CN105670568B - 一种硬脂酸丁酯碳纳米管微胶囊的制备方法 - Google Patents

一种硬脂酸丁酯碳纳米管微胶囊的制备方法 Download PDF

Info

Publication number
CN105670568B
CN105670568B CN201610001442.7A CN201610001442A CN105670568B CN 105670568 B CN105670568 B CN 105670568B CN 201610001442 A CN201610001442 A CN 201610001442A CN 105670568 B CN105670568 B CN 105670568B
Authority
CN
China
Prior art keywords
carbon nanotube
butyl stearate
phase
added
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610001442.7A
Other languages
English (en)
Other versions
CN105670568A (zh
Inventor
倪卓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tuoteng Huabao (Suzhou) Biotechnology Co.,Ltd.
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201610001442.7A priority Critical patent/CN105670568B/zh
Publication of CN105670568A publication Critical patent/CN105670568A/zh
Application granted granted Critical
Publication of CN105670568B publication Critical patent/CN105670568B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/04Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C08G12/10Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds with acyclic compounds having the moiety X=C(—N<)2 in which X is O, S or —N
    • C08G12/12Ureas; Thioureas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种碳纳米管增强相变材料微胶囊的制备方法,通过在制备过程中两次加入碳纳米管的方法,所制备的硬脂酸丁酯微胶囊的囊芯和囊壁中,以及微胶囊之间均包含碳纳米管,使得相变材料在微胶囊和碳纳米管的协同作用下,增强了相变潜热,加快了相变过程,耐久性更好,相变材料的微胶囊化和碳纳米管应用增大了相变材料的应用领域。

Description

一种硬脂酸丁酯碳纳米管微胶囊的制备方法
技术领域
本发明涉及相变储能材料技术领域,具体地涉及一种碳纳米管硬脂酸丁酯微胶囊的复合相变材料。
背景技术
相变储能材料是一种在相变过程中吸收或释放大量热量,并且可以保持其温度稳定的储能材料。以固-液相变储能材料的储能为例:当外界温度较高时,材料会吸收环境中的热量,发生显热存储,随着相变储能材料温度的升高,存储的热量也在持续增加。当相变材料的熔化过程进行完后,再对其加热,它的温度又会上升。同样的,当环境的温度相较低时,相变材料就会放出自身的热量,由液态变成固态,直到相变完全。
按照储能材料相变的形式,相变材料可分为4种,分别为固-固、固-气、固-液和液-气。固-液相变材料优点多,比如可工厂化、相变潜热高、品种多等等,是目前最受欢迎的种类。固-液相变材料在相变过程中有液相,使得在直接使用固-液相变储能材料时,会出现泄漏或其与盛装载体的界面之间相容性差等问题,将相变储能材料的微胶囊化可以解决这个问题。将液相的相变储能材料与反应单体在水中一起形成乳液,在一定的温度下在引发剂的作用下,使得反应单体在相变储能材料液滴表面聚合形成高分子薄膜来包覆芯材,从而得到相变储能微胶囊(microencapsulated phase change materials,micro-PCMs),制得微胶囊粒径可以从纳米到微米,甚至毫米级。现有微胶囊相变材料存在相变潜热低,相变过程慢和耐久性差等问题,使得相变储能材料的应用领域受到一些限制。
发明内容
为此,本发明为解决上述技术问题,提供一种碳纳米管改性脲醛微胶囊囊芯囊壁的制备方法。
本发明实现发明目的采用的技术方案是:一种硬脂酸丁酯碳纳米管微胶囊的制备方法,包括以下步骤:
a.以尿素和甲醛制备脲醛树脂预聚体溶液,并加入十二烷基苯磺酸钠水溶液进行稀释,得到脲醛树脂预聚体稀释液;
b.以二辛基癸二酸酯和十二烷基苯磺酸钠为分散剂溶解于乙醇中,加入碳纳米管,得到碳纳米管分散液;再将碳纳米管分散液加入到硬脂酸丁酯中,得到硬脂酸丁酯碳纳米管复合材料;
c.将硬脂酸丁酯碳纳米管复合材料加入到脲醛树脂预聚体稀释液中,乳化形成稳定的水包油乳液,在48-52℃下,用稀硫酸调节其pH值为2.0-3.0,然后升温至58-75℃,加入碳纳米管乙醇分散液,保持温度进行固化,水洗、抽滤后干燥得到硬脂酸丁酯碳纳米管微胶囊。
优选地,所述步骤a的具体步骤为:首先将尿素溶解于甲醛水溶液中,用玻璃棒搅拌至尿素完全溶解后,滴加三乙醇胺调节pH在8-9之间,搅拌并缓慢升温至65-75℃,升温结束后,继续搅拌并保温;待温度降至48-52℃,得到无色透明粘稠的脲醛树脂预聚体溶液,加入十二烷基苯磺酸钠水溶液稀释,得到脲醛树脂预聚体稀释液。
优选地,所述步骤b中,分散剂二辛基癸二酸酯和十二烷基苯磺酸钠的质量比为1:1,分散剂溶解于乙醇中,稍稍搅拌溶解后,加入碳纳米管,搅拌,使碳纳米管被分散剂溶液完全润湿,超声得到碳纳米管分散液;将碳纳米管分散液加入到硬脂酸丁酯中,超声后静置,除去乙醇,得到硬脂酸丁酯碳纳米管复合材料。
优选地,所述步骤c为:将硬脂酸丁酯碳纳米管复合材料加入到脲醛树脂预聚体稀释液中,乳化形成稳定的水包油乳液,在48-52℃下,在1.5-2小时内用稀硫酸调节其pH值为2.0-3.0,在10-30分钟内搅拌并缓慢升温至65-75℃,加入碳纳米管乙醇分散液,保持温度进行固化1-3小时,水洗、抽滤后干燥得到硬脂酸丁酯碳纳米管微胶囊。
本发明的有益效果是:本发明通过在制备过程中两次加入碳纳米管的方法,所制备的硬脂酸丁酯微胶囊的囊芯和囊壁中,以及微胶囊之间均包含碳纳米管,使得相变材料在微胶囊和碳纳米管的协同作用下,增强了相变潜热,加快了相变过程,耐久性更好,相变材料的微胶囊化和碳纳米管应用增大了相变材料的应用领域。
附图说明
图1,UF/硬脂酸丁酯碳纳米管微胶囊的扫描电镜照片;
图2,UF/硬脂酸丁酯碳纳米管微胶囊在挤压下变形和破碎的扫描电镜照片;
图3,硬脂酸丁酯碳纳米管复合材料的红外光谱对比图;
图4,脲醛树脂/硬脂酸丁酯碳纳米管胶微囊的红外光谱对比图;
图5,硬脂酸丁酯和碳纳米管硬脂酸丁酯复合材料的DSC曲线;
图6,碳纳米管硬脂酸丁酯与碳纳米管改性脲醛树脂/硬脂酸丁酯微胶囊DSC曲线;
图7,硬脂酸丁酯与碳纳米管改性脲醛树脂/硬脂酸丁酯微胶囊的DSC曲线。
具体实施方式
下面,结合具体实施例对本发明进行详细描述。
碳纳米管脲醛树脂硬脂酸丁酯微胶囊的制备
采用原位聚合法制备碳纳米管脲醛树脂硬脂酸丁酯微胶囊。首先称量3g尿素(白色晶体),溶解于6g37%甲醛中,用玻璃棒搅拌至尿素完全溶解后,滴加三乙醇胺调节PH在8-9之间,倒入250ml三口烧瓶,开搅拌,缓慢升温至70摄氏度,升温将近45分钟,升温结束后,在300-400r/min下保温一小时。之后停止加热待温度降至50℃,得到无色透明粘稠的脲醛树脂预聚体溶液,加入80ml的0.5%十二烷基苯磺酸钠水溶液稀释。加入10g硬脂酸丁酯碳纳米管复合材料。在三口烧瓶中700r/min的速度下搅拌乳化20-30min,形成稳定的水包油乳液。在这个过程中,由于加入了碳纳米管复合材料,乳液颜色为灰色。在50℃下,用1.84%稀硫酸调节其PH+2.0-3.0(调节过程为2小时)。温度从50℃缓慢升至60℃(约为20分钟),加入0.5g碳纳米管乙醇分散液,保持温度固化两小时,得到碳纳米管脲醛树脂硬脂酸丁酯微胶囊。用水洗涤三次并抽滤,再用丙酮洗涤一次,抽滤。在60℃下干燥12小时后得到UF/硬脂酸丁酯碳纳米管微胶囊材料。
表一为制得的UF/硬脂酸丁酯碳纳米管微胶囊的囊芯含量,包覆率和产率表。
表一 碳纳米管增强UF/硬脂酸丁酯相变材料微胶囊的表征
图1是UF/硬脂酸丁酯碳纳米管微胶囊的扫描电镜照片,可以看到微胶囊颗粒成规则致密的球形,微胶囊为单核结构,粒径分布相对均匀,相对于硬脂酸丁酯微胶囊的微观形态,UF/硬脂酸丁酯碳纳米管微胶囊表面平整。
图2是UF/硬脂酸丁酯碳纳米管微胶囊在挤压下变形和破碎的扫描电镜照片。在压力作用下微胶囊破裂,如图2所示。微胶囊内部硬脂酸丁酯CNT复合材料流出。从图中破碎的微胶囊中可以看到微胶囊囊芯和囊壁中有一根根碳纳米管,说明微胶囊材料成功包覆了硬脂酸丁酯碳纳米管复合材料,同时碳纳米管分散在囊壁材料脲醛树脂和囊芯材料硬脂酸丁酯中。
图3为硬脂酸丁酯碳纳米管复合材料的红外光谱对比图,其中曲线(a)为碳纳米管的红外光谱,在3425cm-1处有羟基的伸缩振动,在1731cm-1处吸收峰源于羰基的伸缩振动。这是因为碳纳米管进行了表面修饰带有羟基或碳纳米管吸附了空气中的水和二氧化碳[11]。曲线(b)为硬脂酸丁酯的红外光谱,波数在2961cm-1~2851cm-1的多重吸收峰源于脂肪族C-H键的伸缩振动,波数为1747cm-1的吸收峰源于羰基伸缩振动,波数为1470cm-1的吸收峰源于C-H键弯曲振动,波数为1189cm-1的吸收峰源于C-O键的伸缩振动。曲线(c)是硬脂酸丁酯碳纳米管复合材料的红外光谱,曲线(c)与曲线(b)谱图比较,二者显示了基本相同的特征峰,说明碳纳米管的表面复合了硬脂酸丁酯。在硬脂酸丁酯碳纳米管复合材料的红外光谱中,硬脂酸丁酯的特征峰位置没有发生位移,说明碳纳米管与硬脂酸丁酯间没有生成新的化学键,属于物理复合。
图4为脲醛树脂/硬脂酸丁酯碳纳米管胶微囊的红外光谱对比图,其中,曲线(a)为脲醛树脂的红外光谱,波数在3351cm-1~3273cm-1的吸收峰源于N-H键的伸缩振动和O-H键的伸缩振动,波数为2965cm-1的吸收峰源于羟甲基基团的C-H键的伸缩振动,波数1679cm-1~1639cm-1的吸收峰为酰胺I带,源于羰基伸缩振动,波数1627cm-1~1500cm-1的吸收峰为酰胺II带,主要源于N-H键面内弯曲振动与部分C-H键的伸缩振动。曲线(b)为硬脂酸丁酯碳纳米管复合材料的红外光谱,波数在2961cm-1~2851cm-1的多重吸收峰源于脂肪族C-H键的伸缩振动,波数为1747cm-1的吸收峰源于羰基伸缩振动,波数为1470cm-1的吸收峰源于C-H键弯曲振动,波数为1189cm-1的吸收峰源于C-O键的伸缩振动。曲线(c)为碳纳米管改性脲醛树脂/硬脂酸丁酯微胶囊的红外光谱,出现了脲醛树脂和硬脂酸丁酯碳纳米管复合材料的全部特征峰,证明硬脂酸丁酯碳纳米管复合材料已被脲醛树脂包覆。此外,经四氯甲烷抽提后的囊壁红外谱图中,没有发现芯材的特征峰,这表明在微胶囊化过程中,芯材没有参与囊壁形成的交联反应。这些囊壁材料样品的红外谱图显示UF树脂的特征峰,包括3500-3300cm-1氨基的伸缩振动峰;1850-1660cm-1处C=O的伸缩振动峰;2800cm-1左右C-H的伸缩振动峰。同时还有硬脂酸丁酯CNT复合材料的特征峰出现,如在1300-1000cm-1处有C-O的伸缩振动峰。这些分析进一步说明通过微胶囊破碎溶解过滤制备得到的囊壁中混合了少量囊芯材料。和囊芯硬脂酸丁酯一起加入的碳纳米管材料在微胶囊合成过程中不仅存在于囊芯材料中,在囊壁中也含有碳纳米管。
硬脂酸丁酯易发生固-液相变,熔点在19℃-21℃之间[12],使用碳纳米管技术与微胶囊技术将其制成复合相变储能材料。图5为硬脂酸丁酯和碳纳米管硬脂酸丁酯复合材料的DSC曲线,在升温过程中,硬脂酸丁酯17.2℃开始发生相变,相变最高点24.5℃,30.2℃结束相变,相变潜热为73.82J/g。碳纳米管硬脂酸丁酯复合材料升温至17.4℃开始发生相变,相变最高点22.7℃,28.1℃结束相变,相变潜热为98.9J/g。硬脂酸丁酯的热导率为0.34W/(m·k),硬脂酸丁酯碳纳米管复合材料的导热系数0.52W/(m·k)提高了53%,这些数据说明碳纳米管对相变储能材料的导热性能改善效果明显。碳纳米管的加入使硬脂酸丁酯的相变温度升高0.2℃,相变温度范围变窄,相变潜热升高,碳纳米管较高的热导性提高了硬脂酸丁酯对温度变化的敏感程度,碳纳米管硬脂酸丁酯复合相变材料的储热性能得到提高。
图6为碳纳米管硬脂酸丁酯与碳纳米管改性脲醛树脂/硬脂酸丁酯微胶囊DSC曲线,在升温过程中,微胶囊17.2℃发生相变,相变最高点22.5℃,27.9℃结束相变,相变潜热为55.6J/g。微胶囊与囊芯材料的相变温度区间偏差不大,说明含有碳纳米管的脲醛树脂具有良好的导热性,微胶囊化对嚢芯材料的相变热能效率影响较小。微胶囊的囊芯含量为57.5%。相对应的相变潜热为98.9J/g(=56.8J/g/57.5%)。这些数据表明,碳纳米管改性脲醛树脂对传热所起阻碍作用在该复合储能材料的相变热能效率中的影响可忽略不计。
图7为硬脂酸丁酯与碳纳米管改性脲醛树脂/硬脂酸丁酯微胶囊的DSC曲线。两条DSC曲线峰形相近,微胶囊的相变温度区间比硬脂酸丁酯的窄,碳纳米管改性脲醛树脂/硬脂酸丁酯微胶囊的相变潜热大于相同比例时硬脂酸丁酯的相变潜热。这表明在碳纳米管技术和微胶囊技术的协同作用下,相变材料的比表面积增加[14],相变过程时间减少,相变材料的实用性提高,碳纳米管改性脲醛树脂/硬脂酸丁酯微胶囊比单独使用微胶囊技术或碳纳米管技术的储能材料有着更显著的储热性能。
碳纳米管增强脲醛/硬脂酸丁酯微胶囊DSC测试显示,经过2月存放后该微胶囊相变材料的峰形、相变区间和相变潜热变化较小,结果表明硬脂酸丁酯碳纳米管微胶囊稳定性好,可以长期存放。
综上,本实施例制备的碳纳米管增强UF/硬脂酸丁酯微胶囊UF/硬脂酸丁酯CNT微胶囊呈规则球形,粒径约为5um,有轻度粘连和团聚现象,不影响设计材料的储能效果。破碎的微胶囊中可以看到微胶囊囊芯和囊壁中有一根根碳纳米管,说明在研究过程中碳纳米管成功被包覆进微胶囊和囊芯材料中。碳纳米管导致相变材料的相变温度范围变窄,相变潜热升高,同时碳纳米管较高的热导性提高了硬脂酸丁酯对温度变化的敏感程度。通过本发明制备的相变材料在微胶囊和碳纳米管的协同作用下,增强了相变潜热,加快了相变过程,耐久性更好。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种硬脂酸丁酯碳纳米管微胶囊的制备方法,包括以下步骤:
a.以尿素和甲醛制备脲醛树脂预聚体溶液,并加入十二烷基苯磺酸钠水溶液进行稀释,得到脲醛树脂预聚体稀释液;
b.以二辛基癸二酸酯和十二烷基苯磺酸钠为分散剂溶解于乙醇中,加入碳纳米管,得到碳纳米管分散液;再将碳纳米管分散液加入到硬脂酸丁酯中,得到硬脂酸丁酯碳纳米管复合材料;
c.将硬脂酸丁酯碳纳米管复合材料加入到脲醛树脂预聚体稀释液中,乳化形成稳定的水包油乳液,在48-52℃下,用稀硫酸调节其pH值为2.0-3.0,然后升温至58-75℃,加入碳纳米管乙醇分散液,保持温度进行固化,水洗、抽滤后干燥得到硬脂酸丁酯碳纳米管微胶囊。
2.根据权利要求1所述的硬脂酸丁酯碳纳米管微胶囊的制备方法,其特征在于:所述步骤a的具体步骤为:首先将尿素溶解于甲醛水溶液中,用玻璃棒搅拌至尿素完全溶解后,滴加三乙醇胺调节pH在8-9之间,搅拌并缓慢升温至65-75℃,升温结束后,继续搅拌并保温1小时;停止加热待温度降至48-52℃,得到无色透明粘稠的脲醛树脂预聚体溶液,加入十二烷基苯磺酸钠水溶液稀释,得到脲醛树脂预聚体稀释液。
3.根据权利要求1所述的硬脂酸丁酯碳纳米管微胶囊的制备方法,其特征在于:所述步骤b中,分散剂二辛基癸二酸酯和十二烷基苯磺酸钠的质量比为1:1,分散剂溶解于乙醇中,稍稍搅拌溶解后,加入碳纳米管,搅拌,使碳纳米管被分散剂溶液完全润湿,超声得到碳纳米管分散液;将碳纳米管分散液加入到硬脂酸丁酯中,超声后静置,除去乙醇,得到硬脂酸丁酯碳纳米管复合材料。
4.根据权利要求1所述的硬脂酸丁酯碳纳米管微胶囊的制备方法,其特征在于:所述步骤c为:将硬脂酸丁酯碳纳米管复合材料加入到脲醛树脂预聚体稀释液中,乳化形成稳定的水包油乳液,在48-52℃下,在1.5-2小时内用稀硫酸调节其pH值为2.0-3.0,在10-30分钟内搅拌并缓慢升温至65-75℃,加
入碳纳米管乙醇分散液,保持温度进行固化1-3小时,水洗、抽滤后干燥得到硬脂酸丁酯碳纳米管微胶囊。
CN201610001442.7A 2016-01-04 2016-01-04 一种硬脂酸丁酯碳纳米管微胶囊的制备方法 Active CN105670568B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610001442.7A CN105670568B (zh) 2016-01-04 2016-01-04 一种硬脂酸丁酯碳纳米管微胶囊的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610001442.7A CN105670568B (zh) 2016-01-04 2016-01-04 一种硬脂酸丁酯碳纳米管微胶囊的制备方法

Publications (2)

Publication Number Publication Date
CN105670568A CN105670568A (zh) 2016-06-15
CN105670568B true CN105670568B (zh) 2018-08-21

Family

ID=56190385

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610001442.7A Active CN105670568B (zh) 2016-01-04 2016-01-04 一种硬脂酸丁酯碳纳米管微胶囊的制备方法

Country Status (1)

Country Link
CN (1) CN105670568B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106732219B (zh) * 2016-12-08 2019-02-26 辽宁石油化工大学 一种具有吸光性能的碳纳米管/石蜡微胶囊的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2916364B1 (fr) * 2007-05-22 2009-10-23 Arkema France Procede de preparation de pre-composites a base de nanotubes notamment de carbone
CN101920181A (zh) * 2008-10-24 2010-12-22 深圳大学 一种红色电泳液微胶囊的制备方法
CN104069783B (zh) * 2014-06-23 2016-04-13 东南大学 一种碳纳米管改性的复合微胶囊的制备方法
CN104962240A (zh) * 2015-05-18 2015-10-07 西安工程大学 一种掺杂纳米粒子的相变微胶囊的制备方法

Also Published As

Publication number Publication date
CN105670568A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
Al-Shannaq et al. Emulsion stability and cross-linking of PMMA microcapsules containing phase change materials
CN104449590B (zh) 一种相变储能材料的纳米胶囊及其制备方法
CN103464203B (zh) 温敏性微凝胶非对称性负载纳米银催化剂的制备方法
CN103170289B (zh) 一种应用复合乳化剂制备微胶囊相变材料的方法
CN102600778B (zh) 一种纳米复合环氧树脂自修复微胶囊及其制备方法
KR20200070244A (ko) 다분산성 중합체 나노구체들을 포함하는 마이크로구체들 및 다공성 금속 산화물 마이크로구체들
CN104762066B (zh) 复合型相变储能微胶囊及其制备方法
CN103464066B (zh) 一种相变材料微胶囊的制备方法
CN105561900B (zh) 相变微胶囊及其制备方法
CN103387691B (zh) 一种空心聚苯乙烯塑料小球及其制备方法和应用
CN103374141B (zh) 一种基于微流控芯片制备蜂窝状聚合物微球的方法
Liang et al. A facile and controllable method to encapsulate phase change materials with non-toxic and biocompatible chemicals
CN110819308A (zh) 相变储能微胶囊及其制备方法和应用
CN102580639A (zh) 一种以微流芯片制备纤维素微球的方法
Fayyad et al. Preparation and characterization of urea–formaldehyde microcapsules filled with paraffin oil
WO2015085141A1 (en) Microcapsules having acrylic polymeric shells
Rao et al. Preparation and thermal properties of microencapsulated phase change material for enhancing fluid flow heat transfer
CN106634857A (zh) 一种改进的微胶囊相变材料及制备方法
CN105670568B (zh) 一种硬脂酸丁酯碳纳米管微胶囊的制备方法
CN105802586A (zh) 一种石蜡相变储能微胶囊及其制备方法和应用
CN103359746B (zh) 一种双层中空二氧化硅纳米球及其制备方法
CN110079279A (zh) 一种利用木质素乳化粒子制备石蜡相变微胶囊的方法
Huang et al. Preparation of urea-formaldehyde paraffin microcapsules modified by carboxymethyl cellulose as a potential phase change material
CN104830532A (zh) 一种缓释微胶囊姜油香精的制备方法
CN109825256A (zh) 一种基于超声辐照技术的相变微胶囊及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20200119

Address after: 528400 Three Creek Industrial Zone, Eastern District, Guangdong, Zhongshan

Patentee after: CKB Industries Co.,Ltd.

Address before: 518000 Nanhai Road, Guangdong, Shenzhen, No. 3688, No.

Patentee before: Shenzhen University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200224

Address after: 518000 17e, building 36-39, Qianhai garden, 288 Taoyuan Road, Qianhai community, Nantou street, Nanshan District, Shenzhen City, Guangdong Province

Patentee after: Shenzhen Huabao biomaterial Technology Co.,Ltd.

Address before: 528400 Three Creek Industrial Zone, Eastern District, Guangdong, Zhongshan

Patentee before: CKB Industries Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210617

Address after: A801, area AB, TCL wangpai Electronics Co., 1055 Nanhai Avenue, Yanshan community, zhaoshang street, Nanshan District, Shenzhen, Guangdong 518000

Patentee after: Shenzhen Cuilin Biotechnology Co.,Ltd.

Address before: 518000 17e, building 36-39, Qianhai garden, 288 Taoyuan Road, Qianhai community, Nantou street, Nanshan District, Shenzhen City, Guangdong Province

Patentee before: Shenzhen Huabao biomaterial Technology Co.,Ltd.

TR01 Transfer of patent right

Effective date of registration: 20211021

Address after: 518000 17e, building 36-39, Qianhai garden, 288 Taoyuan Road, Qianhai community, Nantou street, Nanshan District, Shenzhen City, Guangdong Province

Patentee after: Shenzhen Huabao biomaterial Technology Co.,Ltd.

Address before: A801, area AB, TCL wangpai Electronics Co., 1055 Nanhai Avenue, Yanshan community, zhaoshang street, Nanshan District, Shenzhen, Guangdong 518000

Patentee before: Shenzhen Cuilin Biotechnology Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230406

Address after: 518000 17e, building 36-39, Qianhai garden, 288 Taoyuan Road, Qianhai community, Nantou street, Nanshan District, Shenzhen City, Guangdong Province

Patentee after: Ni Zhuo

Address before: 518000 17e, building 36-39, Qianhai garden, 288 Taoyuan Road, Qianhai community, Nantou street, Nanshan District, Shenzhen City, Guangdong Province

Patentee before: Shenzhen Huabao biomaterial Technology Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230602

Address after: 518000 17e, building 36-39, Qianhai garden, 288 Taoyuan Road, Qianhai community, Nantou street, Nanshan District, Shenzhen City, Guangdong Province

Patentee after: Shenzhen Huabao biomaterial Technology Co.,Ltd.

Address before: 518000 17e, building 36-39, Qianhai garden, 288 Taoyuan Road, Qianhai community, Nantou street, Nanshan District, Shenzhen City, Guangdong Province

Patentee before: Ni Zhuo

TR01 Transfer of patent right
CP03 Change of name, title or address

Address after: J2, 2nd Floor, Building 1, No. 225 Loujiang North Road, Taicang City, Suzhou City, Jiangsu Province, 215000

Patentee after: Tuoteng Huabao (Suzhou) Biotechnology Co.,Ltd.

Address before: 518000 17e, building 36-39, Qianhai garden, 288 Taoyuan Road, Qianhai community, Nantou street, Nanshan District, Shenzhen City, Guangdong Province

Patentee before: Shenzhen Huabao biomaterial Technology Co.,Ltd.

CP03 Change of name, title or address