CN105566021A - 一种α,β-不饱和羧酸类化合物的制备方法 - Google Patents

一种α,β-不饱和羧酸类化合物的制备方法 Download PDF

Info

Publication number
CN105566021A
CN105566021A CN201511028943.6A CN201511028943A CN105566021A CN 105566021 A CN105566021 A CN 105566021A CN 201511028943 A CN201511028943 A CN 201511028943A CN 105566021 A CN105566021 A CN 105566021A
Authority
CN
China
Prior art keywords
preparation
acid
group
formula
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201511028943.6A
Other languages
English (en)
Other versions
CN105566021B (zh
Inventor
傅尧
付明臣
尚睿
贺超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN201511028943.6A priority Critical patent/CN105566021B/zh
Publication of CN105566021A publication Critical patent/CN105566021A/zh
Application granted granted Critical
Publication of CN105566021B publication Critical patent/CN105566021B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B37/00Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms
    • C07B37/02Addition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C253/00Preparation of carboxylic acid nitriles
    • C07C253/30Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/01Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
    • C07C255/23Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and carboxyl groups, other than cyano groups, bound to the same unsaturated acyclic carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/57Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and carboxyl groups, other than cyano groups, bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/20Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/54Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and unsaturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/347Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups
    • C07C51/353Preparation of carboxylic acids or their salts, halides or anhydrides by reactions not involving formation of carboxyl groups by isomerisation; by change of size of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/03Monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/30Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing six-membered aromatic rings
    • C07C57/42Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing six-membered aromatic rings having unsaturation outside the rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/52Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/52Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing halogen
    • C07C57/58Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing halogen containing six-membered aromatic rings
    • C07C57/60Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing halogen containing six-membered aromatic rings having unsaturation outside the rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/58Unsaturated compounds containing ether groups, groups, groups, or groups
    • C07C59/64Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/58Unsaturated compounds containing ether groups, groups, groups, or groups
    • C07C59/64Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings
    • C07C59/66Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings the non-carboxylic part of the ether containing six-membered aromatic rings
    • C07C59/68Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings the non-carboxylic part of the ether containing six-membered aromatic rings the oxygen atom of the ether group being bound to a non-condensed six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/74Unsaturated compounds containing —CHO groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/76Unsaturated compounds containing keto groups
    • C07C59/90Unsaturated compounds containing keto groups containing singly bound oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/28Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/293Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/612Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety
    • C07C69/618Esters of carboxylic acids having a carboxyl group bound to an acyclic carbon atom and having a six-membered aromatic ring in the acid moiety having unsaturation outside the six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/67Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
    • C07C69/716Esters of keto-carboxylic acids or aldehydo-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C69/75Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring of acids with a six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C69/753Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring of polycyclic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/30Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
    • C07D207/32Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D207/325Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with substituted hydrocarbon radicals directly attached to the ring nitrogen atom
    • C07D207/327Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/54Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/025Boronic and borinic acid compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了一种α,β-不饱和羧酸类化合物的制备方法,包括在含镍催化剂、膦配体、酸酐与有机溶剂存在的条件下,将式(I)所示的化合物与甲酸进行反应,得到式(II)所示的α,β-不饱和羧酸类化合物;其中,所述R1与R2各自独立地选自氢、C1~C30烷基、C1~C30取代烷基、C1~C30烯基、C1~C30取代烯基、C6~C30芳基与C6~C30取代芳基中的一种。与现有技术相比,本发明以甲酸作为羧基化试剂,价格低廉,安全稳定,毒性低,产率高,操作容易,经济性好;同时,本发明避免了贵金属催化剂以及毒性气体一氧化碳的使用,符合环境友好化合物的要求,官能团兼容性较广,转化率高,具有工业合成价值。

