CN105633220B - 基于柔性基底的全印刷光电探测器及其制备方法 - Google Patents

基于柔性基底的全印刷光电探测器及其制备方法 Download PDF

Info

Publication number
CN105633220B
CN105633220B CN201610203654.3A CN201610203654A CN105633220B CN 105633220 B CN105633220 B CN 105633220B CN 201610203654 A CN201610203654 A CN 201610203654A CN 105633220 B CN105633220 B CN 105633220B
Authority
CN
China
Prior art keywords
bismuth sulfide
sulfide nano
preparation
print
nano line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610203654.3A
Other languages
English (en)
Other versions
CN105633220A (zh
Inventor
鲁志松
周梦瑶
张慧慧
李长明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest University
Original Assignee
Southwest University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest University filed Critical Southwest University
Priority to CN201610203654.3A priority Critical patent/CN105633220B/zh
Publication of CN105633220A publication Critical patent/CN105633220A/zh
Application granted granted Critical
Publication of CN105633220B publication Critical patent/CN105633220B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种基于柔性基底的全印刷光电探测器及其制备方法,制备方法包括硫化铋纳米线及硫化铋纳米线浆料的制备,电极印刷及浆料印刷步骤。通过对本发明制备的光电探测器在不同波段和不同强度下的光电导响应测试,不同频率间歇光照射下的响应速度测试,柔性测试,不同印刷图形在间歇光照射下的响应速度测试,均得到较好的光电导性能,表明柔性基底全印刷光电探测器性能良好。另外,硫化铋纳米线制备简易,柔性基底既可以是棉麻丝等织品,又可以是PET塑料、硅基底等,可弯曲、耐用性好,而丝网印刷技术成本低廉,易用于大规模生产,以上优点都使得本发明具有潜在应用价值。

Description

基于柔性基底的全印刷光电探测器及其制备方法
技术领域
本发明涉及一种光电探测器,具体涉及一种基于柔性基底的全印刷光电探测器及其制备方法。
背景技术
随着纳米结构材料的发展,纳米结构器件化应用成为目前也是未来研究的热点领域,新的纳米半导体材料的出现推动了基于纳米材料的光电探测器的研发。纳米材料大的比表面积以及相对小的体积使纳米结构的光电探测器展现出超高的光响应灵敏度。
硫化铋是Ⅴ-Ⅵ族的直接带隙半导体,室温下的禁带宽度为1.3eV,具有环境友好、光伏转换和本征光电导等一系列优良性能。硫化铋纳米线是一维结构的半导体纳米材料,近年来由于其具有良好的电学和光学性质而备受关注。
柔性基底具有质量轻、耐用性好、可弯曲、低成本批量生产等优点,与硅基或石英基相比,有更好的生物相容性,电绝缘性和热隔离性,因而在光学、电子、化学和医疗等领域有广泛应用。目前,基于柔性基底的器件研究在学术界已成为热点,如何低成本、简单高效、高精度实现柔性器件的制作是首要面对的问题。
丝网印刷作为四大印刷方法之一,具有设备简单、操作便捷、成本低廉、适应性强等特点。目前,许多研究中都利用丝网印刷技术将线路板及电极附着在基底上。本发明拟分别将银胶和制得的硫化铋纳米材料浆料先后利用丝网印刷技术印刷到柔性基底上实现全印刷光电探测器的制备,为制备性能更优的光电探测器提供新的思路。
发明内容
有鉴于此,本发明的目的在于提供一种基于柔性基底的全印刷光电探测器及其制备方法。通过本发明所述方法获得的光电探测器成本低廉,性能优良。
本发明采取如下技术方案达到上述目的:
1、基于柔性基底的全印刷光电探测器的制备方法,包括以下步骤:
1)制备硫化铋纳米线;
2)用水性粘合剂将步骤1)所得硫化铋纳米线制成浆料;水性粘合剂与硫化铋纳米线的质量比为1:7-8;
3)通过丝网印刷将导电银胶印刷在柔性基底上形成一对指状交叉电极,烘干;
4)通过丝网印刷在步骤3)制得的指状交叉电极上涂一层步骤2)制得的硫化铋纳米线浆料,真空干燥即得全印刷光电探测器。
优选的,所述步骤1)中制备硫化铋纳米线的具体步骤包括:将EDTA-Na2、Bi(NO3)3·5H2O、硫代苹果酸制备成混合溶液,然后将混合溶液放入反应釜中160℃反应24h,冷却,抽滤,洗涤,得硫化铋纳米线。
优选的,所述EDTA-Na2、Bi(NO3)3·5H2O、硫代苹果酸的质量比为93:20:18。
优选的,所述步骤2)中水性粘合剂与硫化铋纳米线的质量比为1:7-8。
优选的,所述步骤2)中所述水性粘合剂为LA133或聚偏氟乙烯。
优选的,所述步骤2)中制备浆料的具体步骤包括:先将配比量的水性粘合剂加入水搅拌30min,然后边搅拌边加入步骤1)制得的硫化铋纳米线材料,继续搅拌10h即得硫化铋纳米线浆料;所述纳米线浆料中水性粘合剂与硫化铋总固形物百分含量为50%。
优选的,所述步骤2)中制备浆料的具体步骤包括:将配比量的水性粘合剂和硫化铋纳米线混合研磨,边研磨边逐滴加入N-甲基吡咯烷酮直至水性粘合剂和硫化铋纳米线混合均匀形成硫化铋纳米线浆料。
优选的,所述步骤3)中指状交叉电极间距为0.5mm。
优选的,所述柔性基底为聚对苯二甲酸乙二酯,聚二甲基硅氧烷,棉、麻、丝织品或硅基底。
2、上述制备方法制得的基于柔性基底的全印刷光电探测器。
本发明的有益效果在于:本发明用水热法制得硫化铋纳米线,并将其进一步配制成可以进行丝网印刷的浆料,通过丝网印刷技术先后在柔性基底上附着银电极和硫化铋纳米材料浆料而制备得到全印刷光电探测器。通过对本发明制备的光电探测器在不同波段和不同强度下的光电导响应测试,不同频率间歇光照射下的响应速度测试,柔性测试,不同印刷图形在间歇光照射下的响应速度测试,均得到较好的光电导性能,表明柔性基底全印刷光电探测器性能良好。另外,硫化铋纳米线制备简易,柔性基底既可以是棉麻丝等织品,又可以是PET塑料、硅基底等,可弯曲、耐用性好,而丝网印刷技术成本低廉,易用于大规模生产,以上优点都使得本发明具有潜在应用价值。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图:
图1在柔性基底上制备全印刷光电传感器的过程示意图。
图2硫化铋纳米线场发射扫描电镜图,图中A图为硫化铋纳米线的场发射扫描电镜图,B图为单根硫化铋纳米线的场发射扫描电镜图。
图3全印刷光电探测器制备过程中的扫描电镜图,其中A图为柔性基底的扫描电镜图,B图为柔性基底上印刷银电极后的扫描电镜图,C图为在带有银电极的柔性基底上印刷一层硫化铋纳米线浆料的扫描电镜图,D图为全印刷光电探测器在扫描电镜下的侧视图。
图4全印刷光电探测器的光响应测试原理图及其在不同斩光盘转动频率下的i-t曲线图,其中,A图为全印刷光电探测器的光响应测试示意图,B-D图为全印刷光电探测器分别在斩光盘频率为10Hz、50Hz、200Hz时的i-t曲线图。
图5全印刷光电探测器在暗态和不同波段的光照射下以及不同强度的光照射下的I-V曲线图,其中,A图为在暗态和不同波段光照射下全印刷光电探测器的I-V曲线图,B图为在暗态和不同强度光照射下全印刷光电探测器的I-V曲线图。
具体实施方式
下面对本发明的优选实施例进行详细的描述。实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。
实施例1
基于柔性基底的全印刷光电探测器的制备方法,包括以下步骤:
1)制备硫化铋纳米线:分别将930mg EDTA-Na2、200mg Bi(NO3)3·5H2O、180mg硫代苹果酸先后溶入50ml去离子水中,再将上述混合溶液转移进50ml的聚四氟乙烯为内胆的反应釜中,放入烘箱,160℃反应24h;反应结束后,使反应釜自然冷却至室温,抽滤收集制得的材料并用去离子水反复冲洗即得到硫化铋纳米线;
2)制备硫化铋纳米线浆料:按重量比计,聚偏氟乙烯:硫化铋纳米线材料=1:8的比例称取水性粘合剂和硫化铋纳米线,将二者混合在研钵内,边研磨边向研钵内逐滴滴加N-甲基吡咯烷酮直至将PVDF和硫化铋纳米线混合均匀形成硫化铋纳米线印刷浆料;
3)电极印刷:裁剪4cm×5cm的聚二甲基硅氧烷,并通过丝网印刷技术将银胶印刷在聚二甲基硅氧烷上形成一对长2.5cm、宽2.5cm以及间距0.5mm的指状交叉电极,放入烘箱100℃下干燥30min;
4)浆料印刷:将步骤2)制备好的硫化铋纳米线浆料利用丝网印刷技术附着在带有指状交叉电极的聚二甲基硅氧烷上,将其放入真空干燥箱30℃下干燥4h即得全印刷光电探测器。
实施例2
基于柔性基底的全印刷光电探测器的制备方法,包括以下步骤:
1)制备硫化铋纳米线:分别将930mg EDTA-Na2、200mg Bi(NO3)3·5H2O、180mg硫代苹果酸先后溶入50ml去离子水中,再将上述混合溶液转移进50ml的聚四氟乙烯为内胆的反应釜中,放入烘箱,160℃反应24h;反应结束后,使反应釜自然冷却至室温,抽滤收集制得的材料并用去离子水反复冲洗即得到硫化铋纳米线;
2)制备硫化铋纳米线浆料:按重量比计,水性粘合剂(LA133):硫化铋纳米线材料=1:7的比例称取水性粘合剂和硫化铋纳米线,将水性粘合剂加入水中搅拌30min后,边搅拌边逐步加入硫化铋纳米材料,继续搅拌10h即得硫化铋纳米线浆料;所述纳米线浆料中水性粘合剂与硫化铋总固形物百分含量为50%;
3)电极印刷:裁剪4cm×5cm的蚕丝布,并通过丝网印刷技术将银胶印刷在蚕丝布上形成一对长2.5cm、宽2.5cm以及间距0.5mm的指状交叉电极,放入烘箱100℃下干燥30min;
4)浆料印刷:将步骤2)制备好的硫化铋纳米线浆料利用丝网印刷技术附着在带有指状交叉电极的蚕丝布上,将其放入真空干燥箱30℃下干燥4h即得全印刷光电探测器。
图1是实施例1~2在柔性基底上制备全印刷光电传感器的过程示意图。
图2是实施例2硫化铋纳米线场发射扫描电镜图,图中A图为硫化铋纳米线的场发射扫描电镜图,B图为单根硫化铋纳米线的场发射扫描电镜图。由图A、B可知制得的硫化铋纳米线材料呈线状,长几微米,宽80到400nm,表面光滑。
图3是实施例2全印刷光电探测器制备过程中的扫描电镜图,其中A图为柔性基底的扫描电镜图,B图为柔性基底上印刷银电极后的扫描电镜图,C图为在带有银电极的柔性基底上印刷一层硫化铋纳米线浆料的扫描电镜图,D图为全印刷光电探测器在扫描电镜下的侧视图。相较于A图,B图和C图表面电极和材料在柔性基底上的附着力良好,由图D可知硫化铋纳米线浆料的厚度达80μm。
图4是实施例2全印刷光电探测器的光响应测试原理图及其在不同斩光盘转动频率下的i-t曲线图,其中,A图为全印刷光电探测器的光响应测试示意图,B-D图为全印刷光电探测器分别在斩光盘频率为10Hz、50Hz、200Hz时的i-t曲线图。测试在一个太阳光强度的氙灯照射和没有施加外界电压的条件下完成,脉冲入射光来自斩光盘的快速转动,并且测试在空气环境下进行,表面硫化铋纳米线具有不错的稳定性。如图所示,有光条件下比暗态时电流明显增大(测试从暗态开始),且响应速度小于2ms,说明硫化铋纳米线可以对光信号作出快速反应,是制备光电传感器良好的材料。
图5是实施例2全印刷光电探测器在暗态和不同波段的光照射下以及不同强度的光照射下的I-V曲线图,其中,A图为在暗态和不同波段光照射下全印刷光电探测器的I-V曲线图,B图为在暗态和不同强度光照射下全印刷光电探测器的I-V曲线图。A图中各个波段光的强度分别是2.35mW cm-2(blue laser),2.38mW cm-2(green laser),2.32mW cm-2(redlaser),电压变化在-2V到2V之间。比较A图中暗态和有白光照射的情况可知,全印刷光电传感器的电导率有明显增加,显然,光照会把电子从价带激发到导带而增大硫化铋纳米线的电导率;图中I-V曲线符合欧姆定律,这表明器件中电极与浆料本身及它们的连接所造成的电阻可以忽略不计。由B图及其插图可知,器件的电导率依赖于光照强度的增加而增加。
需要说明的是,本发明中,硫化铋纳米线制备、硫化铋纳米线浆料制备、丝网印刷电极及浆料的具体步骤及参数均可按公知常识作出相应调整。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (9)

1.基于柔性基底的全印刷光电探测器的制备方法,其特征在于,包括以下步骤:
1)制备硫化铋纳米线;
2)用水性粘合剂将步骤1)所得硫化铋纳米线制成浆料,所述水性粘合剂与硫化铋纳米线的质量比为1:7-8;
3)通过丝网印刷将导电银胶印刷在柔性基底上形成一对指状交叉电极,烘干;
4)通过丝网印刷在步骤3)制得的指状交叉电极上涂一层步骤2)制得的硫化铋纳米线浆料,真空干燥即得全印刷光电探测器。
2.根据权利要求1所述的制备方法,其特征在于,所述步骤1)中制备硫化铋纳米线的具体步骤包括:将EDTA-Na2、Bi(NO3)3▪5H2O、硫代苹果酸制备成混合溶液,然后将混合溶液放入反应釜中160 ℃反应24 h,冷却,抽滤,洗涤,得硫化铋纳米线。
3.根据权利要求2所述的制备方法,其特征在于,所述EDTA-Na2、Bi(NO3)3▪5H2O、硫代苹果酸的质量比为93:20:18。
4.根据权利要求1所述的制备方法,其特征在于,所述步骤2)中所述水性粘合剂为LA133或聚偏氟乙烯。
5.根据权利要求1所述的制备方法,其特征在于,所述步骤2)中制备浆料的具体步骤包括:先将配比量的水性粘合剂加入水搅拌30 min,然后边搅拌边加入步骤1)制得的硫化铋纳米线材料,继续搅拌10 h即得硫化铋纳米线浆料;所述纳米线浆料中水性粘合剂与硫化铋总固形物百分含量为50%。
6.根据权利要求1所述的制备方法,其特征在于,所述步骤2)中制备浆料的具体步骤包括:将配比量的水性粘合剂和硫化铋纳米线混合研磨,边研磨边逐滴加入N-甲基吡咯烷酮直至水性粘合剂和硫化铋纳米线混合均匀形成硫化铋纳米线浆料。
7.根据权利要求1所述的制备方法,其特征在于,所述步骤3)中指状交叉电极间距为0.5 mm。
8.根据权利要求1所述的制备方法,其特征在于,所述柔性基底为聚对苯二甲酸乙二酯,聚二甲基硅氧烷,棉、麻、丝织品或硅基底。
9.权利要求1~8任一项所述制备方法制得的基于柔性基底的全印刷光电探测器。
CN201610203654.3A 2016-04-01 2016-04-01 基于柔性基底的全印刷光电探测器及其制备方法 Active CN105633220B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610203654.3A CN105633220B (zh) 2016-04-01 2016-04-01 基于柔性基底的全印刷光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610203654.3A CN105633220B (zh) 2016-04-01 2016-04-01 基于柔性基底的全印刷光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN105633220A CN105633220A (zh) 2016-06-01
CN105633220B true CN105633220B (zh) 2017-10-24

Family

ID=56047954

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610203654.3A Active CN105633220B (zh) 2016-04-01 2016-04-01 基于柔性基底的全印刷光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN105633220B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024923B (zh) * 2016-07-26 2017-07-25 南京工业大学 一种全溶液法制备全碳柔性光探测器及其制备方法
CN107785443A (zh) * 2016-08-26 2018-03-09 中国科学院金属研究所 透明柔性非极性GaN纳米线紫外探测器及其制备方法
CN108963081A (zh) * 2017-10-30 2018-12-07 上海幂方电子科技有限公司 一种柔性可见光传感器及其制备工艺
CN109888031B (zh) * 2019-03-04 2021-03-09 哈尔滨工业大学(深圳) 一种铋氧硫二维材料的制备方法及光电探测器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102427096A (zh) * 2011-11-02 2012-04-25 西南交通大学 一种宽光谱、强吸收的表面光伏型光探测器的制备方法
CN102965735A (zh) * 2012-11-16 2013-03-13 杭州师范大学 一种溶剂水热法调控硫化铋纳米棒阵列长径比的合成方法
CN104752546A (zh) * 2015-04-22 2015-07-01 电子科技大学 一种金属氧化物紫外探测器及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7517718B2 (en) * 2006-01-12 2009-04-14 International Business Machines Corporation Method for fabricating an inorganic nanocomposite

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102427096A (zh) * 2011-11-02 2012-04-25 西南交通大学 一种宽光谱、强吸收的表面光伏型光探测器的制备方法
CN102965735A (zh) * 2012-11-16 2013-03-13 杭州师范大学 一种溶剂水热法调控硫化铋纳米棒阵列长径比的合成方法
CN104752546A (zh) * 2015-04-22 2015-07-01 电子科技大学 一种金属氧化物紫外探测器及其制备方法

Also Published As

Publication number Publication date
CN105633220A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
CN105633220B (zh) 基于柔性基底的全印刷光电探测器及其制备方法
CN107635296B (zh) 一种石墨烯银纳米线复合柔性发热膜组件
CN107919409B (zh) 一种基于CsPbBr3全无机钙钛矿纳米线的可见光光电探测器及其制备方法
CN104134752B (zh) 钙钛矿太阳能电池及其热塑性碳对电极的制备方法
CN104752062B (zh) 染料敏化太阳能电池对电极及其制备方法
CN105047820B (zh) 基于PCBM修饰ZnO纳米棒阵列的钙钛矿太阳能电池及其制备方法
CN104779314B (zh) 基于氧化锌的紫外光敏传感器及其制备方法
CN107093641A (zh) 一种基于无机平板异质结的薄膜太阳电池及其制备方法
CN109065727A (zh) 一种钙钛矿太阳能电池的制备方法
CN110243872A (zh) 一种可见光激发气敏传感器及其制备方法
CN105470395A (zh) 一种基于钙钛矿甲胺铅碘单晶切片的异质结太阳能电池及其制备方法
CN104792849A (zh) 基于虫胶封装/调控的场效应管气体传感器及其制备方法
CN106395892A (zh) 一种海胆状二氧化钛空心微球的制备方法
CN103887071B (zh) 一种柔性染料敏化太阳能电池纳米纸基复合光阳极及其制备方法
CN107275424B (zh) 一种基于同质ZnO纳米核壳阵列的紫外光响应器件及制备方法
CN108091732B (zh) 一种FTO衬底上自组装CuO纳米片的可见光电探测器的制备方法
CN106908497A (zh) 一种以钼酸铜/钛酸钡p‑n异质结为光电活性物质的光电化学传感器及其构建方法和应用
CN106711333B (zh) 一种钙钛矿太阳能电池渐变异质结电子传输层的制备方法
CN102173407A (zh) 一种柔性碳纳米颗粒的制备方法及其应用
CN107799628A (zh) 碳纤维纸上制备ZnO/ZnS异质结阵列可见光电探测器方法
CN107705993B (zh) 染料敏化太阳电池氧化铜纳米棒阵列对电极及其制备方法
CN106449099B (zh) 一种基于ZnO纳米粉光阳极膜的制备方法及光阳极膜
CN109301069A (zh) 太阳电池及其制备方法
CN108649116A (zh) 一种可拉伸可穿戴弹簧状无机热电器件及其制备方法
CN104600195A (zh) 一种钙钛矿太阳能电池及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant