CN106328379B - 一种量子点敏化太阳能电池石墨烯复合对电极的制备方法 - Google Patents

一种量子点敏化太阳能电池石墨烯复合对电极的制备方法 Download PDF

Info

Publication number
CN106328379B
CN106328379B CN201610827745.4A CN201610827745A CN106328379B CN 106328379 B CN106328379 B CN 106328379B CN 201610827745 A CN201610827745 A CN 201610827745A CN 106328379 B CN106328379 B CN 106328379B
Authority
CN
China
Prior art keywords
graphene
copper sheet
quantum dot
solar cell
sensitized solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610827745.4A
Other languages
English (en)
Other versions
CN106328379A (zh
Inventor
刘玉芳
武大鹏
王付娟
高志永
徐芳
杨东晓
常玖利
蒋凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan Normal University
Original Assignee
Henan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan Normal University filed Critical Henan Normal University
Priority to CN201610827745.4A priority Critical patent/CN106328379B/zh
Publication of CN106328379A publication Critical patent/CN106328379A/zh
Application granted granted Critical
Publication of CN106328379B publication Critical patent/CN106328379B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Hybrid Cells (AREA)

Abstract

本发明公开了一种量子点敏化太阳能电池石墨烯复合对电极的制备方法,属于量子点敏化太阳能电池对电极的合成技术领域。本发明的技术方案要点为:配制多硫电解液,配制氧化石墨烯溶液,用砂纸将铜片打磨光亮后置于盐酸溶液中于70℃水浴17‑20min,取出铜片用去离子水清洗干净置于氧化石墨烯溶液中于90‑120℃水热反应5‑12h,将制得的石墨烯复合铜片冷冻干燥,置于多硫电解液中硫化10min,最终制得量子点敏化太阳能电池石墨烯复合对电极。本发明制备方法简单,重复率高,所制得的石墨烯能够均匀紧密地生长在金属片上,用于量子点敏化太阳能电池能够有效提高电池的稳定性。

Description

一种量子点敏化太阳能电池石墨烯复合对电极的制备方法
技术领域
本发明属于量子点敏化太阳能对电极的合成技术领域,具体涉及一种量子点敏化太阳能电池石墨烯复合对电极的制备方法。
背景技术
太阳能安全,无污染,储量丰富受到能源研究者的青睐。量子点的可控带隙能够增加对太阳光的吸收,因此,量子点敏化太阳能电池受到人们的关注。硫化的金属铜作为量子点敏化太阳能电池的对电极,因其和多硫电电解液相匹配的氧化还原电对,能够得到较为优越的光学性能。然而,金属片上沉积的硫化铜易发生脱落,同时迁移到光阳极,导致电池稳定性较差。因此,需寻找阻止对电极向光阳极迁移的材料,提高电池的稳定性。石墨烯是由单层的碳原子组成的二维纳米材料,在电学、光学、化学、机械及催化方面拥有良好的性质,而在有效调控石墨烯的这些理化性质的基础上,整合二维(2D)石墨烯形成三维(3D)的石墨烯构建的功能器件在储能、环境、传感及生物分析领域都表现出优良的特性。目前三维石墨烯的制备方法主要为溶液自组装法、界面自组装法和模板介导合成法等。原材料的不同及制备方法的差异,可以有效的调控3D石墨烯的柔韧性、多孔性、活性面积、电子传递速度及传质等性能。公开号为CN104701019A的专利公开了用于量子点敏化太阳能电池复合对电极的制备方法,该方法通过电泳法沉积一层多壁碳纳米管用于量子点敏化太阳能电池的复合对电极,得到的对电极能够提高量子点敏化太阳能电池的光电转化效率和稳定性。公开号为CN102097218A的专利公开了一种量子点敏化太阳能电池,通过调节对电极和电解液,制备出能够大面积生产,提高量子点敏化太阳能电池的光电转化效率的对电极。公开号为CN102176382A的专利公开了石墨烯-量子点复合薄膜的制备方法及构建的太阳能电池,该方法通过将石墨烯-量子点复合粉体的悬浮液在滤膜上抽滤成膜,随后用有机溶剂溶解掉滤膜并将薄膜转移到导电基底上,制备出可以控制量子点与石墨烯的比例以及薄膜的厚度,同时对于导电基底的要求大大降低。目前制备的量子点敏化太阳能电池对电极,由于易脱落,反应过程中对电极物质会迁移到光阳极,从而大大降低电池的稳定性。因此,提高量子点敏化太阳能电池的稳定性是目前需要解决的问题之一。
发明内容
本发明解决的技术问题是提供了一种量子点敏化太阳能电池石墨烯复合对电极的制备方法,该方法制得的石墨烯复合对电极能够有效减少对电极金属硫化物的脱落,同时可缓解脱落的硫化物向光阳极迁移的问题,生长的三维石墨烯结构有利于电解液的渗透,减少电解液的挥发,同时能够避免对电极和光阳极的接触,避免发生短路,与单纯金属硫化后的对电极相比,量子点敏化太阳能电池稳定性得到明显提升。
本发明为解决上述技术问题采用如下技术方案,一种量子点敏化太阳能电池石墨烯复合对电极的制备方法,其特征在于具体步骤为:
(1)在容器中加入25mL去离子水,然后在搅拌的条件下加入12g九水硫化钠和1.6g升华硫,避光条件下搅拌12-24h得到多硫电解液;
(2)在容器中配制20mL质量浓度为0.1-2mg/mL的氧化石墨烯溶液,超声1h后将氧化石墨烯溶液置于水热反应釜中;
(3)用砂纸将铜片打磨光亮后置于质量浓度为35%-37%的盐酸溶液中,于70℃水浴17-20min,取出铜片用去离子水清洗干净备用;
(4)将处理过的铜片置于水热反应釜中于90-120℃水热反应5-12h,在铜片上生长出有三维结构的石墨烯,将制得的石墨烯复合铜片冷冻干燥,保持铜片上石墨烯的三维结构;
(5)将冷冻干燥后的石墨烯复合铜片置于多硫电解液中硫化10min,最终制得量子点敏化太阳能电池石墨烯复合对电极。
进一步限定,铜片上生长的三维石墨烯保持疏松的多孔结构,能够与铜片紧密连接。
本发明与现有技术相比具有以下有益效果:通过调节氧化石墨烯的浓度控制石墨烯在铜片上的生长厚度,水热反应温度和时间能够调节铜片上三维石墨烯的孔径和形貌。本发明制备方法简单,重复率高,所制得的石墨烯能够均匀紧密地生长在金属片上,用于量子点敏化太阳能电池能够有效提高电池的稳定性。
附图说明
图1是本发明实施例1制得的石墨烯生长于铜片上的SEM图,图片放大倍数3000倍;
图2是本发明实施例1制得的石墨烯的SEM图,图片放大倍数8000倍;
图3是本发明实施例2制得的石墨烯的XRD图;
图4是本发明实施例1制得的石墨烯生长于铜片用于量子点敏化太阳能电池测得的电流-时间图。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
配置多硫电解液:在50mL烧杯中加入25mL去离子水,在磁力搅拌器上搅拌的条件下加入12g九水硫化钠和1.6g升华硫,避光条件下搅拌12h。配制氧化石墨烯溶液:在50mL的烧杯中配制20mL质量浓度为0.1mg/mL的氧化石墨烯溶液,超声1h。将超声过的氧化石墨烯溶液加入到25mL水热反应釜中。用砂纸将铜片打磨光亮,将铜片置于质量浓度为35%的盐酸溶液中于70℃水浴17min,取出铜片,用去离子水清洗干净。将铜片置于水热反应釜中于90℃水热反应5h,在铜片上生长出有三维结构的石墨烯,将制得的石墨烯复合铜片冷冻干燥,保持铜片上石墨烯的三维结构。将冷冻干燥后的石墨烯复合铜片置于多硫电解液中硫化10min,最终制得量子点敏化太阳能电池石墨烯复合对电极。将制得的石墨烯复合对电极用于量子点敏化太阳能电池,在太阳光照射下,对组装的太阳能电池进行电性能测试,多次循环后,开路电压、短路电流和填充因子均未发生明显变化。
实施例2
配置多硫电解液:在50mL烧杯中加入25mL去离子水,在磁力搅拌器上搅拌的条件下加入12g九水硫化钠和1.6g升华硫,避光条件下搅拌24h。配制氧化石墨烯溶液:在50mL的烧杯中配制20mL质量浓度为2mg/mL的氧化石墨烯溶液,超声1h。将超声过的氧化石墨烯溶液加入到25mL水热反应釜中。用砂纸将铜片打磨光亮,将铜片置于质量浓度为37%的盐酸溶液中于70℃水浴20min,取出铜片,用去离子水清洗干净。将铜片置于水热反应釜中于120℃水热反应12h,在铜片上生长出有三维结构的石墨烯,将制得的石墨烯复合铜片冷冻干燥,保持铜片上石墨烯的三维结构。将冷冻干燥后的石墨烯复合铜片置于多硫电解液中硫化10min,最终制得量子点敏化太阳能电池石墨烯复合对电极。将制得的石墨烯复合的铜片对电极用于量子点敏化太阳能电池,在太阳光照射下,对组装的太阳能电池进行电性能测试,多次循环之后,开路电压、短路电流和填充因子均未发生明显变化。
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。

Claims (2)

1.一种量子点敏化太阳能电池石墨烯复合对电极的制备方法,其特征在于具体步骤为:
(1)在容器中加入25mL去离子水,然后在搅拌的条件下加入12g九水硫化钠和1.6g升华硫,避光条件下搅拌12-24h得到多硫电解液;
(2)在容器中配制20mL质量浓度为0.1-2mg/mL的氧化石墨烯溶液,超声1h后将氧化石墨烯溶液置于水热反应釜中;
(3)用砂纸将铜片打磨光亮后置于质量浓度为35%-37%的盐酸溶液中,于70℃水浴17-20min,取出铜片用去离子水清洗干净备用;
(4)将处理过的铜片置于水热反应釜中于90-120℃水热反应5-12h,在铜片上生长出有三维结构的石墨烯,将制得的石墨烯复合铜片冷冻干燥,保持铜片上石墨烯的三维结构;
(5)将冷冻干燥后的石墨烯复合铜片置于多硫电解液中硫化10min,最终制得量子点敏化太阳能电池石墨烯复合对电极。
2.根据权利要求1所述的量子点敏化太阳能电池石墨烯复合对电极的制备方法,其特征在于:铜片上生长的三维石墨烯保持疏松的多孔结构,能够与铜片紧密连接。
CN201610827745.4A 2016-09-18 2016-09-18 一种量子点敏化太阳能电池石墨烯复合对电极的制备方法 Active CN106328379B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610827745.4A CN106328379B (zh) 2016-09-18 2016-09-18 一种量子点敏化太阳能电池石墨烯复合对电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610827745.4A CN106328379B (zh) 2016-09-18 2016-09-18 一种量子点敏化太阳能电池石墨烯复合对电极的制备方法

Publications (2)

Publication Number Publication Date
CN106328379A CN106328379A (zh) 2017-01-11
CN106328379B true CN106328379B (zh) 2018-06-19

Family

ID=57787356

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610827745.4A Active CN106328379B (zh) 2016-09-18 2016-09-18 一种量子点敏化太阳能电池石墨烯复合对电极的制备方法

Country Status (1)

Country Link
CN (1) CN106328379B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107946078B (zh) * 2017-11-15 2020-05-12 青岛大学 用于量子点敏化太阳电池复合材料柔性对电极的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097218A (zh) * 2009-12-11 2011-06-15 中国科学院物理研究所 一种量子点敏化太阳能电池
CN102298984A (zh) * 2010-06-24 2011-12-28 中国科学院物理研究所 用于制备敏化太阳电池中硫化亚铜对电极的浆料及方法
CN105523546A (zh) * 2016-01-22 2016-04-27 复旦大学 一种三维石墨烯的制备方法
CN105655131A (zh) * 2016-01-08 2016-06-08 吉林大学 一种太阳能电池Cu2S/FTO对电极及其电化学沉积制备方法
CN105826077A (zh) * 2016-05-13 2016-08-03 北京航空航天大学 一种用于量子点敏化太阳能电池的复合对电极及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104488051B (zh) * 2012-05-25 2017-05-24 韩国生产技术研究院 具有涂覆有石墨烯的碳纳米网的染料敏化太阳能电池及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097218A (zh) * 2009-12-11 2011-06-15 中国科学院物理研究所 一种量子点敏化太阳能电池
CN102298984A (zh) * 2010-06-24 2011-12-28 中国科学院物理研究所 用于制备敏化太阳电池中硫化亚铜对电极的浆料及方法
CN105655131A (zh) * 2016-01-08 2016-06-08 吉林大学 一种太阳能电池Cu2S/FTO对电极及其电化学沉积制备方法
CN105523546A (zh) * 2016-01-22 2016-04-27 复旦大学 一种三维石墨烯的制备方法
CN105826077A (zh) * 2016-05-13 2016-08-03 北京航空航天大学 一种用于量子点敏化太阳能电池的复合对电极及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
染料敏化太阳能电池碳对电极研究进展;肖俊莹等;《河北大学学报(自然科学版)》;20151231;第35卷(第5期);第552-559页 *

Also Published As

Publication number Publication date
CN106328379A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
Manikandan et al. A critical review on two-dimensional quantum dots (2D QDs): From synthesis toward applications in energy and optoelectronics
Wu et al. Oxygen-incorporated few-layer MoS2 vertically aligned on three-dimensional graphene matrix for enhanced catalytic performances in quantum dot sensitized solar cells
Tan et al. Graphene as a flexible electrode: review of fabrication approaches
Meng et al. Trash to treasure: waste eggshells used as reactor and template for synthesis of Co9S8 nanorod arrays on carbon fibers for energy storage
CN104768871B (zh) 石墨烯超薄片及其制作装置、制作方法、以及电容器及其制作方法
Liu et al. Nanomaterials for electrochemical energy storage
Theerthagiri et al. Synthesis and characterization of (Ni1− xCox) Se2 based ternary selenides as electrocatalyst for triiodide reduction in dye-sensitized solar cells
Yen et al. Metal-free, nitrogen-doped graphene used as a novel catalyst for dye-sensitized solar cell counter electrodes
CN109306498B (zh) 一种二维超薄二硫化铌纳米片的制备方法及产品和应用
Wu et al. Antimony-doped tin oxide nanotubes for high capacity lithium storage
CN108441884A (zh) 二硫化钼/碳复合析氢电催化剂及其制备方法
Park et al. Sb: SnO2@ TiO2 heteroepitaxial branched nanoarchitectures for Li ion battery electrodes
Yun et al. Mo2C-based binary and ternary nanocomposites as high-efficiency counter electrodes for dye-sensitized solar cells
Prabakaran et al. Solid state dye sensitized solar cells: Eosin-Y sensitized TiO2–ZnO/PEO–PVDF-HFP-MMT electrolytes/MWCNT–Nafion® counter electrode
CN108269698A (zh) 一种金属硫化物的电化学制备方法及其应用
CN109354056B (zh) 一种具有丰富缺陷的铁掺杂硫化铜纳米片材料及其制备方法和应用
Du et al. Cuprous sulfide on Ni foam as a counter electrode for flexible quantum dot sensitized solar cells
CN102723212B (zh) 氧化铟锡纳米纤维/硫化镉量子点太阳能电池及其制备方法
CN108675357A (zh) 一种无机空穴传输材料二硫化亚铁的制备方法及其应用
Tsai et al. Fabrication of Mesoporous CoS2 Nanotube Arrays as the Counter Electrodes of Dye‐Sensitized Solar Cells
Wang et al. A facile selenic acid etching strategy for designing selenium-doped NiCo2O4/C nanoprisms with hollow/porous structure for advanced asymmetrical supercapacitor
Jiang et al. An electrodeposited amorphous cobalt sulphide nanobowl array with secondary nanosheets as a multifunctional counter electrode for enhancing the efficiency in a dye-sensitized solar cell
CN106328379B (zh) 一种量子点敏化太阳能电池石墨烯复合对电极的制备方法
Kang et al. 3D graphene foam/ZnO nanorods array mixed-dimensional heterostructure for photoelectrochemical biosensing
Yuan et al. Investigation of metal sulfide composites as counter electrodes for improved performance of quantum dot sensitized solar cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Liu Yufang

Inventor after: Wu Dapeng

Inventor after: Wang Fujuan

Inventor after: Gao Zhiyong

Inventor after: Xu Fang

Inventor after: Yang Dongxiao

Inventor after: Chang Jiuli

Inventor after: Jiang Kai

Inventor before: Wu Dapeng

Inventor before: Wang Fujuan

Inventor before: Gao Zhiyong

Inventor before: Xu Fang

Inventor before: Yang Dongxiao

Inventor before: Chang Jiuli

Inventor before: Jiang Kai

GR01 Patent grant
GR01 Patent grant