Description

一种α,β-不饱和羧酸类化合物的制备方法
技术领域
本发明属于化学物合成技术领域,尤其涉及一种α,β-不饱和羧酸类化合物的制备方法。
背景技术
丙烯酸是一种重要有机原料,用于生产聚丙烯酸酯、聚丙烯酸及其盐或与其他单体形成的共聚物等高分子材料,这些材料在合成树脂、合成橡胶、合成纤维以及涂料、乳胶、粘合剂、鞣革、造纸、洗涤剂等领域应用广泛。
丙烯酸的重要应用价值推动了其合成技术的发展,早在1843年JoseplRedtenbach就在氧化银存在下,通过丙烯酸氧化首次获得了丙烯酸。1927年美国罗姆哈氏(Rohm&Hass)公司用氯乙醇和氰化钠为原料制得氰乙醇,再经脱水、水解制得丙烯酸,从而开始了丙烯酸的工业化生产。在随后的时间里,丙烯酸的合成研究工作在不断进行,为降低生产成本,以及开辟新的原料来源,丙烯酸的合成方法不断创新,工业化生产方法也越来越先进。
但所使用最多的传统合成方法是以一氧化碳为羰基化原料,钯、铑等贵金属催化炔烃插碳反应实现,但一氧化碳毒性大,且不易操作。
目前已报道的其他方法还有使用钯催化剂和磷配体结合,通过酸酐与甲酸作用,替代了传统中一氧化碳的使用,实现α,β-不饱和羧酸类化合物的制备(Palladium-CatalyzedHydrocarboxylationofAlkyneswithFormicAcid,JingHou,Jian-HuXie,andQi-LinZhou,Angew.Chem.Int.Ed.2015,54,pp.6302~6305.)。但此方法仍需使用贵金属催化剂钯,底物范围窄,且并未指出对官能团兼容性效果是否很好。
发明内容
有鉴于此,本发明要解决的技术问题在于提供一种成本较低且产率较高的α,β-不饱和羧酸类化合物的制备方法。
本发明提供了一种α,β-不饱和羧酸类化合物的制备方法,包括:
在含镍催化剂、膦配体、酸酐与有机溶剂存在的条件下,将式(I)所示的化合物与甲酸进行反应,得到式(II)所示的α,β-不饱和羧酸类化合物;
其中,所述R1与R2各自独立地选自氢、C1~C30的烷基、C1~C30的取代烷基、C1~C30的烯基、C1~C30的取代烯基、C6~C30的芳基与C6~C30的取代芳基中的一种。
优选的,所述烷基、取代烷基、烯基与取代烯基的碳原子数为1~10。
优选的,所述芳基与取代芳基的碳原子数优选为6~15。
优选的,所述取代烷基、取代烯基与取代芳基中的取代基各自独立地优选为含杂原子官能团、环基、杂原子与含羰基官能团中的一种或多种。
优选的,所述取代烷基、取代烯基与取代芳基中的取代基各自独立地为酯基、酰胺基、氰基、醛基、卤素、三氟甲基、甲氧基、吲哚基、吡咯基、呋喃基、硼酯基、三元环基、金刚烷基与硫醚基中的一种或多种。
优选的,所述甲酸与式(I)所示的化合物的摩尔比为(1~2.5):1;
所述含镍催化剂与膦配体的摩尔比为1:(1~2)。
优选的,所述含镍催化剂的摩尔数为式(I)所述的化合物的摩尔数的1%~10%;所述酸酐的摩尔数为式(I)所示的化合物的摩尔数的1%~50%。
优选的,所述含镍催化剂选自氯化镍、双(1,5-环辛二烯)镍、二(乙酰丙酮)镍与溴化镍中的一种或多种。
优选的,所述膦配体选自1,1-双(二苯基膦)甲烷、1,2-双(二苯基膦)乙烷、1,3-双(二苯基膦)丙烷、1,4-双(二苯基膦)丁烷、顺-1,2-双(二苯基膦)乙烯与1,2-双(二苯基膦基)苯中的一种或多种;
所述酸酐选自乙酸酐、特戊酸酐与苯甲酸酐中的一种或多种。
优选的,所述反应的温度为80℃~150℃;所述反应的时间为1~30h。
本发明提供了一种α,β-不饱和羧酸类化合物的制备方法,包括:在含镍催化剂、膦配体、酸酐与有机溶剂存在的条件下,将式(I)所示的化合物与甲酸进行反应,得到式(II)所示的α,β-不饱和羧酸类化合物;其中,所述R1与R2各自独立地选自氢、C1~C30的烷基、C1~C30的取代烷基、C1~C30的烯基、C1~C30的取代烯基、C6~C30的芳基与C6~C30的取代芳基中的一种。与现有技术相比,本发明通过甲酸与酸酐替代传统使用的一氧化碳,利用含镍催化剂催化实现炔烃的氢化羧基化转化,以甲酸作为羧基化试剂,价格低廉,安全稳定,毒性低,产率高,操作容易,经济性好;同时,本发明避免了贵金属催化剂以及毒性气体一氧化碳的使用,符合环境友好化合物的要求,官能团兼容性较广,且成功应用于克级反应,转化率高,具有工业合成价值。
实验结果表明,采用本发明制备方法制备α,β-不饱和羧酸类化合物的产率可达98%。
附图说明
图1为本发明实施例1中(E)-2,3-二苯基α,β-不饱和羧酸的氢谱图;
图2为本发明实施例1中(E)-2,3-二苯基α,β-不饱和羧酸的碳谱图;
图3为本发明实施例12中(E)-2,3-二正丙基丙烯酸的氢谱图;
图4为本发明实施例12中(E)-2,3-二正丙基丙烯酸的碳谱图;
图5为本发明实施例14中2-正丁基丙烯酸的氢谱图;
图6为本发明实施例14中2-正丁基丙烯酸的碳谱图;
图7为本发明实施例26中4-(1,3-二氧异吲哚-2-基)-2-亚甲基戊酸的氢谱图;
图8为本发明实施例26中4-(1,3-二氧异吲哚-2-基)-2-亚甲基戊酸的碳谱图;
图9为本发明实施例29中(E)-4-(肉桂酰氧基)-2-亚甲基丁酸的氢谱图;
图10为本发明实施例29中(E)-4-(肉桂酰氧基)-2-亚甲基丁酸的碳谱图。
具体实施方式
下面将结合本发明实施例的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种α,β-不饱和羧酸类化合物的制备方法,包括:在含镍催化剂、膦配体、酸酐与有机溶剂存在的条件下,将式(I)所示的化合物与甲酸进行反应,得到式(II)所示的α,β-不饱和羧酸类化合物;
其中,所述R1与R2各自独立地选自氢、烷基、取代烷基、烯基、取代烯基、芳基与取代芳基中的一种。
此反应反应式如下所示:
本发明对所有原料的来源并没有特殊的限制,为市售即可。
其中,所述含镍催化剂为本领域技术人员熟知的含镍催化剂即可,并无特殊的限制,本发明中优选为氯化镍、双(1,5-环辛二烯)镍、二乙酰丙酮镍与溴化镍中的一种或多种;所述含镍催化剂的摩尔数优选为式(I)所述的化合物的摩尔数的1%~10%,更优选为2%~8%,再优选为3%~7%,最优选为4%~6%。
所述膦配体为本领域技术人员熟知的膦配体即可,并无特殊的限制,本发明中优选二苯基磷类膦配体,更优选为1,1-双(二苯基膦)甲烷、1,2-双(二苯基膦)乙烷、1,3-双(二苯基膦)丙烷、1,4-双(二苯基膦)丁烷、顺-1,2-双(二苯基膦)乙烯与1,2-双(二苯基膦基)苯中的一种或多种,再优选为1,2-双(二苯基膦基)苯;所述含镍催化剂与膦配体的摩尔比优选为1:(1~2),更优选为1:(1.2~1.8),再优选为1:(1.2~1.6),最优选为1:(1.3~1.5)。
所述酸酐为本领域技术人员熟知的酸酐即可,并无特殊的限制,本发明中优选为C2~C20的酸酐,更优选为C2~C14的酸酐,再优选为乙酸酐、特戊酸酐与苯甲酸酐中的一种或多种;所述酸酐的的摩尔数优选为式(I)所示的化合物的摩尔数的1%~50%,更优选为5%~40%,再优选为10%~30%,最优选为15%~25%。
所述有机溶剂为本领域技术人员熟知的有机溶剂即可,并无特殊的限制,本发明中优选为苯、甲苯、间二甲苯、均三甲苯、二乙二醇二甲醚、1,4-二氧六环中的一种或多种,更优选为苯、甲苯、间二甲苯与均三甲苯中的一种或多种,再优选为苯和/或甲苯,最优选为甲苯。
在含镍催化剂、膦配体、酸酐与有机溶剂存在的条件下,将式(I)所示的化合物与甲酸进行反应。
其中,式(1)中所述R1与R2各自独立地选自氢、烷基、取代烷基、烯基、取代烯基、芳基与取代芳基中的一种,优选为氢、C1~C30的烷基、C1~C30的取代烷基、C1~C30的烯基、C1~C30的取代烯基、C6~C30的芳基与C6~C30的取代芳基中的一种,更优选为C1~C20的烷基、C1~C20的取代烷基、C1~C20的烯基、C1~C20的取代烯基、C6~C20的芳基与C6~C20的取代芳基中的一种,再优选为C1~C10的烷基、C1~C10的取代烷基、C1~C10的烯基、C1~C10的取代烯基、C6~C15的芳基与C6~C15的取代芳基中的一种;所述取代烷基、取代烯基与取代芳基中的取代基各自独立地优选为含杂原子官能团、环基、杂原子与含羰基官能团中的一种或多种,更优选为酯基、酰胺基、氰基、醛基、卤素、三氟甲基、甲氧基、吲哚基、吡咯基、呋喃基、硼酯基、三元环基、金刚烷基与硫醚基中的一种或多种。
所述甲酸与式(I)所示的化合物的摩尔比优选为(1~2.5):1,更优选为(1.5~2.5):1,再优选为(2~2.5):1,最优选为(2~2.2):1。
所述反应的温度优选为80℃~150℃,更优选为90℃~130℃,再优选为90℃~120℃,最优选为100℃;所述反应的时间优选为1~30h,更优选为5~30h,再优选为10~30h,再优选为15~30h,最优选为20~30h。
按照本发明,所述反应优选在惰性气体保护的条件下进行;所述惰性气体为本领域技术人员熟知的惰性气体即可,并无特殊的限制,本发明中优选为氮气或氩气。
反应结束后,优选将体系冷却至室温,用有机溶剂稀释反应液,浓缩后经柱层析分离,得到式(II)所示的α,β-不饱和羧酸类化合物;所述有机溶剂为本领域技术人员熟知的有机溶剂即可,并无特殊的限制,本发明中优选为乙酸乙酯。
本发明通过甲酸与酸酐替代传统使用的一氧化碳,利用含镍催化剂催化实现炔烃的氢化羧基化转化,以甲酸作为羧基化试剂,价格低廉,安全稳定,毒性低,产率高,操作容易,经济性好;同时,本发明避免了贵金属催化剂以及毒性气体一氧化碳的使用,符合环境友好化合物的要求,官能团兼容性较广,且成功应用于克级反应,转化率高,具有工业合成价值。
为了进一步说明本发明,以下结合实施例对本发明提供的一种α,β-不饱和羧酸类化合物的制备方法进行详细描述。
以下实施例中所用的试剂均为市售;二乙二醇二甲醚(C6H14O3,99.5%),苯(C6H6,99.7%),甲苯(toluene,C7H8,99.5%),双(1,5-环辛二烯)镍(NiC16H24,98%),均从百灵威化学试剂公司购买;间二甲苯(C8H10,99.0%),均三甲苯(C9H12,98.0%),氯化镍(NiCl2,99%,无水),溴化镍(NiBr2,98%,无水),均从TCI公司购买;乙酸酐(C4H6O3,98.5%),1,4-二氧六环(C4H8O2,99.8%),特戊酸酐(Piv2O,C10H18O3,99%),苯甲酸酐(C14H10O3,98%),均从国药集团化学试剂公司购买;双(乙酰丙酮)镍(Ni(acac)2,C10H14NiO4,95%),顺-1,2-双(二苯基膦)乙烯(C26H22P2,97%)和1,2-双(二苯基膦基)苯(dppbz,C30H24P2,98%),均从AlfaAesar公司购买;1,1-双(二苯基膦)甲烷(C25H22P2,98%),1,2-双(二苯基膦)乙烷(C26H24P2,98%),1,3-双(二苯基膦)丙烷(dppp,C27H26P2,95%),1,4-双(二苯基膦)丁烷(C28H28P2,98%),均从Sigma-Aldrich公司购买。
实施例1:制备(E)-2,3-二苯基α,β-不饱和羧酸
反应式:
在10mL的Schlenk反应管(北京欣维尔玻璃仪器有限公司,F891410反应管,容量10mL,磨口14/20)中加入二(乙酰丙酮)镍(5mol%,6.5mg)与1,2-双(二苯基膦基)苯(7mol%,15.6mg),用氩气完全置换管内空气三次,然后在氩气氛围下加1ml甲苯,二苯乙炔(0.50mmol,89.2mg)、甲酸(1.1mmol,50.6mg)和特戊酸酐(20mol%,0.1mmol,18.4mg);将该反应体系在油浴下加热到100℃并连续搅拌24小时(使用IKA磁力搅拌器,RCT基本型,搅拌速度500转/分钟)。反应完毕后,将体系冷却至室温。用乙酸乙酯稀释反应液,再将稀释过的反应液用旋转蒸发的方式浓缩(瑞士步琦有限公司,BUCHI旋转蒸发仪R-3)。浓缩残渣通过色谱柱(北京欣维尔玻璃仪器有限公司,C383040C具砂板存储球层析柱,35/20,φ30mm,有效长:500ml)层析分离得到产物。
产物为白色固体,共109毫克,产率98%,纯度>99%,洗脱剂乙酸乙酯:石油醚=1:50~1:10。
利用核磁共振对实施例1中得到的(E)-2,3-二苯基α,β-不饱和羧酸进行分析,得到其核磁共振氢谱图如图1所示;得到其核磁共振碳谱图如图2所示。
实施例2:制备(E)-2,3-二对甲基苯基丙烯酸
反应式:
方法同实例1,产率86%,纯度>99%。
利用核磁共振对实施例2中得到的(E)-2,3-二对甲基苯基丙烯酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ7.89(s,1H),7.19(d,J=7.8Hz,2H),7.13(d,J=7.9Hz,2H),6.99(s,4H),2.39(s,3H),2.28(s,3H);13CNMR(101MHz,CDCl3)δ172.66,142.23,139.83,137.73,132.50,131.65,130.88,130.46,129.59,129.51,129.03,21.38。
实施例3:制备(E)-2,3-二对甲氧基苯基丙烯酸
反应式:
方法同实例1,产率85%,纯度>99%。
利用核磁共振对实施例3中得到的(E)-2,3-二对甲氧基苯基丙烯酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ7.87(s,1H),7.17(d,J=8.8Hz,2H),7.06(d,J=8.8Hz,2H),6.93(d,J=8.8Hz,2H),6.71(d,J=8.9Hz,2H),3.84(s,3H),3.76(s,3H);13CNMR(101MHz,CDCl3)δ173.22,160.54,159.23,141.97,132.67,131.05,128.66,127.82,127.14,114.30,113.76,55.24,55.23。
实施例4:制备(E)-2,3-二对氯苯基丙烯酸
反应式:
方法同实例1,产率87%,纯度>99%。
利用核磁共振对实施例4中得到的(E)-2,3-二对氯苯基丙烯酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ7.91(s,1H),7.37(d,J=8.5Hz,2H),δ7.17(m,4H),7.00(d,J=8.5Hz,2H);13CNMR(101MHz,CDCl3)δ172.44,141.53,135.73,134.33,133.28,132.43,131.90,131.23,131.04,129.12,128.74。
实施例5:制备(E)-2,3-二对三氟甲基苯基丙烯酸
反应式:
方法同实例1,产率78%,纯度>99%。
利用核磁共振对实施例5中得到的(E)-2,3-二对三氟甲基苯基丙烯酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ8.03(s,1H),7.66(d,J=8.1Hz,2H),7.47(d,J=8.3Hz,2H),7.37(d,J=8.0Hz,2H),7.16(d,J=8.3Hz,2H);13CNMR(101MHz,CDCl3)δ172.01,141.79,138.18,137.08,132.55,131.37(d,J=32.8Hz),130.66(d,J=32.7Hz),130.75,130.32,125.82(q,JC–F=3.7Hz),125.46(q,JC–F=3.7Hz),123.93(d,JC–F=272.3Hz),123.63(d,JC–F=272.3Hz)。
实施例6:制备(E)-2,3-二对溴苯基丙烯酸
反应式:
方法同实例1,产率86%,纯度>99%。
利用核磁共振对实施例6中得到的(E)-2,3-二对溴苯基丙烯酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ7.88(s,1H),7.52(d,J=8.5Hz,2H),7.34(d,J=8.5Hz,2H),7.10(d,J=8.5Hz,2H),6.93(d,J=8.5Hz,2H);13CNMR(101MHz,CDCl3)δ172.36,141.71,133.65,132.79,132.09,131.74,131.49,131.04,124.24,122.61。
实施例7:制备(E)-2,3-二间溴苯基丙烯酸
反应式:
方法同实例1,产率83%,纯度>99%。。
利用核磁共振对实施例7中得到的(E)-2,3-二间溴苯基丙烯酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ7.87(s,1H),7.56–7.49(m,1H),7.43–7.34(m,2H),7.25(dd,J=5.3,2.5Hz,2H),7.14(d,J=7.7Hz,1H),7.05(t,J=7.9Hz,1H),6.94(d,J=7.9Hz,1H);13CNMR(101MHz,CDCl3)δ172.39,141.52,136.61,135.81,133.71,132.65,132.59,131.57,131.48,130.31,129.86,128.96,128.42,122.69,122.45。
实施例8:制备(E)-2,3-二间氟苯基丙烯酸
反应式:
方法同实例1,产率95%,纯度>99%。
利用核磁共振对实施例8中得到的(E)-2,3-二间氟苯基丙烯酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ7.92(s,1H),7.41–7.32(m,1H),7.23–7.15(m,1H),7.13–7.06(m,1H),7.04–6.87(m,4H),6.75–6.68(m,1H);13CNMR(101MHz,CDCl3)δ172.39,164.16,163.61,161.70,161.16,141.75,136.73(d,JC–F=8.0Hz),135.94(d,JC–F=7.9Hz),131.60,130.46(d,JC–F=8.4Hz),129.94(d,JC–F=8.2Hz),126.75(d,JC–F=2.9Hz),125.49(d,JC–F=3.0Hz),116.94(t,JC–F=22.1Hz),115.45(d,JC–F=20.9Hz)。
实施例9:制备(E)-2,3-二(3,5-二甲基苯基)丙烯酸
反应式:
方法同实例1,产率70%,纯度>99%。
利用核磁共振对实施例9中得到的(E)-2,3-二(3,5-二甲基苯基)丙烯酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ7.83(s,1H),7.00(s,1H),6.88(s,1H),6.85(s,2H),6.70(s,2H),2.30(s,6H),2.14(s,6H);13CNMR(101MHz,CDCl3)δ173.19,142.32,138.15,137.55,135.34,134.21,131.33,131.25,129.60,128.96,127.16,21.28,21.14。
实施例10:制备(E)-2,3-二萘基丙烯酸
反应式:
方法同实例1,产率53%,纯度>99%。。
利用核磁共振对实施例10中得到的(E)-2,3-二萘基丙烯酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ8.94(s,1H),8.24(d,J=8.4Hz,1H),7.87(t,J=9.5Hz,2H),7.80(d,J=8.2Hz,2H),7.67–7.57(m,2H),7.55–7.42(m,3H),7.36–7.29(m,1H),7.21(d,J=6.8Hz,1H),6.93(t,J=7.7Hz,1H),6.84(d,J=7.2Hz,1H);13CNMR(101MHz,CDCl3)δ173.24,141.93,133.54,133.32,133.10,132.57,132.40,132.00,131.26,129.57,128.76,128.60,128.51,127.80,127.50,126.81,126.54,126.10,125.97,125.55,125.13,125.04,123.78。
实施例11:制备(E)-2,3-二间氰基苯基丙烯酸
反应式:
方法同实例1,产率46%,纯度>99%。
利用核磁共振对实施例11中得到的(E)-2,3-二间氰基苯基丙烯酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ9.85(br,1H),7.99(s,1H),7.73–7.67(m,1H),7.59–7.55(m,1H),7.55–7.50(m,2H),7.49–7.44(m,1H),7.37–7.31(m,2H),7.22(d,J=8.1Hz,1H);13CNMR(101MHz,CDCl3)δ170.81,140.96,135.55,134.86,134.37,134.12,133.79,133.41,132.99,132.22,132.15,129.81,129.52,118.13,117.80,113.26,113.14。
实施例12:制备(E)-2,3-二正丙基丙烯酸
反应式:
方法同实例1,产率93%,纯度>99%。
利用核磁共振对实施例12中得到的(E)-2,3-二正丙基丙烯酸进行分析,得到其核磁共振氢谱图如图3所示;得到其核磁共振碳谱图如图4所示。
实施例13:制备(E)-2-甲基-3-叔丁基丙烯酸
反应式:
方法同实例1,产率98%,纯度>98%。
利用核磁共振对实施例13中得到的(E)-2-甲基-3-叔丁基丙烯酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ6.96(q,J=1.3Hz,1H),1.96(d,J=1.4Hz,3H),1.19(s,9H);13CNMR(101MHz,CDCl3)δ174.97,153.95,125.80,33.20,29.93,12.88。
实施例14:制备2-正丁基丙烯酸
反应式:
方法同实例1,产率90%,纯度>98%。
利用核磁共振对实施例14中得到的2-正丁基丙烯酸进行分析,得到其核磁共振氢谱图如图5所示;得到其核磁共振碳谱图如图6所示。
实施例15:制备2-苄基丙烯酸
反应式:
方法同实例1,产率79%,纯度>99%。
利用核磁共振对实施例15中得到的2-苄基丙烯酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ11.42(br,1H),7.38~7.03(m,5H),6.38(s,1H),5.57(s,1H),3.62(s,2H);13CNMR(101MHz,CDCl3)δ172.60,139.61,138.46,129.07,128.75,128.52,126.48,37.57。
实施例16:制备2-苯基丙烯酸
反应式:
方法同实例1,产率68%,纯度>99%。
利用核磁共振对实施例16中得到的2-苯基丙烯酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ7.45–7.21(m,5H),6.48(s,1H),5.95(s,1H);13CNMR(101MHz,CDCl3)δ172.13,140.63,136.13,129.50,128.49,128.39,128.17。
实施例17:制备4-(4-碘苯酚)-2-亚甲基丁酸
反应式:
方法同实例1,产率50%,纯度>99%。
利用核磁共振对实施例17中得到的4-(4-碘苯酚)-2-亚甲基丁酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ7.54(d,J=8.9Hz,3H),6.67(d,J=8.9Hz,1H),6.45(s,1H),5.85(s,1H),4.09(t,J=6.6Hz,1H),2.79(t,J=6.5Hz,3H);13CNMR(101MHz,CDCl3)δ172.11,158.50,138.22,135.79,130.23,116.96,82.86,66.09,31.48。
实施例18:制备4-((2-溴苯甲酰基)氧基)-2-亚甲基丁酸
反应式:
方法同实例1,产率90%,纯度>99%。
利用核磁共振对实施例18中得到的4-((2-溴苯甲酰基)氧基)-2-亚甲基丁酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ7.90–7.72(m,1H),7.72–7.55(m,1H),7.41~7.26(m,2H),6.45(s,1H),5.85(s,1H),4.52(t,J=6.5Hz,2H),2.81(t,J=6.4Hz,2H);13CNMR(101MHz,CDCl3)δ172.00,166.03,135.83,134.38,132.61,132.04,131.33,130.15,127.17,121.71,63.71,31.06。
实施例19:制备5-氯-2-亚甲基戊酸
反应式:
方法同实例1,产率95%,纯度>99%。
利用核磁共振对实施例18中得到的4-((2-溴苯甲酰基)氧基)-2-亚甲基丁酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ6.37(s,1H),5.75(s,1H),3.56(t,J=6.5Hz,2H),2.49(t,J=7.4Hz,2H),2.08~1.91(m,2H);13CNMR(101MHz,CDCl3)δ172.54,138.40,128.57,44.14,31.03,28.84。
实施例20:制备5-氰基-2-亚甲基戊酸
反应式:
方法同实例1,产率64%,纯度>99%。
利用核磁共振对实施例20中得到的5-氰基-2-亚甲基戊酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ10.54(s,1H),6.40(s,1H),5.78(s,1H),2.49(t,J=7.5Hz,2H),2.39(t,J=7.1Hz,2H),1.90(p,J=7.2Hz,2H);13CNMR(101MHz,CDCl3)δ172.00,137.84,129.12,119.26,30.61,24.14,16.56。
实施例21:制备2-亚甲基-4-(4-(4,4,5,5-四甲基-1,3,2-二氧硼杂环戊烷-2-基)苯氧基)丁酸
反应式:
方法同实例1,产率91%,纯度>99%。
利用核磁共振对实施例21中得到的2-亚甲基-4-(4-(4,4,5,5-四甲基-1,3,2-二氧硼杂环戊烷-2-基)苯氧基)丁酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ7.74(d,J=8.7Hz,2H),6.89(d,J=8.7Hz,2H),6.44(s,1H),5.85(s,1H),4.15(t,J=6.6Hz,2H),2.80(t,J=6.5Hz,2H),1.33(s,12H);13CNMR(101MHz,CDCl3)δ172.01,161.24,136.56,136.53,135.98,130.01,113.91,83.58,65.80,31.51,24.85。
实施例22:制备4–((环丙烷羰基)氧基)-2-亚甲基丁酸
反应式:
方法同实例1,产率89%,纯度>99%。
利用核磁共振对实施例22中得到的4–((环丙烷羰基)氧基)-2-亚甲基丁酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ6.40(s,1H),5.77(s,1H),4.24(t,J=6.6Hz,2H),2.66(t,J=6.6Hz,2H),1.59(tt,J=8.0,4.6Hz,1H),1.02–0.94(m,2H),0.92–0.71(m,2H);13CNMR(101MHz,CDCl3)δ174.90,171.95,136.05,129.62,62.53,31.08,12.88,8.46。
实施例23:制备4–(((1S,2R,5R)-金刚烷-2-羰基)氧基)-2-亚甲基丁酸
反应式:
方法同实例1,产率88%,纯度>99%。
利用核磁共振对实施例23中得到的4–(((1S,2R,5R)-金刚烷-2-羰基)氧基)-2-亚甲基丁酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ6.39(s,1H),5.75(s,1H),4.22(t,J=6.3Hz,2H),2.65(t,J=6.3Hz,2H),2.10~1.52(m,15H);13CNMR(101MHz,CDCl3)δ177.66,172.03,136.19,129.52,62.14,40.69,38.82,36.48,31.07,27.92。
实施例24:制备4-(4-甲酰基苯氧基)-2-亚甲基丁酸
反应式:
方法同实例1,产率86%,纯度>99%。
利用核磁共振对实施例24中得到的4-(4-甲酰基苯氧基)-2-亚甲基丁酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ9.88(s,1H),7.84(d,J=8.8Hz,2H),7.00(d,J=8.7Hz,2H),6.48(s,1H),5.89(s,1H),4.22(t,J=6.6Hz,2H),2.85(t,J=6.5Hz,2H);13CNMR(101MHz,CDCl3)δ190.99,171.95,163.74,135.54,132.07,130.51,129.95,114.80,66.36,31.51。
实施例25:制备5-(1H-吲哚-1-基)-2-亚甲基戊酸
反应式:
方法同实例1,产率88%,纯度>99%。
利用核磁共振对实施例25中得到的5-(1H-吲哚-1-基)-2-亚甲基戊酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ7.63(d,J=7.9Hz,1H),7.33(d,J=8.2Hz,1H),7.23~7.17(m,1H),7.13~7.07(m,2H),6.50(d,J=2.6Hz,1H),6.32(s,1H),5.63(s,1H),4.15(t,J=7.1Hz,2H),2.33(m,2H),2.05(m,2H);13CNMR(101MHz,CDCl3)δ172.41,138.87,135.97,128.65,127.98,127.65,121.48,121.04,119.33,109.31,101.26,45.75,28.97,28.90。
实施例26:制备4-(1,3-二氧异吲哚-2-基)-2-亚甲基戊酸
反应式:
方法同实例1,产率77%,纯度>99%。
利用核磁共振对实施例26中得到的4-(1,3-二氧异吲哚-2-基)-2-亚甲基戊酸进行分析,得到其核磁共振氢谱图如图7所示;得到其核磁共振碳谱图如图8所示。
实施例27:制备4-((呋喃-2-羰基)氧)-2-亚甲基戊酸
反应式:
方法同实例1,产率89%,纯度>99%。
利用核磁共振对实施例27中得到的4-((呋喃-2-羰基)氧)-2-亚甲基戊酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ7.60~7.57(m,1H),7.18–7.15(m,1H),6.50(dd,J=3.5,1.7Hz,1H),6.42(s,1H),5.82(s,1H),4.48(t,J=6.5Hz,2H),2.78(t,J=6.5Hz,2H);13CNMR(101MHz,CDCl3)δ171.87,158.62,146.44,144.53,135.83,129.97,118.06,111.86,63.03,31.16。
实施例28:制备2-亚甲基-4-(对-甲苯基硫代)丁酸
反应式:
方法同实例1,产率52%,纯度>99%。
利用核磁共振对实施例28中得到的2-亚甲基-4-(对-甲苯基硫代)丁酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ7.27(d,J=8.1Hz,2H),7.11(d,J=8.1Hz,2H),6.38(s,1H),5.72(s,1H),3.08~3.04(t,J=7.5Hz,2H),2.61(t,J=7.5Hz,2H),2.32(s,3H);13CNMR(101MHz,CDCl3)δ172.18,137.81,136.25,132.07,130.09,129.73,129.27,32.90,31.76,21.01。
实施例29:制备(E)-4-(肉桂酰氧基)-2-亚甲基丁酸
反应式:
方法同实例1,产率83%,纯度>99%。
利用核磁共振对实施例29中得到的(E)-4-(肉桂酰氧基)-2-亚甲基丁酸进行分析,得到其核磁共振氢谱图如图9所示;得到其核磁共振碳谱图如图10所示。
实施例30:制备4-(4-乙酰苯氧基)-2-亚甲基丁酸
反应式:
方法同实例1,产率57%,纯度>99%。
利用核磁共振对实施例29中得到的4-(4-乙酰苯氧基)-2-亚甲基丁酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ7.93(d,J=8.9Hz,2H),6.93(d,J=8.8Hz,2H),6.45(s,1H),5.87(s,1H),4.20(t,J=6.6Hz,2H),2.83(t,J=6.5Hz,2H),2.56(s,3H);13CNMR(101MHz,CDCl3)δ196.93,171.37,162.61,135.66,130.64,130.38,130.20,114.20,66.24,31.57,26.35。
实施例31:制备2-亚甲基-5-(1H-吡咯-1-基)戊酸
反应式:
方法同实例1,产率74%,纯度>99%。
利用核磁共振对实施例31中得到的2-亚甲基-5-(1H-吡咯-1-基)戊酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ6.66(d,J=1.3Hz,2H),6.33(s,1H),6.15(m,2H),5.67(s,1H),3.91(t,J=7.0Hz,2H),2.43~2.22(m,2H),2.09~1.87(m,2H);13CNMR(101MHz,CDCl3)δ172.53,138.87,128.00,120.44,108.07,48.85,30.08,28.73。
实施例32:制备2-甲基-4-((4-氧代戊酰基)氧基)丁酸
反应式:
方法同实例1,产率61%,纯度>99%。
利用核磁共振对实施例32中得到的2-甲基-4-((4-氧代戊酰基)氧基)丁酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ9.42(br,1H),6.40(s,1H),5.78(s,1H),4.25(t,J=6.5Hz,2H),2.76(t,J=6.5Hz,2H),2.65(t,J=6.4Hz,2H),2.57(t,J=6.5Hz,2H),2.20(s,3H);13CNMR(101MHz,CDCl3)δ206.95,172.72,171.68,135.93,129.70,62.79,37.91,31.03,29.85,27.91。
实施例33:制备(E)-2,3-二苯基丙烯酸(克级反应)
反应式:
在10mL的Schlenk反应管(北京欣维尔玻璃仪器有限公司,F891410反应管,容量10mL,磨口14/20)中加入64.2mg二(乙酰丙酮)镍(5mol%)与156mg1,2-双(二苯基膦基)苯(7mol%),用氩气完全置换管内空气三次,然后在氩气氛围下加10ml甲苯,892mg二苯乙炔(5.0mmol)、345mg甲酸(7.5mmol)和170mg苯甲酸酐(15mol%);该反应体系在油浴下加热到100℃并连续搅拌30小时(使用IKA磁力搅拌器,RCT基本型,搅拌速度500转/分钟)。反应完毕后,将体系冷却至室温。用乙酸乙酯稀释反应液,再将稀释过的反应液用旋转蒸发的方式浓缩(瑞士步琦有限公司,BUCHI旋转蒸发仪R-3)。浓缩残渣通过色谱柱(北京欣维尔玻璃仪器有限公司,C383040C具砂板存储球层析柱,35/20,φ30mm,有效长:500ml)层析分离得到产物。
产物为白色固体,共1.06克,产率94%,纯度>99%,洗脱剂乙酸乙酯:石油醚=1:50~1:10。
实施例34:制备4-((环己烯-3-羰基)氧基)-2-亚甲基丁酸(克级反应)
反应式:
方法同实例32,产率81%,纯度>99%。
利用核磁共振对实施例34中得到的4-((环己烯-3-羰基)氧基)-2-亚甲基丁酸进行分析,得到结果:1HNMR(400MHz,CDCl3)δ6.40(s,1H),5.76(s,1H),5.72~5.62(m,2H),4.27(t,J=6.5Hz,2H),2.67(t,J=6.4Hz,2H),2.59~2.50(m,1H),2.23(d,J=6.4Hz,2H),2.15~2.05(m,2H),2.04~1.92(m,1H),1.75~1.58(m,1H);13CNMR(101MHz,CDCl3)δ175.81,172.01,136.04,129.66,126.68,125.16,62.36,39.32,31.11,27.43,25.03,24.41。

Claims (10)

1.一种α,β-不饱和羧酸类化合物的制备方法,其特征在于,包括:
在含镍催化剂、膦配体、酸酐与有机溶剂存在的条件下,将式(I)所示的化合物与甲酸进行反应,得到式(II)所示的α,β-不饱和羧酸类化合物;
其中,所述R1与R2各自独立地选自氢、C1~C30的烷基、C1~C30的取代烷基、C1~C30的烯基、C1~C30的取代烯基、C6~C30的芳基与C6~C30的取代芳基中的一种。
2.根据权利要求1所述的制备方法,其特征在于,所述烷基、取代烷基、烯基与取代烯基的碳原子数为1~10。
3.根据权利要求1所述的制备方法,其特征在于,所述芳基与取代芳基的碳原子数优选为6~15。
4.根据权利要求1所述的制备方法,其特征在于,所述取代烷基、取代烯基与取代芳基中的取代基各自独立地优选为含杂原子官能团、环基、杂原子与含羰基官能团中的一种或多种。
5.根据权利要求1所述的制备方法,其特征在于,所述取代烷基、取代烯基与取代芳基中的取代基各自独立地为酯基、酰胺基、氰基、醛基、卤素、三氟甲基、甲氧基、吲哚基、吡咯基、呋喃基、硼酯基、三元环基、金刚烷基与硫醚基中的一种或多种。
6.根据权利要求1所述的制备方法,其特征在于,所述甲酸与式(I)所示的化合物的摩尔比为(1~2.5):1;
所述含镍催化剂与膦配体的摩尔比为1:(1~2)。
7.根据权利要求1所述的制备方法,其特征在于,所述含镍催化剂的摩尔数为式(I)所述的化合物的摩尔数的1%~10%;所述酸酐的摩尔数为式(I)所示的化合物的摩尔数的1%~50%。
8.根据权利要求1所述的制备方法,其特征在于,所述含镍催化剂选自氯化镍、双(1,5-环辛二烯)镍、二(乙酰丙酮)镍与溴化镍中的一种或多种。
9.根据权利要求1所述的制备方法,其特征在于,所述膦配体选自1,1-双(二苯基膦)甲烷、1,2-双(二苯基膦)乙烷、1,3-双(二苯基膦)丙烷、1,4-双(二苯基膦)丁烷、顺-1,2-双(二苯基膦)乙烯与1,2-双(二苯基膦基)苯中的一种或多种;
所述酸酐选自乙酸酐、特戊酸酐与苯甲酸酐中的一种或多种。
10.根据权利要求1所述的制备方法,其特征在于,所述反应的温度为80℃~150℃;所述反应的时间为1~30h。
CN201511028943.6A 2015-12-30 2015-12-30 一种α,β-不饱和羧酸类化合物的制备方法 Active CN105566021B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511028943.6A CN105566021B (zh) 2015-12-30 2015-12-30 一种α,β-不饱和羧酸类化合物的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511028943.6A CN105566021B (zh) 2015-12-30 2015-12-30 一种α,β-不饱和羧酸类化合物的制备方法

Publications (2)

Publication Number Publication Date
CN105566021A true CN105566021A (zh) 2016-05-11
CN105566021B CN105566021B (zh) 2018-05-29

Family

ID=55876737

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511028943.6A Active CN105566021B (zh) 2015-12-30 2015-12-30 一种α,β-不饱和羧酸类化合物的制备方法

Country Status (1)

Country Link
CN (1) CN105566021B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107337572A (zh) * 2017-05-31 2017-11-10 中国科学技术大学 一种制备β,γ‑不饱和羧酸类化合物的方法
CN109942468A (zh) * 2019-04-22 2019-06-28 大连万福制药有限公司 一种由3-苯基-1-丙炔制备卡多曲的工艺方法
CN111039773A (zh) * 2019-12-25 2020-04-21 华南理工大学 一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法
CN112778115A (zh) * 2021-01-26 2021-05-11 山东师范大学 一种氟比洛芬的制备方法
CN112961115A (zh) * 2021-02-27 2021-06-15 浙江师范大学 一种制备(E)-α-芳基-α,β-不饱和唑啉或羧酸的方法及化合物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3019256A (en) * 1959-03-23 1962-01-30 Union Carbide Corp Process for producing acrylic acid esters
US3106577A (en) * 1960-06-27 1963-10-08 Acidos Grasos Limitada Preparation of acrylic acid
CN1156719A (zh) * 1996-12-18 1997-08-13 中国科学院成都有机化学研究所 一种合成丙烯酸甲酯的方法
CN1259510A (zh) * 1998-12-17 2000-07-12 纳幕尔杜邦公司 采用镍催化剂由丁二烯制备3-戊烯酸的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3019256A (en) * 1959-03-23 1962-01-30 Union Carbide Corp Process for producing acrylic acid esters
US3106577A (en) * 1960-06-27 1963-10-08 Acidos Grasos Limitada Preparation of acrylic acid
CN1156719A (zh) * 1996-12-18 1997-08-13 中国科学院成都有机化学研究所 一种合成丙烯酸甲酯的方法
CN1259510A (zh) * 1998-12-17 2000-07-12 纳幕尔杜邦公司 采用镍催化剂由丁二烯制备3-戊烯酸的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JING HOU等: "Palladium-Catalyzed Hydrocarboxylation of Alkynes with Formic Acid", 《ANGEW. CHEM. INT. ED.》 *
XIAN-GUI YANG等: "The nickel-catalyzed hydroesteri®cation of acetylene with methyl formate to methyl acrylate", 《APPLIED CATALYSIS A: GENERAL》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107337572A (zh) * 2017-05-31 2017-11-10 中国科学技术大学 一种制备β,γ‑不饱和羧酸类化合物的方法
CN109942468A (zh) * 2019-04-22 2019-06-28 大连万福制药有限公司 一种由3-苯基-1-丙炔制备卡多曲的工艺方法
CN111039773A (zh) * 2019-12-25 2020-04-21 华南理工大学 一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法
CN111039773B (zh) * 2019-12-25 2021-09-21 华南理工大学 一种钯催化二氧化碳和炔烃合成α-丙烯酸化合物的方法
CN112778115A (zh) * 2021-01-26 2021-05-11 山东师范大学 一种氟比洛芬的制备方法
CN112778115B (zh) * 2021-01-26 2022-08-09 山东师范大学 一种氟比洛芬的制备方法
CN114887666A (zh) * 2021-01-26 2022-08-12 山东师范大学 一种催化剂及其应用
CN114887666B (zh) * 2021-01-26 2023-12-22 山东师范大学 一种催化剂及其应用
CN112961115A (zh) * 2021-02-27 2021-06-15 浙江师范大学 一种制备(E)-α-芳基-α,β-不饱和唑啉或羧酸的方法及化合物

Also Published As

Publication number Publication date
CN105566021B (zh) 2018-05-29

Similar Documents

Publication Publication Date Title
Guo et al. Silver tungstate: a single-component bifunctional catalyst for carboxylation of terminal alkynes with CO 2 in ambient conditions
CN105566021A (zh) 一种α,β-不饱和羧酸类化合物的制备方法
Wang et al. Synthesis of novel N, P chiral ligands for palladium-catalyzed asymmetric allylations: the effect of binaphthyl backbone on the enantioselectivity
CN107698435B (zh) 离子型铁(iii)配合物在催化端炔化合物与二氧化碳的羧基化反应中的应用
CN103415495B (zh) 环聚亚芳基化合物及其制备方法
Nie et al. Facile synthesis of substituted alkynes by nano-palladium catalyzed oxidative cross-coupling reaction of arylboronic acids with terminal alkynes
Bartoli et al. The CeCl3· 7H2O–NaI system as promoter in the synthesis of functionalized trisubstituted alkenes via Knoevenagel condensation
Mu et al. The highly efficient Suzuki–Miyaura cross-coupling reaction using cyclopalladated N-alkylferrocenylimine as a catalyst in aqueous medium at room temperature under ambient atmosphere
Xia et al. Efficient hydrocarboxylation of alkynes based on carbodiimide-regulated in situ CO generation from HCOOH: An alternative indirect utilization of CO2
CN102633836B (zh) 一种合成双(二苯基膦)烷烃的方法
CN107746392B (zh) 一种含桥环结构的恶唑烷类化合物的制备方法
CN104119352A (zh) 一种烯烃的不对称环氧化方法
Hui et al. Synthesis of new C2-symmetric bis (β-hydroxy amide) ligands and their applications in the enantioselective addition of alkynylzinc to aldehydes
CN110606829B (zh) 一种钯催化合成4-取代喹啉衍生物的方法
Huo et al. Highly Efficient Bulky α‐Diimine Palladium Complexes for Suzuki‐Miyaura Cross‐Coupling Reaction
CN103788130A (zh) 一种新型含磷有机配体1-(9-蒽基)-2-二苯基膦-咪唑的合成方法及应用
Ye et al. Cu2O‐Mediated Room Temperature Cyanation of Aryl Boronic Acids/Esters and TMSCN
Liu et al. Amide as an efficient ligand in the palladium-catalyzed Suzuki coupling reaction in water/ethanol under aerobic conditions
CN113354500B (zh) 一种制备1,5-二烯衍生物的方法
CN111018691B (zh) 一种芳香酸的绿色合成方法
CN100588656C (zh) 钳形双咪唑啉钯化合物及其在Suzuki反应中的应用
CN109824501B (zh) 一种邻位含羧二氟亚甲基的芳基碘化合物及制备方法
CN107118196B (zh) 异香豆素衍生物的制备方法
Huang et al. Direct Arylation of Substituted Pyridines with Arylboronic Acids Catalyzed by Iron (II) Oxalate
CN109456180A (zh) 一种无金属催化的β,β-二氯内脂化合物的合成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant