CN105655131A - 一种太阳能电池Cu2S/FTO对电极及其电化学沉积制备方法 - Google Patents

一种太阳能电池Cu2S/FTO对电极及其电化学沉积制备方法 Download PDF

Info

Publication number
CN105655131A
CN105655131A CN201610011491.9A CN201610011491A CN105655131A CN 105655131 A CN105655131 A CN 105655131A CN 201610011491 A CN201610011491 A CN 201610011491A CN 105655131 A CN105655131 A CN 105655131A
Authority
CN
China
Prior art keywords
fto
electrode
electrolyte
electrochemical deposition
cu2s
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610011491.9A
Other languages
English (en)
Inventor
谢腾锋
邱庆庆
王德军
徐丹丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201610011491.9A priority Critical patent/CN105655131A/zh
Publication of CN105655131A publication Critical patent/CN105655131A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

一种利用电化学沉积法制备太阳能电池Cu2S/FTO对电极的方法,属于太阳能电池技术领域。其首先是配制电解液,采用三电极体系,在FTO上用恒电位法进行电化学沉积Cu,然后再在多硫化物溶液中对沉积Cu的FTO进行硫化,从而得到Cu2S/FTO对电极;电解液为0.03~0.05mol/L?CuCl2、6.6×10-3~1.3×10-2mol/L硫脲和0.3~0.5mol/L乳酸混合,pH值为5.0~7.0的缓冲体系;多硫化物溶液为0.5~1M?Na2S·9H2O、0.5~1M?S和0.05~0.1M?KCl的甲醇溶液。本发明制备工艺简单,成本低,为制备QDSCs的对电极提供一种可靠的制备方案,并且解决了Cu2S/Cu对电极机械稳定性和电解液泄露的问题。

Description

一种太阳能电池Cu2S/FTO对电极及其电化学沉积制备方法
技术领域
本发明属于太阳能电池技术领域,具体涉及一种太阳能电池Cu2S/FTO对电极及其电化学沉积制备方法。
背景技术
随着人类对化石燃料的消耗,环境问题和能源问题日益突出,开发新能源是有效的解决途径。太阳能是理想的新能源之一,而能将太阳能转化为电能的太阳能电池是最为可行、有效的光电直接转化的形式。量子点敏化太阳能电池(QDSCs)是第三代太阳能电池的其中一类,由于其成本低,理论转化效率高,因此在学术领域和工业领域均备受关注。自1998年,Nozik等首次提出了量子点敏化太阳能电池的概念,在此后的几十年中,对QDSCs的研究越来越多,至今QDSCs的最高光电转化效率达到了8.21%,成为最有前景的光伏发电发展方向之一。
对于QDSCs的研究包括氧化物薄膜结构,量子点的研发、设计和优化等方面的研究。除此之外,QDSCs的电解质和对电极的研究对提高太阳能电池的性能的至关重要。对电极的主要作用是收集光阳极从外电路传输过来的电子和催化电极上的氧化还原电对再生以维持电池正常工作,因此理想的对电极材料必须对氧化还原电对有很好的催化活性且在电解质溶液环境中能稳定存在。目前QDSCs最常用的电解液为S2-/Sn2-多硫电解质,也有少数使用Co2+/Co3+基或其它电解质,而S2-/Sn2-多硫电解液也是QDSCs的最理想电解液。在DSSCs中通常被用作对电极的Pt电极,在I/I3 电解液中有比较好的催化活性和稳定性,但是在S2-/Sn2-电解液中Pt容易“中毒”而降低催化活性,导致QDSCs的填充因子普遍较低,光电转换效率(PCE)也普遍很低。
为解决上述问题,人们对各种非铂材料进行了研究,主要为硫化物材料包括Cu2S、CoS、PbS,以及其他材料,如Cu2ZnSnS4、TiC、各种羰基材料(纳米碳管、纳米碳球、纳米炭黑、多孔碳球)和各种导电聚合物材料等。其中Cu2S由于其较优的催化活性和稳定性而成为目前QDSCs中应用最为广泛的对电极。目前制备Cu2S对电极的常用方法是以黄铜片为原材料,先用浓盐酸对黄铜片在70℃条件下进行预处理,然后用多硫电解质溶液硫化的方法,得到Cu2S/Cu对电极(BingGao,ChaoShen,ShuanglongYuanetal.Influenceofnanocrystalsizeonthequantumdotssensitizedsolarcells’performancewithlowtemperaturesynthesizedCdSequantumdots[J].JournalofAlloysandCompounds,2014,612:323-329.)。然而这种原位制备法在硫化的过程中容易对铜基也造成腐蚀,引起电极的机械稳定性差和电解质溶液泄露等问题。为了克服Cu2S/Cu对电极的缺点,人们对其他制备Cu2S对电极的方法进行了研究。包括用丝网印刷的方法将制备好的Cu2S纳米粒子和导电碳涂在FTO上(DengM.H.,HuangS.Q.,ZhangQ.X.etal.Screen-printedCu2S-basedCounterElectrodeforQuantum-dot-sensitizedSolarCell.Chem.Lett.2010,39,1168-1170.)或制备Cu2S和氧化石墨烯复合材料作为对电极(RadichJ.G.,DwyerR.,Kamat,P.V.Cu2SReducedGrapheneOxideCompositeforHigh-EfficiencyQuantumDotSolarCells.OvercomingtheRedoxLimitationsofS2-/Sn2-attheCounterElectrode.J.Phys.Chem.Lett.2011,2,2453-2460.),但是以此对电极组装的太阳能电池性能还是不及以Cu2S/Cu为对电极组装的太阳电池。
发明内容
本发明的目的在于克服背景技术中对电极材料存在的不足,解决Cu2S/Cu对电极机械稳定性差和电解液泄露等问题,提供一种制备工艺简单、成本低的电化学沉积制备Cu2S/FTO对电极的方法及该方法制备的太阳能电池Cu2S/FTO对电极。
本发明所述的一种电化学沉积制备Cu2S/FTO对电极的方法,其首先是配制电解液,采用三电极体系,在FTO上用恒电位法进行电化学沉积Cu,然后再在多硫化物溶液中对沉积Cu的FTO进行硫化,从而得到Cu2S/FTO对电极。
所述的电解液为0.03~0.05mol/LCuCl2、6.6×10-3~1.3×10-2mol/L硫脲和0.3~0.5mol/L乳酸混合,用NaOH调节pH值为5.0~7.0的缓冲体系;三电极体系是以铂丝为对电极,以甘汞电极为参比电极,以FTO为工作电极;沉积电位为-0.3~-1.2V,沉积时间为30~60min;多硫化物溶液为0.5~1MNa2S·9H2O、0.5~1MS和0.05~0.1MKCl的甲醇溶液。
本发明采用上述制备对电极方案,解决了Cu2S/FTO对电极机械稳定性(以FTO为载体,负载Cu2S得到的Cu2S/FTO对电极可以将组装的电池密封好,从而不使电解液泄露;而Cu2S/Cu是以Cu为载体,用环氧树脂密封QDSCs后,由于Cu片过薄使Cu2S/Cu对电极容易脱落,不易固定,造成电解液泄露)和电解液泄露的问题,并且以CuCl2代替CuSO4可以增强沉积Cu的均匀性,加少量的硫脲作为电镀添加剂,硫原子能阻滞溶液中的金属离子放电,从而提高阴极极化作用,细化镀层的结晶组织,达到提高镀层对基体的附着力、改进镀铜层的平整性、光洁性和耐蚀性、控制镀层表面粗糙度的目的,乳酸-乳酸钠(乳酸钠由乳酸和NaOH反应生成)缓冲剂可以作为电镀槽中的酸碱缓冲剂,且乳酸可以作为稳定剂。
本发明制备工艺简单,成本低,为制备QDSCs的对电极提供一种可靠的制备方案。
附图说明
图1:本发明所述的太阳能电池结构示意图;
图2:太阳能电池的光电流-电压曲线;实施例1、实施例2、实施例3和实施例4分别对应曲线1、曲线2、曲线3和曲线4,说明实施例2中Cu2S/FTO对电极的制备条件为最优条件。
具体实施方式
实施例1
制备FTO/TiO2薄膜:首先分别用洗涤剂、蒸馏水、丙酮、异丙醇和乙醇超声洗涤FTO导电玻璃;然后用电子天平称量0.66g二氧化钛P25溶于3mL无水乙醇中,常温搅拌24h得到P25浆料。在清洁的FTO导电玻璃上表面(即FTO的一面)的两侧粘上透明胶带形成刮涂区域,并用以控制TiO2薄膜的厚度,滴加过量P25浆料于刮涂区域,并用玻璃棒刮涂P25浆料形成均匀涂层。待自然晾干后在马弗炉中450℃条件下煅烧60min,得到FTO/TiO2薄膜。
制备CdS量子点敏化的FTO/TiO2薄膜:连续离子吸附与反应法(SILAR)制备量子点,即将FTO/TiO2薄膜浸入0.125MCd(NO3)2·4H2O的乙醇溶液中2分钟,取出用乙醇冲洗干净后吹干;然后浸入0.125MNa2S·9H2O的甲醇溶液中2分钟,取出用甲醇冲洗干净后吹干;重复上述操作(浸入乙醇溶液、浸入甲醇溶液)10次,得到CdS量子点敏化的FTO/TiO2薄膜。
制备Pt/FTO对电极,将5mM氯铂酸的异丙醇溶液均匀滴在清洗过的FTO导电玻璃表面,待其自然晾干后放入电阻炉中385℃下煅烧30min,制得Pt/FTO对电极。
组装太阳能电池:以CdS量子点敏化的FTO/TiO2薄膜为光阳极,上述制备好的Pt/FTO为对电极,根据如图1所示结构分别组装太阳能电池,在两电极之间注入多硫化物电解质溶液(2MNa2S·9H2O、2MS和0.2MKCl的甲醇与水的混合溶液(体积比7:3)),使用环氧树脂密封QDSCs。
对组装好的电池进行光电性能测试:用电化学工作站记录QDSCs的光电流—电压(I-V)曲线,光源采用500W氙灯,入射光光强为100mW/cm2,其强度通过辐照计测得。电池的有效面积为0.2cm2。记录得到光电流—电压(I-V)曲线(如图2所示,对应图2中的曲线1),计算得到以Pt/FTO为对电极组装的QDSCs的光电转换效率(PCE)为0.076%。
实施例2
相同方法制备FTO/TiO2薄膜和CdS量子点敏化的FTO/TiO2薄膜。
制备Cu2S/FTO对电极:先配制电解液,含0.0333mol/LCuCl2、6.7×10-3mol/L硫脲、0.333mol/L乳酸,用NaOH调溶液pH值为6.0的缓冲体系。采用铂丝为对电极,甘汞为参比电极,FTO为工作电极的三电极体系电化学工作站(CHI660A,上海辰华仪器有限公司)在FTO上恒电位法沉积Cu,电位设置为-0.8V,沉积60min。然后再配制用于硫化作用的多硫化物溶液:0.5MNa2S·9H2O、0.5MS和0.05MKCl的甲醇溶液。把沉积Cu后的FTO放入多硫化物溶液中5S后取出,并用乙醇冲洗干净、吹干,得到Cu2S/FTO对电极。
组装太阳能电池:以CdS量子点敏化的FTO/TiO2薄膜为光阳极,上述制备好的Cu2S/FTO为对电极,根据如图1所示结构分别组装太阳能电池,在两电极之间注入多硫化物电解质溶液(2MNa2S·9H2O、2MS和0.2MKCl的甲醇与水的混合溶液(体积比7:3)),使用环氧树脂密封QDSCs。
对组装好的电池进行光电性能测试:记录得到光电流—电压(I-V)曲线((如图2所示,对应图2中的曲线2)计算得到以Cu2S/FTO为对电极组装的QDSCs的光电转换效率(PCE)为0.356%。
实施例3
相同方法制备FTO/TiO2薄膜和CdS量子点敏化的FTO/TiO2薄膜。
制备Cu2S/FTO对电极:先配制电解液,0.05mol/LCuCl2、1.3×10-2mol/L硫脲、0.5mol/L乳酸混合,用NaOH调节pH值为7.0的缓冲体系。采用铂丝为对电极,甘汞为参比电极,FTO为工作电极的三电极体系电化学工作站(CHI660A,上海辰华仪器有限公司)在FTO上恒电位法沉积Cu,电位设置为为-1.2V,沉积60min。然后再配制用于硫化作用的多硫化物溶液:多硫化物溶液为1MNa2S·9H2O、1MS和0.1MKCl的甲醇溶液。把沉积Cu后的FTO放入多硫化物溶液中5S后取出,并用乙醇冲洗干净、吹干,得到Cu2S/FTO对电极。
组装太阳能电池:以CdS量子点敏化的FTO/TiO2薄膜为光阳极,上述制备好的Cu2S/FTO为对电极,根据如图1所示结构分别组装太阳能电池,在两电极之间注入多硫化物电解质溶液(2MNa2S·9H2O、2MS和0.2MKCl的甲醇与水的混合溶液(体积比7:3)),使用环氧树脂密封QDSCs。
对组装好的电池进行光电性能测试:记录得到光电流—电压(I-V)曲线((如图2所示,对应图2中的曲线3)计算得到以此Cu2S/FTO为对电极组装的QDSCs的光电转换效率(PCE)为0.119%。
实施例4
相同方法制备FTO/TiO2薄膜和CdS量子点敏化的FTO/TiO2薄膜。
制备Cu2S/FTO对电极:先配制电解液,电解液为0.04mol/LCuCl2、1.0×10-2mol/L硫脲、0.4mol/L乳酸混合,用NaOH调节pH值为5.0的缓冲体系。采用铂丝为对电极,甘汞为参比电极,FTO为工作电极的三电极体系电化学工作站(CHI660A,上海辰华仪器有限公司)在FTO上恒电位法沉积Cu,电位设置为为-0.3V,沉积30min。然后再配制用于硫化作用的多硫化物溶液:0.75MNa2S·9H2O、0.75MS和0.075MKCl的甲醇溶液。把沉积Cu后的FTO放入多硫化物溶液中5S后取出,并用乙醇冲洗干净、吹干,得到Cu2S/FTO对电极。
组装太阳能电池:以CdS量子点敏化的FTO/TiO2薄膜为光阳极,上述制备好的Cu2S/FTO为对电极,根据如图1所示结构分别组装太阳能电池,在两电极之间注入多硫化物电解质溶液(2MNa2S·9H2O、2MS和0.2MKCl的甲醇与水的混合溶液(体积比7:3)),使用环氧树脂密封QDSCs。
对组装好的电池进行光电性能测试:记录得到光电流—电压(I-V)曲线((如图2所示,对应图2中的曲线4)计算得到以此Cu2S/FTO为对电极组装的QDSCs的光电转换效率(PCE)为0.101%。

