CN105624058A - 一株海洋柴油降解菌bhb-16及其固定化方法 - Google Patents

一株海洋柴油降解菌bhb-16及其固定化方法 Download PDF

Info

Publication number
CN105624058A
CN105624058A CN201510885451.2A CN201510885451A CN105624058A CN 105624058 A CN105624058 A CN 105624058A CN 201510885451 A CN201510885451 A CN 201510885451A CN 105624058 A CN105624058 A CN 105624058A
Authority
CN
China
Prior art keywords
bhb
bacterial strain
diesel oil
carrier
corallite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510885451.2A
Other languages
English (en)
Inventor
关晓燕
董颖
杨爱馥
陈仲
王摆
王召会
蒋经伟
高杉
姜冰
苏鹤声
孙红娟
姜北
周遵春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RESEARCH INSTITUTE OF OCEAN FISHERY SCIENCE LIAONING PROVINCE
Original Assignee
RESEARCH INSTITUTE OF OCEAN FISHERY SCIENCE LIAONING PROVINCE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RESEARCH INSTITUTE OF OCEAN FISHERY SCIENCE LIAONING PROVINCE filed Critical RESEARCH INSTITUTE OF OCEAN FISHERY SCIENCE LIAONING PROVINCE
Priority to CN201510885451.2A priority Critical patent/CN105624058A/zh
Publication of CN105624058A publication Critical patent/CN105624058A/zh
Pending legal-status Critical Current

Links

Abstract

本发明筛选出一株可高效降解海洋柴油的菌株BHB-16,开发了一种可有效固定该菌株的方法并初步检测了该固定化方法对石油降解率的影响。所述可高效降解柴油的细菌为BHB-16,保藏编号为CGMCC?No.11549,筛选自经柴油处理后的沿海沉积物中,该菌可在含0.2%(v:v)柴油的2216E固体培养基中正常生长,通过分析其16s?DNA基因保守区域的核苷酸序列发现,该菌株为Lutibacterium菌属。以珊瑚石为吸附载体,该菌体可吸附在载体颗粒内外表面,形成柴油降解菌BHB-16与珊瑚石颗粒高度、紧密结合的产物,进而实现了珊瑚石载体颗粒对BHB-16的固定作用。上述菌株及其固定化方法可应用于海洋柴油降解过程中。

Description

一株海洋柴油降解菌BHB-16及其固定化方法
技术领域
本发明涉及微生物技术领域,具体为筛选出一株可高效降解海洋柴油的菌株BHB-16,开发了一种可有效固定该菌株的方法并初步检测了该固定化方法对石油降解率的影响。
背景技术
近年来,柴油已成为海洋的主要污染物质之一,主要通过沿海工业排放、海上油井、输油管道及船舶泄漏等多种途径进入海洋,而此类情况不仅会严重影响所污染地区的生态环境,同时也间接阻碍了中国沿海地区的经济发展。目前,针对柴油污染,尤其是大面积柴油泄漏,通常采用物理法、化学法以及生物修复的方法予以处理。一些物理方法如人工打捞等往往适用于突发性溢油的回收并控制溢油的扩散,但是处理效率受天气、海洋状况以及溢油类型影响;而如柴油乳化等化学方法,虽可以暂时清洁海面,但极易促使大量的原油沉降海底,引起海底荒漠化,进而诱发二次污染。
生物修复技术具有成本低、操作简便、处理效果好等优点,因而现今被公认为最有前景的海洋污染治理方法。由于自然环境的复杂性,使得直接投加外源高效降解菌在自然环境下的柴油污染修复中往往难以达到预期效果,这促使污染海洋的生物修复日渐转向于依赖海洋微生物的降解作用,尤其是已经适应海底环境的各种土著柴油降解微生物,它们不仅可以克服海洋中各种极端条件,还可以以柴油为食,有效的对柴油进行分解转化,从而改变海洋生态环境。然而,由于许多微生物在水中通常以悬浮状态生长,菌体极易流失,这使得降解菌的浓度偏低,对柴油等污染物无法达到明显的降解效果。
微生物固定化技术是从20世纪60年代开始迅速发展起来的一项新技术,主要通过利用物理或化学的方法将微生物定位于限定的空间区域,具有微生物密度高、反应迅速、微生物流失少等优点,将其应用于柴油污染的生物治理有着极大的应用潜力和发展前景。
发明内容
本研究筛选出一株可高效降解海洋柴油的菌株BHB-16,并以珊瑚石作为固定化载体,系统研究了该固定化材料对微生物的固定化效果以及固定化前后柴油降解菌株BHB-16对柴油的降解效率。
本发明获得一株可高效降解柴油的细菌,该菌株为BHB-16(Lutibacterium),其在中国微生物菌种保藏管理委员会普通微生物中心的保藏编号为CGMCCNo.11549。
本发明还公开一种对上文所述的细菌BHB-16的固定化方法,其步骤包括:
①活化菌种BHB-16,菌浓度达OD600nm=1.182~1.188;
②将珊瑚石载体进行清洗、煮沸和烘干后,利用排水法准确称量其体积;
③向步骤②所得珊瑚石载体中加入2216E液体培养基,灭菌后,再加入步骤①所得细菌BHB-16,所加珊瑚石载体颗粒、2216E液体培养基以及菌液的体积比例为(10~14)mL:60mL:(0.4~0.5)mL;于28~30℃、80~120rpm/min摇床中培养28~30h后,完成珊瑚石载体对细菌BHB-16的固定化。其中,载体颗粒、2216E液体培养基以及菌液的体积比例为12mL:60mL:0.4mL,培养温度为28℃,摇床转速为80rpm/min,培养时间为28h时,珊瑚石载体对细菌BHB-16菌液的固定化效果最佳。
上文所述的对细菌BHB-16的固定化方法中,步骤①所述活化菌种BHB-16过程中使用的培养基为2216E液体培养基;培养条件为28~30℃、150~180rpm/min,当培养温度为28℃,摇床转速为150rpm/min时,菌体长势最好,菌浓度最高为OD600nm=1.188。
本发明上文所述的可高效降解柴油的细菌BHB-16在海洋柴油降解中有广泛的应用前景。
本发明具有如下优点:
1、本发明所述方法获得的固定化BHB-16菌的操作简单,且珊瑚石载体颗粒对微生物无任何毒副污染,珊瑚石载体颗粒可以作为安全有效的吸附载体。
2、本发明所述的固定化BHB-16菌的方法所使用的原材料价格低廉,当珊瑚石载体颗粒完成对菌株BHB-16的固定化后,通过高温灭菌、清洗处理和煮沸,进而达到对固定化载体的回收利用,有助于资源的节约和环境的保护。
3、通过本发明实施例的数据表明,本发明所述的BHB-16游离菌对柴油的降解率为52.2%,而通过本发明所述方法制得的固定化颗粒,具有很好的微生物活性,对柴油具有很好降解性能,降解率最高可达82.2%,相对于游离菌而言有效提高了30%。
附图说明
图1为菌体的接种量对载体固定化效果的影响。其中,横坐标为菌体的接种量(mL),纵坐标为载体对菌液的吸附量(mL)。向含有12mL载体的60mL2216E液体培养基中,分别接种0.4、0.5、0.6、0.7和0.8mL处于稳定生长期的柴油降解菌BHB-16(OD600nm=1.182~1.188),检测不同接种量对载体固定化效果的影响。结果如图1所示,载体对菌株的固定化效果随接种量的增大呈下降的趋势,当接种量为0.4~0.5mL时,载体对BHB-16菌液的吸附量相对较多,于0.4mL时达到最大,即具有最优固定化效果。由此确定固定化过程中菌株的接种量与培养基的体积比在(0.4~0.5)mL:60mL范围内,均可以达到较好的固定化效果,当二者比例为0.4mL:60mL时,固定化效果最佳。
图2为菌株的培养时间对载体固定化效果的影响。其中,横坐标为菌体对载体的吸附时间(h),纵坐标为载体对菌液的吸附量(mL)。向含载体量为12mL的60mL2216E液体培养基中接入0.4mL处于稳定生长期的石油降解菌BHB-16(OD600nm=1.182~1.188),于不同温度下连续培养,并分别于培养后的24、26、28、30和32h时测定固定化载体对菌株的吸附量,进而判断其固定化效果。实验结果如图2所示,珊瑚石对菌株的固定化效率随时间的延长呈现增高后降低的趋势,当培养时间为28~30h时载体对菌株的吸附效果较好,在28h时,其吸附量达到最高。由此确定固定化过程中菌株最适的培养时间为28~30h,并且于28h时固定化效果最佳。
图3为载体投加量对其固定化效果的影响。其中,横坐标为载体投加量(mL),纵坐标为载体对菌液的吸附量(mL)。由图3可见,珊瑚石载体对于菌株的固定化效率随载体量增加均呈现先增高后降低的变化趋势。当载体投加量为10~14mL时,载体对菌株的吸附量较大,于12mL时,吸附量达到最高水平,载体固定化效果最好。由此确定,固定化过程中载体的投加量与培养基的体积比在10~14mL:60mL范围内,均可以达到较好的固定化效果,当二者比例为12mL:60mL时,固定化效果最佳。
图4为固定化菌对柴油的降解效率。其中,横坐标为游离菌及固定化菌,纵坐标为二者对柴油的降解效率(%)。如图4所示,使用珊瑚石作为载体的实验组中,游离菌对柴油的降解率为52.2%,而固定化菌对柴油的降解率为82.2%,有效提高了30%。由此可见,当菌株被载体固定化后,可有效提高其对石油的降解效率。
具体实施方式
下述非限定性实施例可以使本领域的普通技术人员更全面地理解本发明,但不以任何方式限制本发明。
PremixExTaqVersion2.0:购自于宝生物工程(大连)有限公司;引物:合成自上海生物工程有限公司;2216E琼脂及液体培养基:购自于青岛高科园海博生物技术有限公司;柴油:市售0号柴油;珊瑚石;购自于大连汇新钛设备开发有限公司,颗粒大小为0.8-1.0cm。
本发明所述的可高效降解柴油的细菌为BHB-16,该菌已于2015年10月28日保藏于中国普通微生物菌种保藏管理中心,保藏号为CGMCCNo.11549,保藏中心地址为:北京市朝阳区北辰西路1号院3号,中国科学院微生物研究所,邮编100101。
实施例1
1降解菌BHB-16的筛选
取10g沿海沉积物样品(取自辽东湾海域斑海豹自然保护区),溶于含0.2%(v:v)柴油的100mL灭菌的海水中,28℃、150rpm/min摇床培养20天,每隔10天需补加柴油一次,柴油加入量同样为0.2%(v:v)。将上述经柴油处理后的沉积物以10倍浓度作梯度稀释后,均匀涂布于含0.2%(v:v)柴油的2216E固体培养基上,28℃恒温培养2天后,挑取单菌落,在2216E固体培养基中划线纯化。该菌株的菌落呈橘黄色,形态呈圆形,表面光滑透明,菌落边缘齐整。
2降解菌BHB-16的扩大培养
挑取纯化后的BHB-16单菌落转接入2216E液体培养基中,并于28℃、150rpm/min的恒温摇床中进行扩大培养,培养时间为24h,此时菌体进入稳定期生长期,菌浓度达到最大(OD600nm=1.188)。
3降解菌BHB-16的初步鉴定
提取柴油降解菌BHB-16的基因组DNA,利用16SrDNA通用引物SEQIDNO.1(27F:5’-AGAGTTTGATCCTGGCTCAG-3’)和SEQIDNO.2(1492R:5’-GTTACCTTGTTACGACTT-3’)对该菌株的16SrDNA基因保守区域的核苷酸序列进行PCR扩增。PCR反应体系总体积为50μL,包括25μLPremixExTaqVersion2.0(购自宝生物工程(大连)有限公司),2μLDNA模板,正反向引物各1μL(10μM)(合成自上海生物工程有限公司),最后加水将总体系补至50μL。
PCR扩增条件为:95℃预变性5min;95℃、30s,57℃、40s,72℃、1.5min;72℃延伸8min,共35个循环,PCR扩增产物应用1.5%的琼脂糖凝胶电泳检测。
将16SrDNA扩增产物送至上海生物工程有限公司进行测序,结果表明:该菌株的16SrDNA基因保守区域的核苷酸序列全长为1327bp,应用BLAST与NCBI-nr数据库进行比对,结果表明:该菌与Lutibacterium菌序列相似度高达99%,因而初步判断该菌株属于Lutibacterium菌属,将其命名为BHB-16。测序结果如SEQIDNO.3。
实施例2
1.固定化载体的预处理
将珊瑚石载体用清水冲洗数次,直至将其上附着的悬浮颗粒物清洗干净,经煮沸后于自然环境风干。利用排水法测定单位质量载体的体积。
2.柴油降解菌固定化条件的优化
将预处理后的固定化载体加入至60mL2216E液体培养基中,于121℃下灭菌20min,接种处于稳定生长期的柴油降解菌株BHB-16(OD600=1.188),分别考察菌体接种量、培养时间和载体投加量对于菌体固定化的影响。结果表明:固定化过程中,菌体接种量与培养基体积的最优比为0.4mL:60mL;菌体最佳培养时间为28h;载体添加量与培养基体积的最优比为12mL:60mL;在此条件下,珊瑚石对BHB-16菌液的吸附量可达到最大,固定化效果最优。
3.柴油降解率的测定
以柴油浓度为300mg/L的灭菌海水为培养基,接种固定化条件最佳的菌株,于28℃、80rpm/min恒温摇床中振荡培养7天。以同样条件培养的游离菌作为阳性对照,以不接种任何降解菌作为阴性对照,每个样品设置3个平行。柴油降解率的测定采用紫外分光光度法,λ=225nm。结果表明:使用珊瑚石作为载体的实验组中,游离菌对柴油的降解率为52.2%,而固定化菌对柴油的降解率为82.2%,有效提高了30%。由此可见,当菌株被珊瑚石载体固定化后,可有效提高其对石油的降解效率。
实施例3
固定化载体的生物安全性评价
挑选长势健康且有活力、均重为13±0.19g的刺参200头,实验前暂养7天。暂养和实验期间水温为15±1℃,盐度为30±0.5,pH为8.0±0.1,溶氧为6.5±0.5mg/L。试验水桶容积为40L,预先需用10ppm高锰酸钾消毒3天,之后反复用水清洗干净后,放入实验刺参。
实验分为2组,实验组需向刺参养殖水体中投加固定化菌群,投加量为水量的10%(v:v),对照组的刺参养殖水体中则不投加固定化菌群。每组随机挑选30头刺参进行实验,且该实验需生物学重复3次。每天于早8:00,下午4:00各投饵1次,每次投喂量为刺参体重的2%;每日早7:00需换水一次,换水量为总水量的1/3(v:v);每两天吸底一次,每隔15天清洗实验桶1次,实验期间需保持连续通气,整个实验周期为15天,期间观察并记录刺参生理状况和死亡数。
表1固定化载体生物安全性评价结果。
结果表明:在固定化菌群投入后,实验组和对照组相比,刺参的死亡率没有显著区别,它们在实验初期均可以正常摄食、活动规律,并且没有出现肿嘴、摇头、吐肠、化皮等不良生理反应,只是在实验后期才出现个别死亡现象。当培养15天后,添加固定化菌群的实验组刺参死亡率为5.6%,而空白对照组为3.3%,二者并没有明显差异,说明实验所用固定化菌群在10%投加量的范围内对于刺参是安全的。

Claims (4)

1.一株可高效降解柴油的细菌,其特征在于,该菌株为BHB-16(Lutibacterium),其在中国微生物菌种保藏管理委员会普通微生物中心的保藏编号为CGMCCNo.11549。
2.如权利要求1所述的细菌BHB-16的固定化方法,其特征在于,步骤包括:
①活化菌种BHB-16,菌浓度达OD600nm=1.182~1.188;
②将珊瑚石载体进行清洗、煮沸和烘干后,利用排水法称量其体积;
③向步骤②所得珊瑚石载体中加入2216E液体培养基,灭菌后,再加入步骤①所得细菌BHB-16菌液,所加载体颗粒、2216E液体培养基以及细菌BHB-16菌液的体积比例为(10~14)mL:60mL:(0.4~0.5)mL;于28~30℃、80~120rpm/min摇床中培养28~30h后,完成珊瑚石载体对细菌BHB-16的固定化。
3.根据权利要求2所述的固定化方法,其特征在于:步骤①活化菌种BHB-16过程中使用的培养条件为28~30℃、150~180rpm/min。
4.如权利要求1所述的可高效降解柴油的细菌BHB-16在海洋柴油降解中的应用。
CN201510885451.2A 2015-12-04 2015-12-04 一株海洋柴油降解菌bhb-16及其固定化方法 Pending CN105624058A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510885451.2A CN105624058A (zh) 2015-12-04 2015-12-04 一株海洋柴油降解菌bhb-16及其固定化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510885451.2A CN105624058A (zh) 2015-12-04 2015-12-04 一株海洋柴油降解菌bhb-16及其固定化方法

Publications (1)

Publication Number Publication Date
CN105624058A true CN105624058A (zh) 2016-06-01

Family

ID=56039408

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510885451.2A Pending CN105624058A (zh) 2015-12-04 2015-12-04 一株海洋柴油降解菌bhb-16及其固定化方法

Country Status (1)

Country Link
CN (1) CN105624058A (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997031661A1 (en) * 1996-02-29 1997-09-04 Lindholm T Sam An osteogenic device and a method for preparing the device
JPH1098963A (ja) * 1996-09-25 1998-04-21 Kirin Brewery Co Ltd アクアリウム用海藻の作成方法
WO2004022785A2 (en) * 2002-09-06 2004-03-18 Statoil Asa Methods detecting, characterising and monitoring hydrocarbon reservoirs
CN1562820A (zh) * 2004-02-10 2005-01-12 凌亮 一种利用微生物处理焦化废水的方法
CN101522892A (zh) * 2005-10-07 2009-09-02 韩国海洋研究及发展院 对映选择性环氧化物水解酶和用其制备对映纯环氧化物的方法
US20100131011A1 (en) * 2003-03-10 2010-05-27 Ilion Medical, Inc. Sacroiliac joint immobilization
CN104004686A (zh) * 2014-06-06 2014-08-27 国家海洋局第三海洋研究所 一株多环芳烃降解菌s21-t17(H)-N3及其应用
CN104845911A (zh) * 2015-05-22 2015-08-19 国家海洋局第三海洋研究所 赤杆菌及其在降解十溴联苯醚中的应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997031661A1 (en) * 1996-02-29 1997-09-04 Lindholm T Sam An osteogenic device and a method for preparing the device
EP0883410B1 (en) * 1996-02-29 2004-08-18 Bioactive Bone Substitute OY, AB An osteogenic device and a method for preparing the device
JPH1098963A (ja) * 1996-09-25 1998-04-21 Kirin Brewery Co Ltd アクアリウム用海藻の作成方法
WO2004022785A2 (en) * 2002-09-06 2004-03-18 Statoil Asa Methods detecting, characterising and monitoring hydrocarbon reservoirs
US20100131011A1 (en) * 2003-03-10 2010-05-27 Ilion Medical, Inc. Sacroiliac joint immobilization
CN1562820A (zh) * 2004-02-10 2005-01-12 凌亮 一种利用微生物处理焦化废水的方法
CN101522892A (zh) * 2005-10-07 2009-09-02 韩国海洋研究及发展院 对映选择性环氧化物水解酶和用其制备对映纯环氧化物的方法
CN104004686A (zh) * 2014-06-06 2014-08-27 国家海洋局第三海洋研究所 一株多环芳烃降解菌s21-t17(H)-N3及其应用
CN104845911A (zh) * 2015-05-22 2015-08-19 国家海洋局第三海洋研究所 赤杆菌及其在降解十溴联苯醚中的应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JUN YUAN1等: "《ThediversityofPAH-degrading ThediversityofPAH-degradingbacteriainadeep-seawatercolumn abovetheSouthwestIndianRidge》", 《ORIGINAL RESEARCH》 *
TONYGUTIERREZ 等: "《Cultivation-dependentand cultivation-independent characterization of characterizationofhydrocarbon-degradingbacteria in hydrocarbon-degradingbacteriainGuaymasBasinsediments》", 《ORIGINAL RESEARCH》 *
占家智等编著: "《观赏鱼养殖500问》", 30 September 2003, 金盾出版社 *
王清良等: "《载体选择及细菌连续培养试验研究》", 《中国矿业》 *

Similar Documents

Publication Publication Date Title
CN103045579B (zh) 一种适用于海洋环境石油污染的微生物修复固化吸附菌剂及其制备方法和应用
CN102676418A (zh) 一种能够降解石油的醋酸钙不动杆菌的应用
CN106754576A (zh) 一株快速降解污水中氮素的菌株及其应用
Pi et al. Bioremediation of the oil spill polluted marine intertidal zone and its toxicity effect on microalgae
CN108753662A (zh) 一株低温邻苯二甲酸二甲酯高效降解菌及其发酵方法
Cappello et al. Bioremediation of oil polluted marine sediments: A bio-engineering treatment
CN105647838B (zh) 皮特不动杆菌及其用途
CN107151663B (zh) 一种利用海带渣制备的用于石油污染修复的固定化菌剂
CN105483037B (zh) 一株海洋柴油降解菌qph-9及其固定化方法
CN101962230A (zh) 一种用于石油污染水体原位修复的生物膨胀石墨制备方法
CN101972774A (zh) 受油污污染湿地的微生物修复方法
CN110669700A (zh) 一株高效石油烃降解菌pa16_9及其筛选方法与应用
Yadzir et al. Phenol removal by newly isolated Acinetobacter baumannii strain Serdang 1 in a packed-bed column reactor
Huang et al. Influence of Suaeda heteroptera–microorganisms–Nereis succinea on soil enzyme activities in oil-contaminated soil
CN107629976A (zh) 一种微生物及其菌剂和应用
CN106434413A (zh) 一种植生拉乌尔菌以及利用该菌降解土壤中芘的方法
CN105936901A (zh) 一种固定化菌剂及其制备方法与应用
Tariq et al. Bioremediation of Mercury Compounds by using Immobilized Nitrogen-fixing Bacteria.
CN110317741A (zh) 一株耐铬的石油烃降解菌Thp3-45A及其应用
CN108130294A (zh) 一种用于重金属污染原位修复微生物及应用
CN104004687B (zh) 一株石油烃降解菌dlfj1‑1及其降解基因与应用
CN105624058A (zh) 一株海洋柴油降解菌bhb-16及其固定化方法
CN104046580A (zh) 用于降解多环芳烃类有机污染物的鞘氨醇杆菌菌株及其应用
TWI589694B (zh) 具有苯和/或萘降解能力的瓊氏不動桿菌ds44分離株及其用途
Hidayah et al. Rice husk for bioremediation of chromium (VI) polluted soil

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160601