CN106634857A - 一种改进的微胶囊相变材料及制备方法 - Google Patents

一种改进的微胶囊相变材料及制备方法 Download PDF

Info

Publication number
CN106634857A
CN106634857A CN201611128896.7A CN201611128896A CN106634857A CN 106634857 A CN106634857 A CN 106634857A CN 201611128896 A CN201611128896 A CN 201611128896A CN 106634857 A CN106634857 A CN 106634857A
Authority
CN
China
Prior art keywords
core
particle
change material
phase change
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611128896.7A
Other languages
English (en)
Inventor
仇中柱
周宇飞
李芃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai University of Electric Power
University of Shanghai for Science and Technology
Original Assignee
Shanghai University of Electric Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai University of Electric Power filed Critical Shanghai University of Electric Power
Priority to CN201611128896.7A priority Critical patent/CN106634857A/zh
Publication of CN106634857A publication Critical patent/CN106634857A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

本发明提供了一种改进的微胶囊相变材料,包裹芯材,所述的芯材的外侧设置有壁材,在所述的壁材和所述的芯材中均设置有铜纳米粒子和碳纳米管。本发明提供了一种改进的微胶囊相变材料的制备方法,包括一个称取芯材和壁材的步骤,一个称取复合纳米粒子的步骤,一个制备壁材复合溶液的步骤,一个制备芯材复合溶液的步骤,一个微胶囊成型的步骤,一个微胶囊洗涤干燥的步骤。本发明通过向向芯材和壁材中复合铜纳米粒子和碳纳米管来同时改善三种特性,即改善微胶囊相变材料颗粒的密度、提高导热系数、减小过冷度,得到高密度、高导热系数、低过冷度、复合铜纳米粒子和碳纳米管的微胶囊相变材料。

Description

一种改进的微胶囊相变材料及制备方法
技术领域
本发明属于材料学领域,涉及一种相变材料,具体来说是一种改进的微胶囊相变材料及制备方法。
背景技术
微胶囊技术是一种用成膜材料把固体或液体包覆使形成微小粒子的技术。得到的微小粒子称微胶囊,一般粒子大小在1~300μm范围内。包在微胶囊内部的物质称为囊芯(也称为芯材、内核),囊芯物质为相变材料(PCM)的称为微胶囊相变材料(MPCM)。相变微胶囊悬浮液则是将制备好的微胶囊相变材料颗粒分散于单相流体(如水、导热油等)中形成的悬浮液。
微胶囊技术研究始于上世纪30年代,并与50年代取得重大成果。在整个发展过程中,美国的研究一直处于领先地位,日本也在60-70年代逐渐赶了上来。
微胶囊相变材料的制备方法大致可分物理法、聚合反应法、相分离法三大类。物理法是通过微胶囊壁材的物理变化,采用一定的机械加工手段进行微胶囊化,主要有喷雾干燥法。对于聚合反应法可以根据微胶囊化时制备壁材所用的原料不同、聚合方式的不同,分为原位聚合法、界面聚合法和悬浮交联法。相分离法则是利用聚合物的物理化学性质,即相分离的性质,所以又称为物理化学法,主要有单凝聚法、复凝聚法。在微胶囊相变材料的制备中,常采用的方法有原位聚合法、界面聚合法、喷雾干燥法和复凝聚法。
1、原位聚合法。
原位聚合法是将形成壁材的单体及引发剂全部分散于PCMs 乳化液滴的内部或外部,在液滴表面发生聚合反应,单体在连续相中可溶,生成的聚合物不可溶,覆盖在液滴表面包覆形成微胶囊。原位聚合法在制备相变微胶囊时应用较多,其关键是形成的聚合物如何沉淀和包覆在芯材的表面。
2、界面聚合法。
界面聚合法是两种含有双(多) 官能团的不同活性单体,分别溶解在不相混溶的分散相和连续相中,把芯材溶于分散相溶剂中,两种聚合反应单体分别从两相内部向乳化液滴的界面移动,并迅速在两相界面上进行缩聚反应,将芯材包裹,形成微胶囊。
3、喷雾干燥法。
喷雾干燥法是一种物理方法。用喷雾干燥法制备相变材料微胶囊,首先要将芯材物质分散在壁材溶液中,然后在高温气流中将此混合液雾化,使溶解壁材的溶剂迅速蒸发,从而使壁材固化并包覆在芯材上。喷雾干燥法适于亲油性液体物料的微胶囊化,芯材的疏水性越强,包埋效果就越好。
4、复凝聚法。
复凝聚法是指由两种或多种带有相反电荷的高分子材料做壁材,将芯材分散在壁材溶液中,在适当条件下(如改变ph值或温度),使得相反电荷的聚合物间发生静电作用。带相反电荷的高分子材料相互作用后,溶液溶解度降低并产生相分离,凝聚形成微胶囊。
微胶囊相变材料颗粒在应用上有很多优点:
(1)作为建筑材料调节温差保持恒温,提高人们在室内生活的舒适度。
(2)作为纺织材料添加剂制作冷热调节功能的服装。
(3)可回收余热,提高能源利用率。
(4)微胶囊相变材料颗粒制成悬浮液的载冷(热)能力比水强,可用于强化传热介质和储热材料。
微胶囊相变材料拥有以上的突出优点,在能源利用和热交换领域有很广阔的应用前景。作为传热介质它可以应用于航空航天、电子、中央空调、化工、电厂等热力系统、冷却系统和换热器,作为蓄热材料它可以应用于中央空调、太阳能利用等领域的储冷/储热系统。微胶囊相变悬浮液储热密度高,在太阳能储热方面有较高的应用潜力,有利于经济建设、社会发展、扩大可再生能源利用率。
但目前市场上应用的微胶囊相变材料颗粒,仍存在一定的缺陷,使其实际应用受到一定的限制,缺陷如下:
(1)由于微胶囊相变材料颗粒的密度与水差别大,以水为基液配制成悬浮液作为储能材料或强化传热的材料时易发生分层,物理稳定性差。
(2)由于现有的微胶囊相变材料颗粒的制备原料多为石蜡、有机高分子材料等,导热系数较小,限制了其在强化传热方面的应用。
(3)由于凝固(液体变为固体)温度低于熔融(固体变为液体)温度,会出现过冷现象。这会使潜热在更低的温度或更大的温度范围内释放,不利于能量的储存。
发明内容
针对现有技术中的上述技术问题,本发明提供了一种改进的微胶囊相变材料及制备方法,所述的这种改进的微胶囊相变材料及制备方法要解决现有技术中的微胶囊相变材料颗粒稳定性差、导热性差、能量不利于储存的技术问题。
本发明提供了一种改进的微胶囊相变材料,包括芯材,所述的芯材的外侧设置有壁材,在所述的壁材和所述的芯材中均设置有铜纳米粒子和碳纳米管,所述的铜纳米粒子和碳纳米管的质量之和为芯壁总质量的3%-5%。
本发明提供了一种改进的微胶囊相变材料的制备方法,包括如下步骤:
1)一个称取芯材和壁材的步骤,按照芯壁质量比为2-5:1称取芯材和壁材;
2)一个称取复合纳米粒子的步骤,所述的复合纳米粒子由铜纳米粒子和碳纳米管混合而成,所述的铜纳米粒子和碳纳米管之间为任意质量比,所述的复合纳米粒子的质量为芯壁总质量的3%-5%;
3)一个制备壁材复合溶液的步骤,将步骤2)中的铜纳米粒子和碳纳米管混合物按照质量比2-5:1分成两部分,将1质量份的混合物与壁材混合,加入溶解量的水,利用超声处理器分散得到壁材复合溶液,采用第一类PH调节剂调节PH值至7-8;
4)一个制备芯材复合溶液的步骤,将步骤3)中剩余的的铜纳米粒子和碳纳米管混合物与芯材混合,加入溶解量的水,利用超声处理器分散,然后加入乳化剂,置于搅拌机搅拌乳化得到芯材复合溶液,采用第二类PH调节剂调节PH值至4-5;
5)一个微胶囊成型的步骤,将步骤4)中的芯材复合溶液继续搅拌,搅拌过程中不断滴加3)中的壁材复合溶液,采用第一类PH调节剂调节PH值至8-9;
6)一个微胶囊洗涤干燥的步骤,将5)中的溶液自然冷却,待颗粒沉淀,过滤上清液,对沉淀进行抽滤洗涤,干燥,得到微胶囊相变材料。
进一步的,所述的壁材为脲醛树脂、蜜胺树脂、聚氨酯、聚甲基丙烯酸甲酯或者芳香族聚酰胺中的任意一种。
进一步的,所述的芯材为正十八烷、脂肪烃、石蜡、脂肪酸或者脂肪酸酯。
进一步的,所述的乳化剂为苯乙烯-马来酸酐无规共聚物钠盐(SMA)、十二烷基硫酸钠(SDS)等,其量为芯材质量的2%-5%。
进一步的,所述第一类PH调节剂为三乙醇胺、氢氧化钠、氢氧化钙或者氨水。
进一步的,所述第二类PH调节剂为硫酸、盐酸或者柠檬酸。
本发明通过复合两种材料的纳米粒子(纳米管),同时改进了三种特性。
(1)本发明微胶囊相变材料颗粒的密度由复合的两种纳米粒子(纳米管)来改变。通过计算确定加入量,可以使微胶囊相变材料颗粒的密度与所需基液密度相同或相近,从而抑制微胶囊相变材料颗粒在基液中分层,提高悬浮液的物理稳定性。
(2)本发明微胶囊相变材料颗粒的导热系数可以由加入的两种纳米粒子(纳米管)来改变。现有微胶囊相变材料颗粒的导热系数较小,而引入的第三类物质和第四类物质导热系数相对较大。可以有效提高微胶囊相变材料颗粒的导热系数,强化换热。
(3)本发明微胶囊相变材料颗粒因为有两种纳米粒子(纳米管)的加入,可作为微胶囊相变材料颗粒中芯材凝固(液体变为固体)时的成核剂,从而减小过冷度。
本发明和已有技术相比,其技术进步是显著的。本发明通过向芯材和壁材中复合铜纳米粒子和碳纳米管来同时改善三种特性,即调节微胶囊相变材料颗粒的密度、提高导热系数、减小过冷度,得到高密度、高导热系数、低过冷度、复合铜纳米粒子和碳纳米管的微胶囊相变材料。
附图说明
图1为本发明一种改进的微胶囊相变材料的结构示意图,图中:1、壁材;2、芯材;3、铜纳米粒子;4、碳纳米管。
具体实施方式
本发明提供了三个微胶囊相变材料的制备实例 :
实施例1
1)一个称取芯材和壁材的步骤,按照芯壁质量比为2:1称取芯材正十八烷40g和壁材脲醛树脂20g;
2)一个确定纳米粒子复合量的步骤,复合铜纳米粒子和碳纳米管总的复合量占芯壁总质量的3%,即1.8g;
3)一个制备铜纳米粒子和碳纳米管混合物的步骤,铜纳米粒子和碳纳米管按质量比1:1,取0.9g铜纳米粒子0.9g碳纳米管得到铜纳米粒子和碳纳米管混合物;
4)一个制备壁材复合溶液的步骤,将壁材、0.6g步骤3)中的铜纳米粒子和碳纳米管混合物加入溶解量的水,利用超声处理器分散得到壁材复合溶液,采用三乙醇胺调节PH值至7-8;
5)一个制备芯材复合溶液的步骤,将步骤3)中剩余的的铜纳米粒子和碳纳米管混合物与芯材混合,加入溶解量的水,利用超声处理器分散,然后加入乳化剂苯乙烯-马来酸酐无规共聚物钠盐(SMA),置于搅拌机搅拌乳化得到芯材复合溶液,采用柠檬酸调节PH值至4-5;
6)一个微胶囊成型的步骤,将步骤5)中的芯材复合溶液继续搅拌,搅拌过程中不断滴加4)中的壁材复合溶液,采用三乙醇胺调节PH值至8-9;
7)一个微胶囊洗涤干燥的步骤,将6)中的溶液自然冷却,待颗粒沉淀,过滤上清液,对沉淀进行抽滤洗涤,干燥,得到微胶囊相变材料。
实施例2
1)一个称取芯材和壁材的步骤,按照芯壁质量比为3:1称取芯材石蜡60g和壁材蜜胺树脂20g;
2)一个确定纳米粒子复合量的步骤,复合铜纳米粒子和碳纳米管总的复合量占芯壁总质量的5%,即4g;
3)一个制备铜纳米粒子和碳纳米管混合物的步骤,铜纳米粒子和碳纳米管按质量比1:3,取1g铜纳米粒子3g碳纳米管得到铜纳米粒子和碳纳米管混合物;
4)一个制备壁材复合溶液的步骤,将壁材、1g步骤3)中的铜纳米粒子和碳纳米管混合物加入溶解量的水,利用超声处理器分散得到壁材复合溶液,采用氢氧化钠调节PH值至7-8;
5)一个制备芯材复合溶液的步骤,将步骤3)中剩余的的铜纳米粒子和碳纳米管混合物与芯材混合,加入溶解量的水,利用超声处理器分散,然后加入乳化剂十二烷基硫酸钠(SDS),置于搅拌机搅拌乳化得到芯材复合溶液,采用盐酸调节PH值至4-5;
6)一个微胶囊成型的步骤,将步骤5)中的芯材复合溶液继续搅拌,搅拌过程中不断滴加4)中的壁材复合溶液,采用氢氧化钠调节PH值至8-9;
7)一个微胶囊洗涤干燥的步骤,将6)中的溶液自然冷却,待颗粒沉淀,过滤上清液,对沉淀进行抽滤洗涤,干燥,得到微胶囊相变材料。
实施例3
1)一个称取芯材和壁材的步骤,按照芯壁质量比为5:1称取芯材正十六烷50g和壁材聚甲基丙烯酸甲酯10g;
2)一个确定纳米粒子复合量的步骤,复合铜纳米粒子和碳纳米管总的复合量占芯壁总质量的5%,即3g;
3)一个制备铜纳米粒子和碳纳米管混合物的步骤,铜纳米粒子和碳纳米管按质量比2:1,取2g铜纳米粒子1g碳纳米管得到铜纳米粒子和碳纳米管混合物;
4)一个制备壁材复合溶液的步骤,将壁材、2.5g步骤3)中的铜纳米粒子和碳纳米管混合物加入溶解量的水,利用超声处理器分散得到壁材复合溶液,采用氨水调节PH值至7-8;
5)一个制备芯材复合溶液的步骤,将步骤3)中剩余的的铜纳米粒子和碳纳米管混合物与芯材混合,加入溶解量的水,利用超声处理器分散,然后加入乳化剂苯乙烯-马来酸酐无规共聚物钠盐(SMA),置于搅拌机搅拌乳化得到芯材复合溶液,采用硫酸调节PH值至4-5;
6)一个微胶囊成型的步骤,将步骤5)中的芯材复合溶液继续搅拌,搅拌过程中不断滴加4)中的壁材复合溶液,采用氨水调节PH值至8-9;
7)一个微胶囊洗涤干燥的步骤,将6)中的溶液自然冷却,待颗粒沉淀,过滤上清液,对沉淀进行抽滤洗涤,干燥,得到微胶囊相变材料。

Claims (7)

1.一种改进的微胶囊相变材料,其特征在于:包裹芯材,所述的芯材的外侧设置有壁材,在所述的壁材和所述的芯材中均设置有铜纳米粒子和碳纳米管,所述的铜纳米粒子和碳纳米管的质量之和为芯壁总质量的3%-5%。
2.权利要求1所述的一种改进的微胶囊相变材料的制备方法,其特征在于包括如下步骤:
1)一个称取芯材和壁材的步骤,按照芯壁质量比为2-5:1称取芯材和壁材;
2)一个称取复合纳米粒子的步骤,所述的复合纳米粒子由铜纳米粒子和碳纳米管混合而成,所述的铜纳米粒子和碳纳米管之间为任意质量比,所述的复合纳米粒子的质量为芯壁总质量的3%-5%;
3)一个制备壁材复合溶液的步骤,将步骤2)中的铜纳米粒子和碳纳米管混合物按照质量比2-5:1分成两部分,将1质量份的混合物与壁材混合,加入溶解量的水,利用超声处理器分散得到壁材复合溶液,采用第一类PH调节剂调节PH值至7-8;
4)一个制备芯材复合溶液的步骤,将步骤3)中剩余的的铜纳米粒子和碳纳米管混合物与芯材混合,加入溶解量的水,利用超声处理器分散,然后加入乳化剂,置于搅拌机搅拌乳化得到芯材复合溶液,采用第二类PH调节剂调节PH值至4-5;
5)一个微胶囊成型的步骤,将步骤4)中的芯材复合溶液继续搅拌,搅拌过程中不断滴加3)中的壁材复合溶液,采用第一类PH调节剂调节PH值至8-9;
6)一个微胶囊洗涤干燥的步骤,将5)中的溶液自然冷却,待颗粒沉淀,过滤上清液,对沉淀进行抽滤洗涤,干燥,得到微胶囊相变材料。
3.根据权利要求2所述的一种改进的微胶囊相变材料的制备方法,其特征在于:所述的壁材为脲醛树脂、蜜胺树脂、聚氨酯、聚甲基丙烯酸甲酯或者芳香族聚酰胺中的任意一种。
4.根据权利要求2所述的一种改进的微胶囊相变材料的制备方法,其特征在于:所述的芯材为正十八烷、脂肪烃、石蜡、脂肪酸或者脂肪酸酯。
5.根据权利要求2所述的一种改进的微胶囊相变材料的制备方法,其特征在于:所述的乳化剂为苯乙烯-马来酸酐无规共聚物钠盐(SMA)、十二烷基硫酸钠(SDS)等,其添加量为芯材质量的2%-5%。
6.根据权利要求2所述的一种改进的微胶囊相变材料的制备方法,其特征在于:所述第一类PH调节剂为三乙醇胺、氢氧化钠、氢氧化钙或者氨水。
7.根据权利要求2所述的一种改进的微胶囊相变材料的制备方法,其特征在于:所述第二类PH调节剂为硫酸、盐酸或者柠檬酸。
CN201611128896.7A 2016-12-09 2016-12-09 一种改进的微胶囊相变材料及制备方法 Pending CN106634857A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611128896.7A CN106634857A (zh) 2016-12-09 2016-12-09 一种改进的微胶囊相变材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611128896.7A CN106634857A (zh) 2016-12-09 2016-12-09 一种改进的微胶囊相变材料及制备方法

Publications (1)

Publication Number Publication Date
CN106634857A true CN106634857A (zh) 2017-05-10

Family

ID=58824054

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611128896.7A Pending CN106634857A (zh) 2016-12-09 2016-12-09 一种改进的微胶囊相变材料及制备方法

Country Status (1)

Country Link
CN (1) CN106634857A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111961445A (zh) * 2020-08-31 2020-11-20 湖南世东环保节能科技有限公司 一种微胶囊化复合相变材料及其生产和应用
CN113170920A (zh) * 2020-01-08 2021-07-27 中国科学院理化技术研究所 一种温控型导热多功能烟用微胶囊及其制备方法
CN115318211A (zh) * 2022-09-08 2022-11-11 宁波大学 一种纳米粒子芯材掺杂型金属相变微胶囊及其制备方法
CN115382475A (zh) * 2022-09-08 2022-11-25 宁波大学 一种纳米粒子壁材掺杂型金属相变微胶囊及其制备方法
US11599166B2 (en) * 2020-07-16 2023-03-07 Lenovo (Singapore) Pte. Ltd. Shape-memory heat absorbers
CN115742483A (zh) * 2022-12-19 2023-03-07 山东雅满家生物质科技有限公司 一种复合地板及生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103509528A (zh) * 2012-06-28 2014-01-15 中国科学院过程工程研究所 一种核壳结构纳米高温储热材料、其制备方法及用途
CN104087391A (zh) * 2014-07-29 2014-10-08 泰州市嘉迪新材料有限公司 一种脲醛树脂微胶囊润滑油、润滑油涂层材料及制备方法
CN104962240A (zh) * 2015-05-18 2015-10-07 西安工程大学 一种掺杂纳米粒子的相变微胶囊的制备方法
CN105542724A (zh) * 2016-01-21 2016-05-04 上海电力学院 一种掺杂金属纳米粒子的微胶囊相变材料颗粒及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103509528A (zh) * 2012-06-28 2014-01-15 中国科学院过程工程研究所 一种核壳结构纳米高温储热材料、其制备方法及用途
CN104087391A (zh) * 2014-07-29 2014-10-08 泰州市嘉迪新材料有限公司 一种脲醛树脂微胶囊润滑油、润滑油涂层材料及制备方法
CN104962240A (zh) * 2015-05-18 2015-10-07 西安工程大学 一种掺杂纳米粒子的相变微胶囊的制备方法
CN105542724A (zh) * 2016-01-21 2016-05-04 上海电力学院 一种掺杂金属纳米粒子的微胶囊相变材料颗粒及制备方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113170920A (zh) * 2020-01-08 2021-07-27 中国科学院理化技术研究所 一种温控型导热多功能烟用微胶囊及其制备方法
US11599166B2 (en) * 2020-07-16 2023-03-07 Lenovo (Singapore) Pte. Ltd. Shape-memory heat absorbers
CN111961445A (zh) * 2020-08-31 2020-11-20 湖南世东环保节能科技有限公司 一种微胶囊化复合相变材料及其生产和应用
CN115318211A (zh) * 2022-09-08 2022-11-11 宁波大学 一种纳米粒子芯材掺杂型金属相变微胶囊及其制备方法
CN115382475A (zh) * 2022-09-08 2022-11-25 宁波大学 一种纳米粒子壁材掺杂型金属相变微胶囊及其制备方法
CN115382475B (zh) * 2022-09-08 2023-11-17 宁波大学 一种纳米粒子壁材掺杂型金属相变微胶囊及其制备方法
CN115742483A (zh) * 2022-12-19 2023-03-07 山东雅满家生物质科技有限公司 一种复合地板及生产方法

Similar Documents

Publication Publication Date Title
CN106634857A (zh) 一种改进的微胶囊相变材料及制备方法
Chang et al. Review on the preparation and performance of paraffin-based phase change microcapsules for heat storage
Peng et al. A review on synthesis, characterization and application of nanoencapsulated phase change materials for thermal energy storage systems
Sarı et al. Thermal energy storage characteristics of myristic acid-palmitic eutectic mixtures encapsulated in PMMA shell
CN106957635A (zh) 复合纳米铜和纳米石墨烯片的微胶囊相变颗粒及制备方法
CN106753261A (zh) 一种微胶囊相变材料及其制备方法
Sarı et al. Micro/nano-encapsulated n-heptadecane with polystyrene shell for latent heat thermal energy storage
CN105542724A (zh) 一种掺杂金属纳米粒子的微胶囊相变材料颗粒及制备方法
JP5366972B2 (ja) マイクロカプセルの製造方法
Park et al. Magnetic nanoparticle-embedded PCM nanocapsules based on paraffin core and polyurea shell
Su et al. Review of solid–liquid phase change materials and their encapsulation technologies
Jamekhorshid et al. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium
Al-Shannaq et al. Emulsion stability and cross-linking of PMMA microcapsules containing phase change materials
Yin et al. Pickering emulsion: A novel template for microencapsulated phase change materials with polymer–silica hybrid shell
JP5537776B2 (ja) マイクロカプセル粉末
CN103805143B (zh) 一种具有芳香气味的相变材料微胶囊及其制备方法
Sarier et al. Silver incorporated microencapsulation of n-hexadecane and n-octadecane appropriate for dynamic thermal management in textiles
Li et al. Incorporation technology of bio-based phase change materials for building envelope: A review
CN102719227A (zh) 一种高稳定性的相变乳液的制备方法
CN104762066B (zh) 复合型相变储能微胶囊及其制备方法
Karthikeyan et al. Review of thermal energy storage of micro-and nanoencapsulated phase change materials
CN104069783B (zh) 一种碳纳米管改性的复合微胶囊的制备方法
CN111621265B (zh) 基于无机物壳层的相变微胶囊及其制造方法和应用
CN106978146A (zh) 复合纳米铜和石墨烯量子点的微胶囊相变颗粒及制备方法
Qiu et al. Modification of microencapsulated phase change materials (MPCMs) by synthesizing graphene quantum dots (GQDs) and nano-aluminum for energy storage and heat transfer applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170510

RJ01 Rejection of invention patent application after publication