CN106784157A - 一种可双面照射量子点敏化太阳能电池的对电极和制备 - Google Patents

一种可双面照射量子点敏化太阳能电池的对电极和制备 Download PDF

Info

Publication number
CN106784157A
CN106784157A CN201710009208.3A CN201710009208A CN106784157A CN 106784157 A CN106784157 A CN 106784157A CN 201710009208 A CN201710009208 A CN 201710009208A CN 106784157 A CN106784157 A CN 106784157A
Authority
CN
China
Prior art keywords
electrode
quantum dot
solar cell
double
sided illumination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710009208.3A
Other languages
English (en)
Inventor
徐婷婷
王瑞齐
陈立新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201710009208.3A priority Critical patent/CN106784157A/zh
Publication of CN106784157A publication Critical patent/CN106784157A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Cells (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于量子点敏化太阳能电池技术领域,具体涉及一种可双面照射量子点敏化太阳能电池的对电极及其制备方法。本发明的技术方案要点为:可双面受光的对电极材料为在透明导电玻璃上承载Cu2S催化层,该催化层采用酸腐蚀后的黄铜材料置于多硫电解液中反应得到。本发明制备工艺路线简便,成本低廉,有效解决了常见量子点敏化太阳能电池对电极材料不透光,光源入射方向单一局限的问题。本发明制得的对电极材料应用在量子点敏化太阳能电池中,具有较好的光电转换性能,在光电转换器件领域具有潜在的应用前景。

