿度下测定平衡水分含量。图5显示了两种交联膜如何在50%RH~80%RH的相对湿度区间内对吸湿或多或少地呈惰性。图5还显示了最高氧化的材料在50%RH下具有较高的平衡水分含量,其可能是由于较大量的非晶性纤维素(图2),并且其可能解释了对于此等级而言水蒸气渗透率在50%RH下稍高的原因。在50%RH~80%RH区间内水分含量无任何变化表明了原纤维之间形成的交联防止了水分的吸附和扩散[16,17],并限制了溶胀和气体扩散可用的表面和孔的生成。有趣的是,27%氧化的膜在相对湿度进一步增大到90%时显示出水分含量的快速增大,这可能表明,如果水分含量的增大伴随有材料中的结构变化,则在此湿度或更高湿度下的渗透率将增大。已经揭示,交联在高相对湿度下可能随时间部分水解[16],不过,这种假设在随后遭到反驳,因为在水中的浸泡并没有改变分子或超分子结构[48]。
为了进一步理解高相对湿度下的吸收行为和相应的阻隔性,需要进一步的测量。尽管如此,本结果表明,这些材料具有用于例如对水分并不过分敏感但需要防护氧化性空气的干燥物品的包装的潜力。
最后,从应用观点来看,还重要的是注意到这些自交联性原纤维可以以作为膜以外的其他方式使用。原纤化纤维素可以例如涂布在基材膜或板上,并充当阻隔涂层[1]。
结论
由经纤维素C2~C3键的高碘酸盐氧化而部分转化(27%或44%)为二醛纤维素的均质纤维素纤维制得了膜。醛基随后使得能够形成减少水分吸附的原纤维内或原纤维之间的共价键,因而在暴露于高相对湿度时膜溶胀,并由此阻碍了通常与相对湿度增大有关的透气性的增加。在23℃和80%RH下,27%和44%氧化的纤维素的氧渗透率分别为2.2ml·μm/(m2·24h·kPa)和1.8ml·μm/(m2·24h·kPa),相比之下未处理参比的9.2ml·μm/(m2·24h·kPa),并且相对应的水蒸气渗透率为3.8g·mm/(m2·24h·kPa)、3.7g·mm/(m2·24h·kPa)和8.0g·mm/(m2·24h·kPa)。处理和未处理样品之间的差异在90%RH下甚至更大。
参考文献
1.C.Aulin,M.和T.Lindstrom,Oxygenandoilbarrierpropertiesofmicrofibrillatedcellulosefilmsandcoatings.Cellulose17:559-574,2010;
2.C.Aulin,G.Salazar-Alvarez和T.Highstrength,flexibleandtransparentnanofibrillatedcellulose-nanoclaybiohybridfilmswithtunableoxygenandwatervaporpermeability.Nanoscale4(20):6622-6628,2012;
3.U.Edlund,Y.Yu,Y.ZhuRyberg,R.Krause-Rehberg和A.-C.Albertsson,Positronlifetimerevealsthenanolevelpackingincomplexpolysaccharide-richhydrolysatematrixes.Anal.Chem.84(8):3676-3681,2012;
4.H.Fukuzumi,T.Saito,S.Iwamoto,Y.Kumamoto,T.Ohdaira,R.Suzuki和A.Isogai,Poresizedeterminationoftempo-oxidizedcellulosenanofibrilfilmsbypositronannihilationlifetimespectroscopy.Biomacromolecules12(11):4057-4062,2011;
5.M.L.Eriksson和P.Gatenholm,Materialpropertiesofplasticizedhardwoodxylansforpotentialapplicationasoxygenbarrierfilms.Biomacromolecules5(4):1528-1535,2004;
6.C.Johansson,J.Bras,I.Mondragon,P.Nechita,D.Plackett,P.Simon,D.G.Svetec,S.Virtanen,M.G.Baschetti,C.Breen,F.Clegg和S.Aucejo,Renewablefibersandbio-basedmaterialsforpackagingapplications-areviewofrecentdevelopments,BioResources7:2506-2552,2012;
7.J.J.Kochumalayil,M.Bergenstrahle-Wohlert,S.Utsel,L.Wagberg,Q.Zhou和L.A.Berglund,Bioinspiredandhighlyorientedclaynanocompositeswithaxyloglucanbiopolymermatrix:Extendingtherangeofmechanicalandbarrierproperties,Biomacromolecules14(1):84-91,2013;
8.Q.Yang,H.Fukuzumi,T.Saito,A.Isogai和L.Zhang,Transparentcellulosefilmswithhighgasbarrierpropertiesfabricatedfromaqueousalkali/ureasolutions.Biomacromolecules12(7):2766-2771,2011;
9.Y.Z.ZhuRyberg,U.Edlund和A.-C.Albertsson,Conceptualapproachtorenewablebarrierfilmdesignbasedonwoodhydrolysate.Biomacromolecules12(4):1355-1362,2011;
10.C.Aulin和T.Biopolymercoatingsforpaperandpaperboard.在Biopolymers-newmaterialsforsustainablefilmsandcoatings(D.Plackett编著)中,255-276,JohnWiley&Sons,Ltd,Chichester,UK,2011;
11.N.M.L.Hansen和D.Plackett,Sustainablefilmsandcoatingsfromhemicelluloses:Areview.Biomacromolecules9(6):1493-1505,2008;
12.F.Debeaufort和A.Voilley,Aromacompoundandwatervaporpermeabilityofediblefilmsandpolymericpackagings.J.Agric.FoodChem.42(12):2871-2875,1994;
13.H.Yang,A.Tejado,N.Alam,M.Antal和T.G.M.VanDeVen,Filmspreparedfromelectrostericallystabilizednanocrystallinecellulose.Langmuir28(20):7834-7842,2012;
14.D.F.Caulfield和R.C.Weatherwax,Tensilemodulusofpaperwet-stiffenedbycrosslinking.在牛津召开的研讨会的会报Fibre-waterinteractionsinpapermaking中,741-763,1977;
15.W.E.Cohen,A.J.Stamm和D.J.Fahey,Dimensionalstabilizationofpaperbycatalyzedheat-treatment.Tappi42:904-908,1959;
16.P.A.Larsson,M.和L.Theinfluenceofperiodateoxidationonthemoisturesorptivityanddimensionalstabilityofpaper.Cellulose15:837-847,2008.;
17.P.A.Larsson和L.Wagberg,Diffusion-induceddimensionalchangesinpapersandfibrillarfilms:Influenceofhydrophobicityandfibre-wallcross-linking.Cellulose17:891-901,2010;
18.R.G.Lebel,R.W.Schwartz和O.Sepall,Anovelapproachtodimensionalstabilizationofpaper.Tappi51(2):79-84,1968;
19.G.Moad,Chemicalmodificationofstarchbyreactiveextrusion.Prog.Polym.Sci.36(2):218-237,2011;
20.C.Peroval,F.Debeaufort,A.M.Seuvre,P.Cayot,B.Chevet,D.Desprè和A.Voilley,Modifiedarabinoxylan-basedfilms:Graftingoffunctionalacrylatesbyoxygenplasmaandelectronbeamirradiation.J.Membr.Sci.233(1-2):129-139,2004;
21.F.Chivrac,E.Pollet和L.Averous,Progressinnano-biocompositesbasedonpolysaccharidesandnanoclays.Mat.Sci.Eng.R67(1):1-17,2009;
22.S.SinhaRay和M.Bousmina,Biodegradablepolymersandtheirlayeredsilicatenanocomposites:Ingreeningthe21stcenturymaterialsworld.Prog.Mater.Sci.50(8):962-1079,2005;
23.T.Morooka,M.Norimoto和T.Yamada,Periodateoxidationofcellulosebyhomogeneousreaction.J.Appl.Polym.Sci.38(5):849-858,1989;
24.E.L.Back,Thermalauto-crosslinkingincellulosematerial.PulpPaperMag.Can.68(4):T-165-T-171,1967;
25.G.V.Buxton,C.L.Greenstock,W.P.Helman和A.B.Ross.Criticalreviewofrateconstantsforreactionsofhydratedelectrons,hydrogenatomsandhydroxylradicals(·OΗ/·O-)inaqueoussolution.J.Phys.Chem.Ref.Data17(2):513-886,1988;
26.T.J.Painter,Controlofdepolymerisationduringthepreparationofreduceddialdehydecellulose.Carbohydr.Res.179:259-268,1988;
27.M.C.R.Symons,Evidenceforformationoffree-radicalintermediatesinsomereactionsinvolvingperiodate.J.Chem.Soc.:2794-2796,1955;
28.H.Zhao和N.Heindel,Determinationofdegreeofsubstitutionofformylgroupsinpolyaldehydedextranbythehydroxylaminehydrochloridemethod.Pharm.Res.8(3):400-402,1991;
29.H.Sehaqui,A.Liu,Q.Zhou和L.A.Berglund,Fastpreparationprocedureforlarge,flatcelluloseandcellulose/inorganicnanopaperstructures.Biomacromolecules11(9):2195-2198,2010;
30.L.G.Decher,M.Norgren,T.M.Ankerfors和K.Thebuild-upofpolyelectrolytemultilayersofmicrofibrillatedcelluloseandcationicpolyelectrolytes.Langmuir24(3):784-795,2008;
31.M.Paakko,M.Ankerfors,H.Kosonen,A.Nykanen,S.Ahola,M.Osterberg,J.Ruokolainen,J.Laine,P.T.Larsson,O.Ikkala和T.Lindstrom,Enzymatichydrolysiscombinedwithmechanicalshearingandhigh-pressurehomogenizationfornanoscalecellulosefibrilsandstronggels.Biomacromolecules8(6):1934-1941,2007;
32.L.Segal,J.J.Creely,A.E.Martin和C.M.Conrad,Anempiricalmethodforestimatingthedegreeofcrystallinityofnativecelluloseusingthex-raydiffractometer.Text.Res.J.29(10):786-794,1959;
33.Q.X.Hou,W.Liu,Z.H.Liu和L.L.Bai.Characteristicsofwoodcellulosefiberstreatedwithperiodateandbisulfite.Ind.Eng.Chem.Res.46:7830-7837,2007;
34.U.-J.Kim,S.Kuga,M.Wada,T.Okano和T.Kondo.Periodateoxidationofcrystallinecellulose.Biomacromolecules1:488-492,2000;
35.J.H.Liimatainen,J.和O.Hormi,Dialdehydecellulosemicrofibersgeneratedfromwoodpulpbymilling-inducedperiodateoxidation.Carbohydr.Polym.86(l):260-265,2011;
36.H.Liimatainen,M.Visanko,J.A.O.E.O.Hormi和J.Niinimaki,Enhancementofthenanofibrillationofwoodcellulosethroughsequentialperiodate-chloriteoxidation.Biomacromolecules13(5):1592-1597,2012;
37.C.J.Malm,L.B.Genung和J.V.Fleckenstein,Densitiesofcelluloseesters.Ind.Eng.Chem.Res.39(11):1499-1504,1947;
38.C.-N.Wu,T.Saito,S.Fujisawa,H.Fukuzumi和A.Isogai,Ultrastrongandhighgas-barriernanocellulose/clay-layeredcomposites.Biomacromolecules13(6):1927-1932,2012;
39.R.G.Lebel,R.W.Schwartz和O.Sepall,Anovelapproachtodimensionalstabilizationofpaper.Tappi51:2:79A-84A,1968;
40.A.J.Stamm,Dimensionalstabilizationofpaperbycatalyzedheattreatmentandcross-linkingwithformaldehyde.Tappi42:44-50,1959;
41.R.C.Weatherwax和D.F.Caulfield,Theporestructureofpaperswetstiffenedbyformaldehydecrosslinking.I.Resultsfromthewaterisotherm.J.ColloidInterfaceSci.67:498-505,1978;
42.M.A.-M.Olsson,L.Salmén和L.Onthemechanismsofmechano-sorptivecreepreductionbychemicalcross-linking.在牛津召开的第14届基础研究讨论会的会报AdvancesinPulpandPaperResearch(S.I'anson编著)中,1001-1017,2009;
43.A.Fonseca,T.Borders,R.Baughman和K.Cho,Loadtransferbetweencross-linkedwallsofacarbonnanotube.Phys.Rev.B81:045429-045421-045427,2010;
44.F.Quero,S.Eichhorn,M.Nogi,H.Yano,K.-Y.Lee和A.Bismarck,Interfacesincross-linkedandgraftedbacterialcellulose/poly(lacticacid)resincomposites.J.Polym.Environ.20(4):916-925,2012;
45.S.Gaudin,D.Lourdin,P.M.Forssell和P.Colonna,Antiplasticisationandoxygenpermeabilityofstarch-sorbitolfilms.Carbohydr.Polym.43(1):33-37,2000;
46.A.Saxena,T.J.Elder,J.Kenvin和A.J.Ragauskas,Highoxygennanocompositebarrierfilmsbasedonxylanandnanocrystallinecellulose.Nano-MicroLett.2:235-241,2010;
47.M.Fereydoon和S.Ebnesajjad,Developmentofhigh-barrierfilmforfoodpackaging.在Plasticfilmsinfoodpackaging-materials,technology,andapplications(S.Ebnesajjad编著)中,71-92,WilliamAndrewPublishing,Oxford,2013;
48.P.A.Larsson,M.P.T.Larsson和L.Canmoisturesorptioninlignocellulosicfibresbeprevented?在8thInternationalPaperandCoatingChemistrySymposium中,253-256,Stockholm,Sweden.2012.

Claims (23)

1.一种包含氧阻隔性聚合物膜的包装材料,其中,所述膜包含通过包括以下步骤的方法能够获得的聚合物:
a)使纤维素纤维氧化以最终获得交联的纤维素;和
b)对步骤a)的产物进行均质,以获得宽度范围为1nm~150nm的原纤维。
2.一种包含氧阻隔性聚合物膜的包装材料,其中,所述膜包含通过包括以下步骤的方法能够获得的聚合物:
a)使纤维素纤维氧化至20%~50%的程度,以最终获得交联的纤维素;和
b)对步骤a)的产物进行均质,以获得宽度范围为1nm~150nm的原纤维。
3.一种包含聚合物膜作为氧阻隔物的包装材料,其中,所述膜包含通过包括以下步骤的方法能够获得的聚合物:
a)使纤维素纤维氧化至20%~50%的程度,以最终获得交联的纤维素;和
b)通过使步骤a)的产物顺次穿过孔径为300μm~500μm、100μm~300μm、150μm~250μm和50μm~150μm的腔室而对其进行均质,以获得宽度范围为1nm~150nm的原纤维。
4.如权利要求1~3中任一项所述的包装材料,其中,所述膜是氧和水蒸气阻隔膜。
5.如权利要求1~4中任一项所述的包装材料,其中,所述纤维素纤维氧化至20%~45%、25%~35%、25%~30%、26%~28%、30%~50%、35%~45%或40%~45%的程度。
6.如权利要求1~5中任一项所述的包装材料,其中,所述氧化使用氧化剂进行。
7.如权利要求6所述的包装材料,其中,所述氧化使用高碘酸盐进行。
8.一种包装体,其由权利要求1~7中任一项所述的包装材料构成。
9.聚合物膜作为氧阻隔膜的应用,其中,所述聚合物膜包含通过包括以下步骤的方法能够获得的聚合物:
a)使纤维素纤维氧化以最终获得交联的纤维素;和
b)对步骤a)的产物进行均质,以获得宽度范围为1nm~150nm的原纤维。
10.聚合物膜作为氧阻隔膜的应用,其中,所述聚合物膜包含通过包括以下步骤的方法能够获得的聚合物:
a)使纤维素纤维氧化至20%~50%的程度,以最终获得交联的纤维素;和
b)对步骤a)的产物进行均质,以获得宽度范围为1nm~150nm的原纤维。
11.聚合物膜作为氧阻隔膜的应用,其中,所述聚合物膜包含通过包括以下步骤的方法能够获得的聚合物:
a)使纤维素纤维氧化至20%~50%的程度,以最终获得交联的纤维素;和
b)通过使步骤a)的产物顺次穿过孔径为300μm~500μm、100μm~300μm、150μm~250μm和50μm~150μm的腔室而对其进行均质,以获得宽度范围为1nm~150nm的原纤维。
12.如权利要求9~11中任一项所述的聚合物膜的应用,所述聚合物膜用作氧和水蒸气阻隔膜。
13.如权利要求9~12中任一项所述的聚合物膜的应用,其中,所述纤维素纤维氧化至20%~45%、25%~35%、25%~30%、26%~28%、30%~50%、35%~45%或40%~45%的程度。
14.如权利要求9~13中任一项所述的聚合物膜的应用,其中,所述氧化使用氧化剂进行。
15.如权利要求9~14中任一项所述的聚合物膜的应用,其中,所述氧化使用高碘酸盐进行。
16.一种包装材料,其包含基材和氧阻隔膜,所述氧阻隔膜包含交联的原纤化纤维素。
17.如权利要求16所述的包装材料,其中,所述基材是纸或纸板。
18.如权利要求16或17所述的包装材料,其进一步包含水蒸气阻隔膜。
19.如权利要求16~18中任一项所述的包装材料,其中,所述水蒸气阻隔膜包含聚乙烯(PE)、聚丙烯(PP)、聚酰胺、聚对苯二甲酸乙二醇酯(PET)或乙烯-乙烯醇(EVOH)。
20.如权利要求16~19中任一项所述的包装材料,其中,所述原纤化纤维素通过原纤维内部和/或之间的涉及C2和/或C3的共价键而交联。
21.如权利要求16~20中任一项所述的包装材料,其中,所述氧阻隔膜通过权利要求1~7中任一项所述的方法能够获得。
22.一种包装体,其由权利要求16~21中任一项所述的包装材料构成。
23.一种食品或液体包装体,其由权利要求16~21中任一项所述的包装材料构成。
CN201480053917.6A 2013-09-06 2014-09-05 由自交联性原纤化纤维素制得的具有低湿度敏感性的氧和水蒸气阻隔膜 Expired - Fee Related CN105764810B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE1300586-3 2013-09-06
SE1300586 2013-09-06
PCT/SE2014/051023 WO2015034426A1 (en) 2013-09-06 2014-09-05 Oxygen and water vapour barrier films with low moisture sensitivity fabricated from self-cross-linking fibrillated cellulose

Publications (2)

Publication Number Publication Date
CN105764810A true CN105764810A (zh) 2016-07-13
CN105764810B CN105764810B (zh) 2021-04-09

Family

ID=52628750

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480053917.6A Expired - Fee Related CN105764810B (zh) 2013-09-06 2014-09-05 由自交联性原纤化纤维素制得的具有低湿度敏感性的氧和水蒸气阻隔膜

Country Status (11)

Country Link
US (1) US10384424B2 (zh)
EP (1) EP3041758B1 (zh)
JP (1) JP6629735B2 (zh)
CN (1) CN105764810B (zh)
BR (1) BR112016004758B1 (zh)
CA (1) CA2923165C (zh)
ES (1) ES2910499T3 (zh)
MX (1) MX2016002878A (zh)
PL (1) PL3041758T3 (zh)
RU (1) RU2672648C2 (zh)
WO (1) WO2015034426A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108484984A (zh) * 2018-05-03 2018-09-04 厦门大学 一种高强度纤维素基复合薄膜的制备方法
CN110506143A (zh) * 2017-04-12 2019-11-26 斯道拉恩索公司 包含微原纤化纤维素和微原纤化二醛纤维素的阻隔膜和制造阻隔膜的方法
CN113853391A (zh) * 2019-05-17 2021-12-28 比勒鲁迪克斯那斯公司 包含原纤化纤维素的片材的生产
CN114163788A (zh) * 2021-12-08 2022-03-11 中广核高新核材科技(苏州)有限公司 一种高强高阻隔生物降解薄膜的制备方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0908401D0 (en) 2009-05-15 2009-06-24 Imerys Minerals Ltd Paper filler composition
GB201019288D0 (en) 2010-11-15 2010-12-29 Imerys Minerals Ltd Compositions
JP6574601B2 (ja) * 2015-04-30 2019-09-11 国立大学法人 東京大学 セルロースフィルム、及びその製造方法
CA2990156A1 (en) * 2015-06-30 2017-01-05 Billerudkorsnas Ab Oxygen barriers based on modified cellulose fibers
RU2731631C2 (ru) * 2015-11-27 2020-09-07 Тетра Лаваль Холдингз Энд Файнэнс С.А. Упаковочный материал и упаковочная емкость
SE539714C2 (en) * 2016-03-11 2017-11-07 Innventia Ab Method of producing shape-retaining cellulose products, and shape-retaining cellulose products therefrom
SE539754C2 (en) 2016-03-22 2017-11-14 Stora Enso Oyj Oxygen barrier film and laminate and methods of manufacturing the same
EP3440030A1 (en) 2016-04-04 2019-02-13 FiberLean Technologies Limited Compositions and methods for providing increased strength in ceiling, flooring, and building products
SE540511C2 (en) * 2016-11-18 2018-09-25 Stora Enso Oyj Method for making a film comprising mfc
CN106739331B (zh) * 2016-12-01 2019-11-15 广东振声智能装备有限公司 用于乳化炸药灌装膜的po膜的制备方法
CN111247196B (zh) * 2017-10-17 2023-07-25 切卢特克股份公司 包含cnf和阴离子胶凝多糖的生物复合材料
SE542443C2 (en) * 2017-12-13 2020-05-05 Stora Enso Oyj A method for manufacturing a film from microfibrillated dialdehyde cellulose and microfibrillated cellulose
SE542065C2 (en) * 2017-12-21 2020-02-18 Stora Enso Oyj A method for preparing a fibrous material of crosslinked dialdehyde microfibrillated cellulose by spinning
SE541932C2 (en) 2017-12-21 2020-01-07 Stora Enso Oyj Laminate having oxygen barrier properties and a method for producing the same
SE542054C2 (en) * 2017-12-22 2020-02-18 Stora Enso Oyj Multilayer film comprising microfibrillated cellulose and a method of manufacturing a multilayer film
SE541631C2 (en) * 2018-03-08 2019-11-19 Stora Enso Oyj A method for producing an oxygen barrier film comprising dialdehyde cellulose fibers
US20220041826A1 (en) * 2018-05-02 2022-02-10 Toyo Seikan Group Holdings, Ltd. Nanocellulose-containing product and method for producing the same
SE542944C2 (en) * 2018-09-19 2020-09-22 Stora Enso Oyj A method for improving adhesion during film production
SE543028C2 (en) * 2018-10-08 2020-09-29 Stora Enso Oyj An oxygen barrier layer comprising microfibrillated dialdehyde cellulose
SE543174C2 (en) * 2018-10-08 2020-10-20 Stora Enso Oyj A flexible barrier layer comprising microfibrillated dialdehyde cellulose
SE544320C2 (en) * 2018-11-09 2022-04-05 Stora Enso Oyj A method for dewatering a web comprising microfibrillated cellulose
JP7215248B2 (ja) * 2019-03-11 2023-01-31 三菱ケミカル株式会社 積層ポリエステルフィルム及びその製造方法
US10789844B1 (en) * 2019-05-07 2020-09-29 Visteon Global Technologies, Inc. System and method for automated parking availability search including vehicle characteristics
EP3822409A1 (en) * 2019-11-12 2021-05-19 BillerudKorsnäs AB Crosslinked mfc

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238827A (ja) * 2002-02-13 2003-08-27 Daicel Chem Ind Ltd ガスバリア性組成物及びそれを用いて形成したフィルム
CN101772516A (zh) * 2007-08-07 2010-07-07 花王株式会社 阻气用材料
CN101772517A (zh) * 2007-08-10 2010-07-07 陶氏环球技术公司 轻度氧化的纤维素的纳米粒子
WO2011078770A1 (en) * 2009-12-21 2011-06-30 Stora Enso Oyj A paper or paperboard substrate, a process for production of the substrate and a package formed of the substrate
WO2011088889A1 (en) * 2010-01-19 2011-07-28 Södra Skogsägarna Ekonomisk Förening Process for production of oxidised cellulose pulp
CN102264821A (zh) * 2008-12-26 2011-11-30 花王株式会社 阻气用材料和阻气性成形体及其制造方法
WO2012119229A1 (en) * 2011-03-08 2012-09-13 The Royal Institution For The Advancement Of Learning/Mcgill University Highly charge group-modified cellulose fibers which can be made into cellulose nanostructures or super-absorbing cellulosic materials and method of making them
CN102834259A (zh) * 2010-03-24 2012-12-19 凸版印刷株式会社 层叠体及其制造方法和成型容器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4872145B2 (ja) * 1999-12-10 2012-02-08 凸版印刷株式会社 改質パルプ繊維及び改質セルロース粉末を用いた耐水紙および紙容器
JP2001301810A (ja) * 2000-04-19 2001-10-31 Toppan Printing Co Ltd Ptp包装蓋材およびptp包装体
JP4009423B2 (ja) * 2000-12-19 2007-11-14 凸版印刷株式会社 改質微細フィブリル化セルロースおよびその製造方法、ならびに改質微細フィブリル化セルロースを添加した紙シート、および改質微細フィブリル化セルロースを用いた塗工紙
US8637126B2 (en) * 2006-02-06 2014-01-28 International Paper Co. Biodegradable paper-based laminate with oxygen and moisture barrier properties and method for making biodegradable paper-based laminate
JP5024262B2 (ja) * 2008-10-16 2012-09-12 凸版印刷株式会社 酸化多糖類材料を被覆又は含浸させた材料および生体適合材料
JP5616056B2 (ja) * 2008-12-26 2014-10-29 花王株式会社 膜状成形体の製造方法
JP2011212569A (ja) * 2010-03-31 2011-10-27 Toppan Printing Co Ltd セルロースナノファイバー積層体およびその製造方法
JP2012011651A (ja) 2010-06-30 2012-01-19 Nippon Paper Industries Co Ltd ガスバリア性包装材料
RU2603957C2 (ru) * 2011-05-13 2016-12-10 Стора Энсо Ойй Способ обработки целлюлозы и целлюлоза, обработанная согласно такому способу

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238827A (ja) * 2002-02-13 2003-08-27 Daicel Chem Ind Ltd ガスバリア性組成物及びそれを用いて形成したフィルム
CN101772516A (zh) * 2007-08-07 2010-07-07 花王株式会社 阻气用材料
CN101772517A (zh) * 2007-08-10 2010-07-07 陶氏环球技术公司 轻度氧化的纤维素的纳米粒子
CN102264821A (zh) * 2008-12-26 2011-11-30 花王株式会社 阻气用材料和阻气性成形体及其制造方法
WO2011078770A1 (en) * 2009-12-21 2011-06-30 Stora Enso Oyj A paper or paperboard substrate, a process for production of the substrate and a package formed of the substrate
WO2011088889A1 (en) * 2010-01-19 2011-07-28 Södra Skogsägarna Ekonomisk Förening Process for production of oxidised cellulose pulp
CN102834259A (zh) * 2010-03-24 2012-12-19 凸版印刷株式会社 层叠体及其制造方法和成型容器
WO2012119229A1 (en) * 2011-03-08 2012-09-13 The Royal Institution For The Advancement Of Learning/Mcgill University Highly charge group-modified cellulose fibers which can be made into cellulose nanostructures or super-absorbing cellulosic materials and method of making them

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
金征宇 等: "《碳水化合物化学——原理与应用》", 31 January 2008, 化学工业出版社 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110506143A (zh) * 2017-04-12 2019-11-26 斯道拉恩索公司 包含微原纤化纤维素和微原纤化二醛纤维素的阻隔膜和制造阻隔膜的方法
CN108484984A (zh) * 2018-05-03 2018-09-04 厦门大学 一种高强度纤维素基复合薄膜的制备方法
CN108484984B (zh) * 2018-05-03 2020-03-06 厦门大学 一种高强度纤维素基复合薄膜的制备方法
CN113853391A (zh) * 2019-05-17 2021-12-28 比勒鲁迪克斯那斯公司 包含原纤化纤维素的片材的生产
CN113853391B (zh) * 2019-05-17 2023-12-29 Kth控股有限公司 包含原纤化纤维素的片材的生产
CN114163788A (zh) * 2021-12-08 2022-03-11 中广核高新核材科技(苏州)有限公司 一种高强高阻隔生物降解薄膜的制备方法
CN114163788B (zh) * 2021-12-08 2023-04-25 中广核高新核材科技(苏州)有限公司 一种高强高阻隔生物降解薄膜的制备方法

