CN105693237A - 一种高耐压陶瓷电介质材料及其制备方法 - Google Patents
一种高耐压陶瓷电介质材料及其制备方法 Download PDFInfo
- Publication number
- CN105693237A CN105693237A CN201610040913.5A CN201610040913A CN105693237A CN 105693237 A CN105693237 A CN 105693237A CN 201610040913 A CN201610040913 A CN 201610040913A CN 105693237 A CN105693237 A CN 105693237A
- Authority
- CN
- China
- Prior art keywords
- dielectric material
- ceramic dielectric
- nanometer
- preparation
- nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/46—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
- C04B35/462—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
- C04B35/465—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
- C04B35/468—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
- C04B35/4682—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
- C04B2235/3234—Titanates, not containing zirconia
- C04B2235/3236—Alkaline earth titanates
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5454—Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/78—Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
- C04B2235/785—Submicron sized grains, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Inorganic Insulating Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Capacitors (AREA)
Abstract
本发明涉及一种高耐压陶瓷电介质材料及其制备方法,所述高耐压陶瓷电介质材料为钙钛矿结构,其击穿场强大于20 kV/mm。所述高耐压陶瓷电介质材料中分布的晶粒的尺寸为100-500nm。本发明的提供的高耐压陶瓷电介质材料,与相同组成的微米级高耐压陶瓷电介质材料相比,具有更高的直流击穿场强,并且温度稳定性变得更好。
Description
技术领域
本发明属于陶瓷材料领域,特别涉及一种高耐压陶瓷电介质材料的组成与制备。
背景技术
随着现代科技的发展,人们对陶瓷电容器提出了更高的要求,除了要有较高的介电常数、低损耗,还要求具有高的耐压强度、高储能、高稳定等特点。其中,高压陶瓷电容器是指应用于高电压系统的瓷介质电容器。它具有体积小、容量大、耐高压、价格低、耐热性好和频率特性好等特点。从长远眼光看,它在激光器、高压分压器、电力传输电容器、储能电容器等方面具有诱人的使用前景。尤其是如今随着新能源的开发、研究和推广,高压陶瓷电容器在电动汽车开发和应用上的地位也越来越重要。例如日本村田公司EVC/KCM系列高压电容器,可应用于电动车的逆变器上。
目前,国内外大部分高耐压陶瓷电介质材料均为BaTiO3基或SrTiO3基材料。我国CN101759432A公布了一种钛酸钡基无铅高压陶瓷电容器材料,以钛酸钡、钛酸铋、钛酸锶及钛酸钙为原料来进行制备,由于含有氧化铋成分,在烧结过程中易产生烟雾,对人体和环境造成危害。日本村田公司美国专利US8264817B2中采用两部分合成高耐压陶瓷电介质材料,首先合成(Ba,Ca)TiO3材料,再与MnCO3、MgCO3、V2O5、SiO2、稀土氧化物等原料反应,在H2-N2-H2O气氛中烧结得到高耐压陶瓷电介质材料。此外,美国专利US8315037B2中公开了两种不同结构,不同晶粒大小的Ba0.94Dy0.06Ti0.97Mg0.03O3陶瓷电介质材料,将它们按不同比例混合,在H2-N2-H2O气氛中烧结得到最终产品。而美国专利US8385049B2中由于掺杂材料过多,高耐压陶瓷电介质材料的制备过程需要考虑各类掺杂物质的先后顺序。上述现有技术提及的这些材料的制备过程都比较繁琐,采用两步或以上步骤才能制备出最终材料,并且均需要在H2-N2-H2O气氛炉中进行烧结。
发明内容
针对上述问题,本发明的目的就是提供了一种制备方法简单,能够规模化生产,具有更高的直流击穿场强,温度稳定性变得更好的陶瓷电介质材料。
本发明提供了一种高耐压陶瓷电介质材料的制备方法,其特征在于,包括:
按照一定质量比称取纳米BaTiO3、纳米CaTiO3、纳米M2O3、纳米MgO均匀混合后,得原始粉料;
将所得原始粉料一次球磨后,在1000-1100℃下煅烧1-3小时,得到陶瓷粉料;