Claims (5)

1.一种利用电化学沉积法制备太阳能电池Cu2S/FTO对电极的方法,其特征在于:其首先是配制电解液,采用三电极体系,在FTO上用恒电位法进行电化学沉积Cu,然后再在多硫化物溶液中对沉积Cu的FTO进行硫化,从而得到Cu2S/FTO对电极;电解液为0.03~0.05mol/LCuCl2、6.6×10-3~1.3×10-2mol/L硫脲和0.3~0.5mol/L乳酸混合,pH值为5.0~7.0的缓冲体系;多硫化物溶液为0.5~1MNa2S·9H2O、0.5~1MS和0.05~0.1MKCl的甲醇溶液。
2.如权利要求1所述的一种利用电化学沉积法制备太阳能电池Cu2S/FTO对电极的方法,其特征在于:三电极体系是以铂丝为对电极,以甘汞电极为参比电极,以FTO为工作电极。
3.如权利要求1所述的一种利用电化学沉积法制备太阳能电池Cu2S/FTO对电极的方法,其特征在于:沉积电位为-0.3~-1.2V,沉积时间为30~60min。
4.如权利要求1所述的一种利用电化学沉积法制备太阳能电池Cu2S/FTO对电极的方法,其特征在于:是用NaOH调节电解液的pH为5.0~7.0。
5.一种太阳能电池Cu2S/FTO对电极,其特征在于:是由权利要求1~4任何一项所述的方法制备得到。
CN201610011491.9A 2016-01-08 2016-01-08 一种太阳能电池Cu2S/FTO对电极及其电化学沉积制备方法 Pending CN105655131A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610011491.9A CN105655131A (zh) 2016-01-08 2016-01-08 一种太阳能电池Cu2S/FTO对电极及其电化学沉积制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610011491.9A CN105655131A (zh) 2016-01-08 2016-01-08 一种太阳能电池Cu2S/FTO对电极及其电化学沉积制备方法

Publications (1)

Publication Number Publication Date
CN105655131A true CN105655131A (zh) 2016-06-08

Family

ID=56484083

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610011491.9A Pending CN105655131A (zh) 2016-01-08 2016-01-08 一种太阳能电池Cu2S/FTO对电极及其电化学沉积制备方法

Country Status (1)

Country Link
CN (1) CN105655131A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106328379A (zh) * 2016-09-18 2017-01-11 河南师范大学 一种量子点敏化太阳能电池石墨烯复合对电极的制备方法
CN106784157A (zh) * 2017-01-06 2017-05-31 西北工业大学 一种可双面照射量子点敏化太阳能电池的对电极和制备
CN107620103A (zh) * 2017-09-11 2018-01-23 洛阳师范学院 一种一硫化锗薄膜的制备方法
CN107740150A (zh) * 2017-08-25 2018-02-27 洛阳师范学院 一种硒化锗薄膜及其制备方法
WO2018119685A1 (en) * 2016-12-27 2018-07-05 China Triumph International Engineering Co., Ltd. Method for forming a cdte thin film solar cell including a metal doping step and system for performing said metal doping step
CN110098058A (zh) * 2019-05-06 2019-08-06 吉林大学 一种基于CuTi2S4模板原位制备的Ti/Cu2-xSe对电极、制备方法及其应用
CN111328219A (zh) * 2020-03-31 2020-06-23 Oppo广东移动通信有限公司 用于电子设备的背壳、电子设备、制备方法
CN111841575A (zh) * 2020-07-09 2020-10-30 中南大学 一种表面硫修饰的多孔铜基复合催化剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103668374A (zh) * 2013-12-19 2014-03-26 株洲永盛电池材料有限公司 一种宽幅不锈钢带单面镀铜的方法及电镀槽
CN104789999A (zh) * 2015-04-24 2015-07-22 深圳市崇辉表面技术开发有限公司 一种铁件直接电镀酸铜溶液

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103668374A (zh) * 2013-12-19 2014-03-26 株洲永盛电池材料有限公司 一种宽幅不锈钢带单面镀铜的方法及电镀槽
CN104789999A (zh) * 2015-04-24 2015-07-22 深圳市崇辉表面技术开发有限公司 一种铁件直接电镀酸铜溶液

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KE ZHAO等: ""Electroplating Cuprous Sulfide Counter Electrode for High-Efficiency Long-Term Stability Quantum Dot Sensitized Solar Cells"", 《JOURNAL OF PHYSICAL CHEMISTRY C》 *
M. ROSTOM ALI等: ""Electrodeposition of Copper from a Choline Chloride based Ionic Liquid"", 《电化学》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106328379A (zh) * 2016-09-18 2017-01-11 河南师范大学 一种量子点敏化太阳能电池石墨烯复合对电极的制备方法
CN106328379B (zh) * 2016-09-18 2018-06-19 河南师范大学 一种量子点敏化太阳能电池石墨烯复合对电极的制备方法
CN108604502A (zh) * 2016-12-27 2018-09-28 中国建材国际工程集团有限公司 用于形成CdTe薄膜太阳能电池的包括金属掺杂步骤的方法和用于执行所述金属掺杂步骤的系统
CN108604502B (zh) * 2016-12-27 2021-08-03 中国建材国际工程集团有限公司 用于形成CdTe薄膜太阳能电池的包括金属掺杂步骤的方法和用于执行所述金属掺杂步骤的系统
WO2018119685A1 (en) * 2016-12-27 2018-07-05 China Triumph International Engineering Co., Ltd. Method for forming a cdte thin film solar cell including a metal doping step and system for performing said metal doping step
CN106784157A (zh) * 2017-01-06 2017-05-31 西北工业大学 一种可双面照射量子点敏化太阳能电池的对电极和制备
CN107740150A (zh) * 2017-08-25 2018-02-27 洛阳师范学院 一种硒化锗薄膜及其制备方法
CN107740150B (zh) * 2017-08-25 2019-11-08 洛阳师范学院 一种硒化锗薄膜及其制备方法
CN107620103B (zh) * 2017-09-11 2019-12-24 洛阳师范学院 一种一硫化锗薄膜的制备方法
CN107620103A (zh) * 2017-09-11 2018-01-23 洛阳师范学院 一种一硫化锗薄膜的制备方法
CN110098058A (zh) * 2019-05-06 2019-08-06 吉林大学 一种基于CuTi2S4模板原位制备的Ti/Cu2-xSe对电极、制备方法及其应用
CN111328219A (zh) * 2020-03-31 2020-06-23 Oppo广东移动通信有限公司 用于电子设备的背壳、电子设备、制备方法
CN111841575A (zh) * 2020-07-09 2020-10-30 中南大学 一种表面硫修饰的多孔铜基复合催化剂及其制备方法和应用
CN111841575B (zh) * 2020-07-09 2022-11-22 中南大学 一种表面硫修饰的多孔铜基复合催化剂及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN105655131A (zh) 一种太阳能电池Cu2S/FTO对电极及其电化学沉积制备方法
Li et al. Improvement of performance of dye-sensitized solar cells based on electrodeposited-platinum counter electrode
Lin et al. A composite counter electrode of CoS/MWCNT with high electrocatalytic activity for dye-sensitized solar cells
Sun et al. Dye-sensitized solar cells with NiS counter electrodes electrodeposited by a potential reversal technique
CN102915851B (zh) 一种基于硒化物的染料敏化太阳能电池对电极
Xiao et al. A high performance Pt-free counter electrode of nickel sulfide/multi-wall carbon nanotube/titanium used in dye-sensitized solar cells
Ku et al. Transparent NiS counter electrodes for thiolate/disulfide mediated dye-sensitized solar cells
Antoniadou et al. Quantum dot sensitized titania applicable as photoanode in photoactivated fuel cells
Kim et al. Facile chemical bath deposition of CuS nano peas like structure as a high efficient counter electrode for quantum-dot sensitized solar cells
Wang et al. Electrodeposition of Cu2S nanoparticles on fluorine-doped tin oxide for efficient counter electrode of quantum-dot-sensitized solar cells
Kim et al. Cost-effective and morphology controllable PVP based highly efficient CuS counter electrodes for high-efficiency quantum dot-sensitized solar cells
Tai et al. Optically transparent counter electrode for dye-sensitized solar cells based on cobalt sulfide nanosheet arrays
DK3105811T3 (en) SOL-RECHARGEABLE REDOX FLOW CELL
CN106952731B (zh) 一种染料敏化太阳能电池NiS2/CoS2对电极的制备方法
CN105719836A (zh) 一种染料敏化太阳能电池硫化钴镍对电极的制备方法
Zhang et al. Influence of highly efficient PbS counter electrode on photovoltaic performance of CdSe quantum dots-sensitized solar cells
Wu et al. Cyclic voltammetric deposition of discrete nickel phosphide clusters with mesoporous nanoparticles on fluorine-doped tin oxide glass as a counter electrode for dye-sensitized solar cells
Lin et al. Characterization of polyaniline counter electrodes for dye-sensitized solar cells
CN104465113A (zh) 一种氮掺杂石墨烯对电极制备方法及其在染料敏化太阳能电池中的应用
CN104377036B (zh) 一种In2S3为缓冲层的AgInS2量子点敏化TiO2光电极的制备方法
Gopi et al. One-step synthesis of solution processed time-dependent highly efficient and stable PbS counter electrodes for quantum dot-sensitized solar cells
Zhang et al. Fabrication of CdTe quantum dots sensitized TiO2 nanorod-array-film photoanodes via the route of electrochemical atomic layer deposition
Manjceevan et al. Optimization of performance and stability of quantum dot sensitized solar cells by manipulating the electrical properties of different metal sulfide counter electrodes
CN103400700B (zh) 基于二元低铂合金对电极的染料敏化太阳能电池及其制备方法和应用
Gulen Lithium perchlorate-assisted electrodeposition of CoS catalyst surpassing the performance of platinum in dye sensitized solar cell

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160608