Also Published As

Publication number Publication date
RU2672648C2 (ru) 2018-11-16
MX2016002878A (es) 2016-08-17
US20160214357A1 (en) 2016-07-28
EP3041758A4 (en) 2017-03-08
ES2910499T3 (es) 2022-05-12
WO2015034426A1 (en) 2015-03-12
CA2923165A1 (en) 2015-03-12
CA2923165C (en) 2022-07-26
US10384424B2 (en) 2019-08-20
EP3041758B1 (en) 2022-01-26
JP6629735B2 (ja) 2020-01-15
PL3041758T3 (pl) 2022-05-23
CN105764810B (zh) 2021-04-09
RU2016112879A (ru) 2017-10-11
BR112016004758B1 (pt) 2021-12-14
EP3041758A1 (en) 2016-07-13
BR112016004758A2 (pt) 2017-08-01
JP2016532610A (ja) 2016-10-20
RU2016112879A3 (zh) 2018-09-24

Similar Documents

Publication Publication Date Title
CN105764810A (zh) 由自交联性原纤化纤维素制得的具有低湿度敏感性的氧和水蒸气阻隔膜
JP4965528B2 (ja) ガスバリア用材料
Jiang et al. Self-assembling of TEMPO oxidized cellulose nanofibrils as affected by protonation of surface carboxyls and drying methods
Chen et al. Comparative characteristics of TEMPO-oxidized cellulose nanofibers and resulting nanopapers from bamboo, softwood, and hardwood pulps
Niazi et al. Mechanical, thermal and swelling properties of phosphorylated nanocellulose fibrils/PVA nanocomposite membranes
Isogai Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials
Missoum et al. Effect of chemically modified nanofibrillated cellulose addition on the properties of fiber-based materials
Butchosa et al. Water redispersible cellulose nanofibrils adsorbed with carboxymethyl cellulose
Sehaqui et al. BIOREFINERY: Nanofibrillated cellulose for enhancement of strength in high-density paper structures
Virtanen et al. Modified nanofibrillated cellulose–polyvinyl alcohol films with improved mechanical performance
Honorato et al. Transparent nanocellulose-pigment composite films
Chen et al. High-strength and super-hydrophobic multilayered paper based on nano-silica coating and micro-fibrillated cellulose
EP3738982A1 (en) Production of sheets comprising fibrillated cellulose
Cobut et al. Cellulose nanocomposites by melt compounding of TEMPO-treated wood fibers in thermoplastic starch matrix
Khiari et al. Efficiency of cellulose carbonates to produce cellulose nanofibers
Paunonen BIOREFINERY: strength and barrier enhancements of composites and packaging boards by nanocelluloses–a literature review
Zhang et al. Multivalent metal ion cross-linked lignocellulosic nanopaper with excellent water resistance and optical performance
Arcot et al. Self‐Assembly of Native Cellulose Nanostructures
Nagalakshmaiah et al. Cellulose nanocrystals-based nanocomposites
Sethi et al. Fast and filtration-free method to prepare lactic acid-modified cellulose nanopaper
Puglia et al. Multifunctional ternary polymeric nanocomposites based on cellulosic nanoreinforcements
Wang et al. Preparation and barrier properties of nanocellulose/layered double hydroxide composite film
Fu et al. Water sorption and barrier properties of cellulose nanocomposites
JP6916676B2 (ja) 誘導体官能基脱離セルロース微細繊維含有シート
Lindgren et al. Preparation of nanofibers from pulp fibers

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210409

CF01 Termination of patent right due to non-payment of annual fee