Description

一种可双面照射量子点敏化太阳能电池的对电极和制备
技术领域
本发明属于太阳能电池技术领域,涉及一种可双面照射量子点敏化太阳能电池的对电极和制备方法。
发明背景
太阳能电池是一种将太阳能转化为电能的装置,具有能量来源丰富,环保等优点。其发展主要历经了以下的三个发展阶段,第一代的太阳能电池主要以单晶硅、多晶硅和非晶硅为主体,但由于其造价高且制作成本高昂使其难以继续发展。第二代太阳能电池以铜铟镓硒、碲化镉等化合物薄膜电池和聚合物太阳能电池为代表,其薄膜厚度薄、成本低廉,虽然很大程度降低了器件对原材料的需求,但是其所需稀有材料如铟、碲等储量低且难以进行大规模化生产。第三代太阳能电池主要以染料敏化太阳能电池和量子点敏化太阳能电池等有机电池为主。其中,量子点敏化太阳能电池采用无机半导体量子点作为敏化剂,具有制备成本低且理论转化率较高(可达66%的光电转换效率)等优点,倍受研究者的关注。目前,国际上已报道的成功用于量子点敏化太阳能电池的对电极材料主要为Cu2S、CuS、PbS、CoS等金属硫化物,归功于其与电池中S2-/Sn 2-多硫电解质体系较好的匹配性,因此表现出较好的催化性能。而染料敏化太阳能电池中常用的铂和其它贵金属对电极在量子点敏化太阳能电池中催化活性较低。
当前已报道的金属硫化物对电极大多不具有透光性,由此组装得到的电池只能通过光阳极一侧接收太阳光,因而大大限制了电池的使用,尤其是在光伏建筑一体化(BIPV)应用中具有很大的局限性。因此开发具有可双面照射的量子点敏化电池具有很好的理论研究意义和工业化开发前景。
发明内容
本发明针对上述技术分析,采用了具有一定光线透过率的Cu2S网孔材料作为量子点敏化太阳能电池的对电极,开发了一种可双面照射量子点敏化太阳能电池,并有效实现了电池的重量轻量化。
本发明的Cu2S做成的对电极可以双面照射,这样更有利于太阳光的吸收,也降低了制作成本。同时制作工艺简单,稳定性较好,所制得的量子点敏化太阳能电池具有较好的光电效率。
本发明的一种可双面照射量子点敏化太阳能电池的对电极,所述对电极包括导电基板和Cu2S对电极两部分组成;其中导电基片为可透光的导电玻璃。
所述透明导电玻璃为掺F的SnO2导电玻璃(FTO)或掺Sn的In2O3导电玻璃(ITO)中的一种。
本发明的一种可双面照射量子点太阳能电池的对电极制备方法,包括:
(1)裁剪7×7mm左右的方形黄铜材料,将其置于去污剂溶液、去离子水和无水乙醇中超声清洗10~20min;
(2)将步骤(1)中清洗过的黄铜材料置于40~70℃水浴加热的浓HCl中反应,取出后,用大量去离子水冲洗,然后用N2干燥;
(3)室温下,在溶剂中加入单质硫、硫化物,搅拌制得多硫电解质溶液;
(4)将步骤(2)中用浓HCl处理过的黄铜材料浸入多硫电解液中反应0.5~10min,取出后,洗涤,烘干,得到Cu2S对电极材料;
(5)将步骤(4)中制得的Cu2S材料与导电玻璃附着,组成Cu2S/导电玻璃对电极,用于电池组装。
所述步骤(2)黄铜材料在热的浓HCl中反应时间控制在1~15min。
所述步骤(3)多硫电解液包括单质硫、硫化物;单质硫的形态为沉降流、升华硫、精制硫中的一种或几种;硫化物为硫化钠、硫化钾、硫化铵中的一种或几种。
本发明所述一种可双面照射量子点太阳能电池中的Cu2S对电极,未用多硫酸电解液处理前一直为淡黄色,处理后为黑色的Cu2S。
本发明所述一种可双面照射量子点太阳能电池中的Cu2S对电极可与CdS/TiO2敏化光阳极、多硫化物电解质组装成量子点敏化太阳能电池。
与现有技术相比,本发明具有以下有益的技术效果:Cu2S是由网格材料制成的,其特殊的结构可以使得光线穿透,这种Cu2S对电极材料成本低廉,制作过程简便可控,具有很好的光线通过率。该种Cu2S对电极可以进行双面照射。这种Cu2S对电极的特殊结构使得电子只能沿着网格传输,从而增加了电子传输的路径。
附图说明
图1为本发明中所述的铜网及Cu2S网的SEM图。
图2为本发明实例中所述的Cu2S网对电极与TiO2/CdS敏化光阳极、多硫化物电解质组装成量子点敏化太阳能电池示意图。
具体制备方法
下面结合具体实施例,进一步阐述本发明使内容更容易被理解。在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
本发明所用原料均为市售的化学纯原料。
实施例1
一种可双面照射量子点太阳能电池的对电极制备如下:
1、将电极的基底FTO用超声波清洗15min,然后用N2吹干,用欧姆表测试导电面电阻(方阻为7~8Ω),放置于实验台备用。
2、裁剪7×7mm的黄铜材料,将其用超声清洗10min,得到表面干净的黄铜材料。将其置于水浴加热的浓HCl中反应5min;再用大量去离子水冲洗,干燥。将其浸入多硫电解液中,表面快速生成黑色的Cu2S。
3、将密封膜剪出中间预留出方形的槽子,贴在清洗干净的FTO表面,将上述处理过的Cu2S放入预留出的方形中,确保与密封纸边缘没有接触,然后将不同浓度的光阳极膜与Cu2S对齐,紧密的贴在一起,放在加热平板上加热2min,待密封好以后,注射电解液,然后用热熔胶将通道口封住,完成电池组装,进行后续测试。
4、上述Cu2S对电极组装的量子点敏化太阳能电池,其中光阳极为采用刮涂法制备的TiO2多层膜光阳极。TiO2多层膜表面采用连续离子层吸附反应法(SILAR)沉积CdS量子点。沉积量子点的前驱体溶液为0.05M的Cd(OAc)2·3H2O水溶液和Na2S·9H2O的甲醇:水(v/v)=1:1的溶液。所用电解液为1M S,1M Na2S,0.1MNaOH混合而成的均匀溶液。
经检测,该量子点敏化太阳能电池量子点共敏化太阳能电池在标准模拟太阳光照射下具有较佳的光电转换性能,其开路电压为0.825V,电流密度为0.44mA/cm2填充因子为0.38,太阳光从Cu2S对电极的正面照射时,光电转换效率1.38%;从背面照射时,光电转换效率为0.33%。
实施例2
一种可双面照射量子点太阳能电池的对电极的制备如下:
1、将电极的基底FTO用超声波清洗20min,然后用N2吹干,用欧姆表测试导电面电阻(方阻为7~8Ω),放置于实验台备用。
2、裁剪7×7mm的黄铜材料,将其用超声清洗15min,得到表面干净的黄铜材料。将其置于水浴加热的浓HCl中反应8min;再用大量去离子水冲洗,干燥。将其浸入多硫电解液中,表面快速生成黑色的Cu2S。
3、将密封膜剪出中间预留出方形的槽子,贴在清洗干净的FTO表面,将上述处理过的Cu2S放入预留出的方形中,确保与密封纸边缘没有接触,然后将不同浓度的光阳极膜与Cu2S对齐,紧密的贴在一起,放在加热平板上加热3min,待密封好以后,注射电解液,然后用热熔胶将通道口封住,进行后续测试。
4、将上述Cu2S对电极组装成量子点敏化太阳能电池,其中光阳极为采用刮涂法制备的TiO2多层膜光阳极。量子点采用连续离子层吸附反应法(SILAR)沉积CdS量子点。其中量子点为0.10M的Cd(OAc)2·3H2O水溶液和Na2S·9H2O的甲醇:水(v/v)=1:1的溶液。所用电解液为1M S,1M Na2S,0.1M NaOH混合而成的均匀溶液。
经检测,该量子点敏化太阳能电池量子点共敏化太阳能电池在标准模拟太阳光照射下具有较佳的光电转换性能,其开路电压为0.882V,电流密度为0.44mA/cm2填充因子为0.39,太阳光从Cu2S对电极的正面照射时,光电转换效率1.53%;从背面照射时,光电转换效率0.37%。
实施例3
一种可双面照射量子点太阳能电池的对电极的制备如下:
1、将电极的基底FTO用超声波清洗30min,然后用N2吹干,用欧姆表测试导电面电阻(方阻为7~8Ω),放置于实验台备用。
2、裁剪7×7mm的黄铜材料,将其用超声清洗20min,得到表面干净的黄铜材料。将其置于水浴加热的浓HCl中反应10min;再用大量去离子水冲洗,干燥。将其浸入多硫电解液中,表面快速生成黑色的Cu2S。
3、将密封膜剪出中间预留出方形的槽子,贴在清洗干净的FTO表面,将上述处理过的Cu2S放入预留出的方形中,确保与密封纸边缘没有接触,然后将不同浓度的光阳极膜与Cu2S对齐,紧密的贴在一起,放在加热平板上加热2min,待密封好以后,注射电解液,然后用热熔胶将通道口封住,进行后续测试。
4、将上述Cu2S对电极组装成量子点敏化太阳能电池,其中光阳极为采用刮涂法制备的TiO2多层膜光阳极。量子点采用连续离子层吸附反应法(SILAR)沉积CdS量子点。其中量子点为0.25M的Cd(OAc)2·3H2O水溶液和Na2S·9H2O的甲醇:水(v/v)=1:1的溶液。所用电解液为1M S,1M Na2S,0.1M NaOH混合而成的均匀溶液。
经检测,该量子点敏化太阳能电池量子点共敏化太阳能电池在标准模拟太阳光照射下具有较佳的光电转换性能,其开路电压为0.878V,电流密度为0.47mA/cm2填充因子为0.39,太阳光从Cu2S对电极的正面照射时,光电转换效率1.61%;从背面照射时,光电转换效率为0.38%。
实施例4
一种可双面照射量子点太阳能电池的对电极的制备如下:
1、将电极的基底FTO用超声波清洗20min,然后用N2吹干,用欧姆表测试导电面电阻(方阻为7~8Ω),放置于实验台备用。
2、裁剪7×7mm的黄铜材料,将其用超声清洗20min,得到表面干净的黄铜材料。将其置于水浴加热的浓HCl中反应8min;再用大量去离子水冲洗,干燥。将其浸入多硫电解液中,表面快速生成黑色的Cu2S。
3、将密封膜剪出中间预留出方形的槽子,贴在清洗干净的FTO表面,将上述处理过的Cu2S放入预留出的方形中,确保与密封纸边缘没有接触,然后将不同浓度的光阳极膜与Cu2S对齐,紧密的贴在一起,放在加热平板上加热3min,待密封好以后,注射电解液,然后用热熔胶将通道口封住,进行后续测试。
4、将上述Cu2S对电极组装成量子点敏化太阳能电池,其中光阳极为采用刮涂法制备的TiO2多层膜光阳极。量子点采用连续离子层吸附反应法(SILAR)沉积CdS量子点。其中量子点为0.50M的Cd(OAc)2·3H2O水溶液和Na2S·9H2O的甲醇:水(v/v)=1:1的溶液。所用电解液为1M S,1M Na2S,0.1M NaOH混合而成的均匀溶液。
经检测,该量子点敏化太阳能电池量子点共敏化太阳能电池在标准模拟太阳光照射下具有较佳的光电转换性能,其开路电压为0.884V,电流密度为0.47mA/cm2填充因子为0.40,太阳光从Cu2S对电极的正面照射时,光电转换效率1.67%;从背面照射时,光电转换效率为0.40%。
本发明制备的Cu2S/FTO对电极是一种优良的量子点敏化太阳能电池对电极,可以进行双面照射,且随着量子点增加光电转换效率也增加。

Claims (6)

1.一种可双面照射量子点敏化太阳能电池的对电极其特征在于:所述Cu2S对电极为一种具有一定透光率的可双面受光材料,所述透明导电玻璃为掺F的SnO2导电玻璃(FTO)或掺Sn的In2O3导电玻璃(ITO)中的一种。
2.根据权利要求1所述的一种可双面照射量子点太阳能电池的对电极的制备方法,包括:
(1)裁剪7×7mm左右的方形黄铜材料,将其置于去污剂溶液、去离子水和无水乙醇中超声清洗10~20min;
(2)将步骤(1)中清洗过的黄铜材料置于40~70℃水浴加热的浓HCl中反应,取出后,用大量去离子水冲洗,然后用N2干燥;
(3)室温下,在溶剂中加入单质硫、硫化物,搅拌制得多硫电解质溶液。
(4)将步骤(2)中用浓HCl处理过的黄铜材料浸入多硫电解液中反应0.5~10min,取出后,洗涤,烘干,得到Cu2S对电极材料。
(5)将步骤(4)中制得的Cu2S材料与导电玻璃附着,组成Cu2S/导电玻璃对电极,用于电池组装。
3.根据权利要求2所述一种可双面照射量子点太阳能电池的对电极的制备方法,其特征在于:所述步骤(2)黄铜材料在热的浓HCl中反应时间控制在1~15min。
4.根据权利要求2所述一种可双面照射量子点太阳能电池的对电极的制备方法,其特征在于:所述步骤(3)多硫电解液包括单质硫、硫化物;单质硫的形态为沉降流、升华硫、精制硫中的一种或几种;硫化物为硫化钠、硫化钾、硫化铵中的一种或几种。
5.根据权利要求2所述一种可双面照射量子点太阳能电池的对电极的制备方法,其特征在于:所述步骤(4)Cu2S对电极未用多硫酸电解液处理前一直为淡黄色,处理后为黑色的Cu2S。
6.一种可双面照射量子点太阳能电池的对电极的应用,其特征在于:Cu2S对电极与CdS/TiO2敏化光阳极、多硫化物电解质组装成量子点敏化太阳能电池。
CN201710009208.3A 2017-01-06 2017-01-06 一种可双面照射量子点敏化太阳能电池的对电极和制备 Pending CN106784157A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710009208.3A CN106784157A (zh) 2017-01-06 2017-01-06 一种可双面照射量子点敏化太阳能电池的对电极和制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710009208.3A CN106784157A (zh) 2017-01-06 2017-01-06 一种可双面照射量子点敏化太阳能电池的对电极和制备

Publications (1)

Publication Number Publication Date
CN106784157A true CN106784157A (zh) 2017-05-31

Family

ID=58949763

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710009208.3A Pending CN106784157A (zh) 2017-01-06 2017-01-06 一种可双面照射量子点敏化太阳能电池的对电极和制备

Country Status (1)

Country Link
CN (1) CN106784157A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1949528A2 (en) * 2005-08-16 2008-07-30 Nanosolar, Inc. Photovolatic devices with conductive barrier layers and foil substrates
CN103219159A (zh) * 2013-02-20 2013-07-24 中国科学院安徽光学精密机械研究所 一种用于量子点敏化太阳电池的CuxS(x=1–2)对电极的制备方法
US20130298978A1 (en) * 2011-01-31 2013-11-14 Honeywell International Inc. Quantum dot solar cell
CN105655131A (zh) * 2016-01-08 2016-06-08 吉林大学 一种太阳能电池Cu2S/FTO对电极及其电化学沉积制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1949528A2 (en) * 2005-08-16 2008-07-30 Nanosolar, Inc. Photovolatic devices with conductive barrier layers and foil substrates
US20130298978A1 (en) * 2011-01-31 2013-11-14 Honeywell International Inc. Quantum dot solar cell
CN103219159A (zh) * 2013-02-20 2013-07-24 中国科学院安徽光学精密机械研究所 一种用于量子点敏化太阳电池的CuxS(x=1–2)对电极的制备方法
CN105655131A (zh) * 2016-01-08 2016-06-08 吉林大学 一种太阳能电池Cu2S/FTO对电极及其电化学沉积制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蒋晓辉: "《最新新型工程材料生产新技术应用与新产品开发研制及行业技术标准实用大全 十 材料分析测试卷》", 30 November 2004, 学苑音像出版社 *

Similar Documents

Publication Publication Date Title
Gong et al. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends
Iqbal et al. Progress in the performance of dye sensitized solar cells by incorporating cost effective counter electrodes
JP5038894B2 (ja) 基板上に形成された黄銅鉱の吸収層上に硫化亜鉛バッファ層を化学浴析出により施与する黄銅鉱薄膜太陽電池の製造方法
Parisi et al. Electro-optical characterization of ruthenium-based dye sensitized solar cells: A study of light soaking, ageing and temperature effects
Selopal et al. Hierarchical self-assembled Cu2S nanostructures: fast and reproducible spray deposition of effective counter electrodes for high efficiency quantum dot solar cells
CN103400697A (zh) 一种全固态柔性敏化太阳能电池及其制备方法
Lugo et al. Characterization of CuInS2 thin films prepared by chemical bath deposition and their implementation in a solar cell
CN105185847A (zh) 一种制备铜锌锡硫薄膜的方法
CN103943721A (zh) 一种铜锌锡硫薄膜及其制备方法和用途
Namazov et al. Properties of graphene based solar panels
US9224903B2 (en) Method for manufacturing photoelectric converter
CN106449849A (zh) 一种石墨烯/铜锌锡硫薄膜太阳电池及其制造方法
JP5171724B2 (ja) 光エネルギー変換触媒及びその作製方法
Tuc Altaf et al. Recent Advances in Photochargeable Integrated and All-in-One Supercapacitor Devices
CN105470393A (zh) 一种钙钛矿太阳能电池电解水制氢集成器件及其制备方法
CN100592536C (zh) 光电转换装置及其制造方法
CN103515106B (zh) 一种PbS/ITO薄膜基光电化学光伏电池制备法
JP2010045305A (ja) 硫化物系化合物半導体
De Rossi et al. Large-area electrodeposition of counterelectrodes utilizing the same integrated conductive grid for fabrication of parallel flexible dye solar cell modules
CN106784157A (zh) 一种可双面照射量子点敏化太阳能电池的对电极和制备
CN103346261B (zh) 一种TiO2与MEH-PPV杂化复合异质结薄膜太阳能电池及其制备与应用
CN105140335A (zh) 在透明导电基底上一步制备铜锌锡硫薄膜的方法
CN107946077A (zh) 用于量子点敏化太阳电池纳米棒状结构光阳极的制备方法
CN102262961A (zh) 形成太阳能电池电极的方法
Ueda et al. Effect of monolithic photovoltaic-photoelectrochemical-integrated Cu (In, Ga) Se2-related co-planar device on water splitting reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170531

WD01 Invention patent application deemed withdrawn after publication