将所得陶瓷粉料二次球磨后,压制成型,在1350-1450℃中烧结3-4小时,自然冷却,得到所述高耐压陶瓷电介质材料。
本发明提供的以纳米粉体为原料采用一步掺杂的固相法即可制备出晶粒为纳米尺寸的高耐压陶瓷电介质材料,与相同组成的微米级高耐压陶瓷电介质材料相比,具有更高的直流击穿场强,并且温度稳定性变得更好,此外,所使用的纳米BaTiO3和纳米CaTiO3均为工业原料,且烧结不需要特殊气氛,因而该高耐压陶瓷电介质材料有希望进行工业化生产。
较佳地,所述纳米BaTiO3、纳米CaTiO3、纳米M2O3、纳米MgO的质量比为:(50-60):(0.5-1):(0.2-2):(0.1-0.5)。
较佳地,所述纳米BaTiO3和/或纳米CaTiO3的粒径为50-500nm。
较佳地,所述纳米M2O3和/或纳米MgO的粒径为20-200nm。
较佳地,所述M2O3为Dy2O3、La2O3、Sm2O3、Er2O3、Y2O3D中的至少一种。
本发明还提供一种上述方法制备的高耐压陶瓷电介质材料,所述高耐压陶瓷电介质材料为钙钛矿结构,其击穿场强大于20kV/mm。
较佳地,所述高耐压陶瓷电介质材料中分布的晶粒的尺寸为100-500nm。
本发明的提供的高耐压陶瓷电介质材料,与相同组成的微米级高耐压陶瓷电介质材料相比,具有更高的直流击穿场强,并且温度稳定性变得更好。
附图说明
图1显示出实施例1和对比例所制备的高耐压陶瓷电介质材料的XRD图谱;
图2显示出实施例1所制备的高耐压陶瓷电介质材料抛光腐蚀后的SEM照片a和对比例所制备的高耐压陶瓷电介质材料抛光腐蚀后的SEM照片b;
图3显示出实施例1和对比例所制备的高耐压陶瓷电介质材料的低温介电性能图谱。
具体实施方式
以下通过下述实施方式进一步说明本发明,应理解,下述实施方式仅用于说明本发明,而非限制本发明。
本发明以纳米粉体(纳米BaTiO3、纳米CaTiO3、纳米Dy2O3、和纳米MgO)为原料,通过一步掺杂的固相法制备一种高耐压陶瓷电介质材料及其制备方法。
纳米BaTiO3、纳米CaTiO3为普通工业原料,优选粒径为50~500nm的纳米BaTiO3和纳米CaTiO3。纳米Dy2O3和纳米MgO的粒径优选为20-200nm。其中纳米Dy2O3也可采用其它La2O3、Sm2O3、Er2O3、Y2O3等稀土纳米材料来代替。纳米BaTiO3、纳米CaTiO3、纳米Dy2O3、和纳米MgO的投料比可为(50-60):(0.5-1):(0.2-2):(0.1-0.5),即按重量份称取纳米BaTiO350-60份,纳米CaTiO30.5-1份,纳米Dy2O30.2-2份和纳米MgO0.1-0.5份。
原料粉体可采用湿法球磨(一次球磨)混合均匀。一次球磨的磨球可采用氧化锆球,球磨介质可采用无水乙醇,球磨时间可为20-26小时。
经一次球磨的粉体干燥后进行固相合成,固相合成温度可为1000-1100℃,保温时间可为1-3小时。
合成的陶瓷粉料经二次球磨后,压制成型,进一步烧结即可制备高耐压陶瓷电介质材料,烧结温度可为1350-1450℃,保温时间可为3-4小时。
本发明中所述的纳米级高耐压陶瓷电介质材料还可通过添加少量助烧剂,例如二氧化硅,添加少量助烧剂可降低烧结温度,有希望通过低温共烧陶瓷技术,制备出耐高压的多层陶瓷电容器。
以下示例说明所述高耐压陶瓷电介质材料制备方法,具体可包括如下步骤。
按重量份称取纳米BaTiO350-60份,纳米CaTiO30.5-1份,纳米Dy2O30.2-2份和纳米MgO0.1-0.5份,采用湿式球磨法混合20-26小时。所述BaTiO3为纳米BaTiO3,其粒径为50-500nm。所述CaTiO3为纳米CaTiO3,其粒径为50-500nm。所述Dy2O3为纳米Dy2O3,其粒径为20-200nm。所述MgO为纳米MgO,其粒径为20-200nm。在空气中升温至1000-1100℃,保温2小时,二次球磨20-26小时。压制成型,在空气中1350-1450℃中烧结3-4小时,自然冷却,得到高耐压陶瓷电介质材料。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1
按重量份称取纳米BaTiO355.93份,纳米CaTiO30.86份,Dy2O3纳米球0.42份,纳米MgO0.12份,采用湿式球磨法混合20-26小时;
在空气中升温至1000-1100℃,保温2小时,二次球磨20-26小时;
压制成型,在1350-1450℃中烧结3-4小时,自然冷却,得到高耐压陶瓷电介质材料BCDTM-Nano,组成为Ba0.995Ca0.03Dy0.015Ti0.98Mg0.02O3。
对比例
作为与实施例1的对比实验,采用非纳米的原料,并使Ba、Ca、Dy、Mg、Ti之间的比例一致;
按重量份称取微米级的BaCO3(粒径为10-500μm)57.18份,CaCO3(粒径为10-500μm)0.91份,Dy2O3(粒径为10-500μm)0.837份,MgO(粒径为10-300μm)0.25份,TiO2(粒径为10-400μm)23.72份,采用湿式球磨法混合20-26小时;
在空气中升温至1000-1100℃,保温2小时,二次球磨20-26小时;
压制成型,在1350-1450℃中烧结3-4小时,自然冷却,得到高耐压陶瓷电介质材料BCDTM-0.015。
参照图1,其示出本发明制备的高耐压陶瓷电介质材料BCDTM-nano和BCDTM-0.015的XRD图,所述两种材料均为单一的钙钛矿结构,并且介于四方相与赝立方相之间。
图2中的a显示出实施例1所制备的高耐压陶瓷电介质材料抛光腐蚀后的SEM照片;图2中的b显示出对比例所制备的高耐压陶瓷电介质材料抛光腐蚀后的SEM照片。对比发现,所述高耐压陶瓷电介质材料BCDTM-Nano的中分布的晶粒的尺寸约为100-500nm,并且分布均匀。然而所述高耐压陶瓷电介质材料BCDTM-0.015的中分布的晶粒的尺寸为1-3μm,并且也有部分纳米级的小晶粒,晶粒分布不均匀。
如图3所示,所述高耐压陶瓷电介质材料BCDTM-0.015的介电常数较高,而所述高耐压陶瓷电介质材料BCDTM-Nano的温度稳定性更好。所述高耐压陶瓷电介质材料BCDTM-Nano和BCDTM-0.015在室温下和居里温度时的介电性能如表1所示。
表1高耐压陶瓷电介质材料BCDTM-Nano和BCDTM-0.015在室温下和居里温度Tc时的介电性能以及密度和直流击穿场强:
BCDTM-Nano | BCDTM-0.015 | |
Tc(℃) | 36 | -12 |
Tc下εr | 1867 | 3498 |
Tc下tanδ | 0.007 | 0.013 |
室温下εr | 1853 | 2965 |
室温下tanδ | 0.008 | 0.008 |
密度(g/cm3) | 5.82 | 5.83 |
直流击穿场强(kV/mm) | 22.4 | 15.6 |
Claims (7)
1.一种高耐压陶瓷电介质材料的制备方法,其特征在于,包括:
按照一定质量比称取纳米BaTiO3、纳米CaTiO3、纳米M2O3、和纳米MgO,均匀混合后,得原始粉料;
将所得原始粉料一次球磨后,在1000-1100℃下煅烧1-3小时,得到陶瓷粉料;
将所得陶瓷粉料二次球磨后,压制成型,在1350-1450℃中烧结3-4小时,自然冷却,得到所述高耐压陶瓷电介质材料。
2.根据权利要求1所述的制备方法,其特征在于,所述纳米BaTiO3、纳米CaTiO3、纳米M2O3、纳米MgO的质量比为:(50-60):(0.5-1):(0.2-2):(0.1-0.5)。
3.根据权利要求1或2所述的制备方法,其特征在于,所述纳米BaTiO3和/或纳米CaTiO3的粒径为50-500nm。
4.根据权利要求1-3中任一项所述的制备方法,其特征在于,所述纳米M2O3和/或纳米MgO的粒径为20-200nm。
5.根据权利要求1-4中任一项所述的制备方法,其特征在于,所述M2O3为Dy2O3、La2O3、Sm2O3、Er2O3、Y2O3中的至少一种。
6.一种根据权利要求1-5中任一项所述的制备方法制备的高耐压陶瓷电介质材料,其特征在于,所述高耐压陶瓷电介质材料为钙钛矿结构,其击穿场强大于20kV/mm。
7.根据权利要求6所述的高耐压陶瓷电介质材料,其特征在于,所述高耐压陶瓷电介质材料中分布的晶粒的尺寸为100-500nm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610040913.5A CN105693237B (zh) | 2016-01-21 | 2016-01-21 | 一种高耐压陶瓷电介质材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610040913.5A CN105693237B (zh) | 2016-01-21 | 2016-01-21 | 一种高耐压陶瓷电介质材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105693237A true CN105693237A (zh) | 2016-06-22 |
CN105693237B CN105693237B (zh) | 2018-05-25 |
Family
ID=56228326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610040913.5A Active CN105693237B (zh) | 2016-01-21 | 2016-01-21 | 一种高耐压陶瓷电介质材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105693237B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106187189A (zh) * | 2016-07-11 | 2016-12-07 | 福州大学 | 一种储能微波介质陶瓷材料及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1404080A (zh) * | 2002-10-14 | 2003-03-19 | 清华大学 | 温度稳定型的贱金属内电极多层陶瓷电容器介电材料 |
CN1461023A (zh) * | 2003-06-27 | 2003-12-10 | 清华大学 | 超细温度稳定型多层陶瓷电容器介电材料及其烧结工艺 |
US20070253145A1 (en) * | 2004-08-27 | 2007-11-01 | Showda Denko K.K. | Barium Calcium Titanate, Production Process Thereof and Capacitor |
CN101182201A (zh) * | 2007-11-27 | 2008-05-21 | 清华大学 | 纳米掺杂制备贱金属内电极多层陶瓷片式电容器介质材料 |
-
2016
- 2016-01-21 CN CN201610040913.5A patent/CN105693237B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1404080A (zh) * | 2002-10-14 | 2003-03-19 | 清华大学 | 温度稳定型的贱金属内电极多层陶瓷电容器介电材料 |
CN1461023A (zh) * | 2003-06-27 | 2003-12-10 | 清华大学 | 超细温度稳定型多层陶瓷电容器介电材料及其烧结工艺 |
US20070253145A1 (en) * | 2004-08-27 | 2007-11-01 | Showda Denko K.K. | Barium Calcium Titanate, Production Process Thereof and Capacitor |
CN101182201A (zh) * | 2007-11-27 | 2008-05-21 | 清华大学 | 纳米掺杂制备贱金属内电极多层陶瓷片式电容器介质材料 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106187189A (zh) * | 2016-07-11 | 2016-12-07 | 福州大学 | 一种储能微波介质陶瓷材料及其制备方法 |
CN106187189B (zh) * | 2016-07-11 | 2019-02-22 | 福州大学 | 一种储能微波介质陶瓷材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105693237B (zh) | 2018-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Dielectric properties of fine‐grained barium titanate based X7R materials | |
CN109133915B (zh) | 一种高储能钛酸钡基介质材料及其制备方法 | |
TWI402872B (zh) | 電介質瓷器及疊層陶瓷電容器以及它們的製造方法 | |
CN101006028B (zh) | 介电陶瓷、制备介电陶瓷的方法和单片陶瓷电容器 | |
JP3835254B2 (ja) | チタン酸バリウム粉末の製造方法 | |
WO2021184414A1 (zh) | 一种复相巨介电陶瓷材料及其制备方法 | |
CN101328061A (zh) | 高介电y5v型三稀土掺杂钛酸钡陶瓷材料及其制备方法 | |
US6162752A (en) | Barium titanate powder, semiconducting ceramic, and semiconducting ceramic electronic element | |
JP2013028478A (ja) | 誘電体磁器組成物、および電子部品 | |
JP2010285336A (ja) | 誘電物質用焼結物質およびその製造方法、並びにコア−シェル微細構造を有する誘電物質用焼結物質およびその製造方法 | |
JP4766910B2 (ja) | チタン酸バリウム粉末の製法、チタン酸バリウム粉末、およびチタン酸バリウム焼結体 | |
CN105777112A (zh) | 一种Ti位施受主共掺SrTiO3基高介电陶瓷及其制备方法 | |
CN111253151B (zh) | 具有高储能密度和高功率密度的铁酸铋钛酸钡基陶瓷及制备方法 | |
CN105693237B (zh) | 一种高耐压陶瓷电介质材料及其制备方法 | |
JP2012206890A (ja) | 半導体セラミックおよび積層型半導体セラミックコンデンサ | |
CN109293353B (zh) | 一种高储能密度和高储能效率的无铅BiFeO3基铁电陶瓷材料及其制备方法 | |
CN111718193A (zh) | 具有低介电损耗的电介质的制造方法及据此制造的电介质 | |
CN109456058A (zh) | 一种锆钛酸钡和铌锌酸钡的复合电容器瓷料及其制备方法 | |
CN105218088B (zh) | 一种非化学计量钛酸锶钡基电介质瓷料及制备方法 | |
CN104628378B (zh) | 一种可用于铜电极陶瓷电容器的介质及其制备方法 | |
JP3752812B2 (ja) | チタン酸バリウムの製造方法 | |
JP4594049B2 (ja) | 積層セラミックコンデンサ | |
CN116789450B (zh) | 一种非充满型钨青铜结构高熵铁电陶瓷材料及其制备方法和应用 | |
CN115159977B (zh) | 一种宽温低损耗介质陶瓷材料及其制备方法 | |
CN116120058B (zh) | 一种兼具高储能性能和负电容温度系数的介电陶瓷材料及制备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20160622 Assignee: SIYANG GRANDE ELECTRONICS Co.,Ltd. Assignor: SHANGHAI INSTITUTE OF CERAMICS, CHINESE ACADEMY OF SCIENCES Contract record no.: X2020320010003 Denomination of invention: High-voltage-withstanding ceramic dielectric material and preparation method thereof Granted publication date: 20180525 License type: Exclusive License Record date: 20200312 |